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Abstract—Data-parallel training is widely used for scaling
DNN training over large datasets, using the parameter server
or all-reduce architecture. Communication scheduling has been
promising to accelerate distributed DNN training, which aims
to overlap communication with computation by scheduling the
order of communication operations. We identify two limitations
of previous communication scheduling work. First, layer-wise
computation graph has been a common assumption, while
modern machine learning frameworks (e.g., TensorFlow) use a
sophisticated directed acyclic graph (DAG) representation as the
execution model. Second, the default sizes of tensors are often
less than optimal for transmission scheduling and bandwidth
utilization. We propose PACE, a communication scheduler that
preemptively schedules (potentially fused) all-reduce tensors
based on the DAG of DNN training, guaranteeing maximal over-
lapping of communication with computation and high bandwidth
utilization. The scheduler contains two integrated modules: given
a DAG, we identify the best tensor-preemptive communication
schedule that minimizes the training time; exploiting the optimal
communication scheduling as an oracle, a dynamic programming
approach is developed for generating a good DAG, which merges
small communication tensors for efficient bandwidth utilization.
Experiments in a GPU testbed show that PACE accelerates
training with representative system configurations, achieving up
to 36% speed-up compared with state-of-the-art solutions.

I. INTRODUCTION

Deep learning has developed significantly in recent years
on a variety of applications as in computer vision and
natural language processing. Training of large deep neural
networks (DNNs) on increasing volumes of data is very
time-consuming. Data parallelism with synchronous parameter
update [1] [2] is a popular method for distributed DNN
training with better convergence guarantee, where in each
training iteration, each worker has a full copy of model
parameters, trains a subset of the input data, exchanges pa-
rameter updates (gradients) with each other, and then updates
model parameters. As workers exchange gradients frequently,
communication often occupies a significant portion in overall
training time (which can be as high as 90%) [3] [4] [5].

Different approaches have been proposed for communica-
tion acceleration in distributed DNN training. One can reduce
communication traffic using techniques such as gradient quan-
tization [4], mixed-precision training [6], or can deploy higher
bandwidth networks or RDMA [7]. They target a common goal
– accelerating individual communication operations.

A new direction to accelerate distributed training is to
schedule communication such that it is best overlapped with
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computation. In each training iteration, gradients can be sent
immediately after they are calculated, without waiting for the
completion of the entire backward process. This is known as
wait-free backward propagation (WFBP) [3] and is supported
in most distributed training frameworks, e.g., TensorFlow [8],
PyTorch [9], MXNet [10] and B-Caffe [1]. First-In-First-Out
(FIFO) is the default policy for scheduling communication
tensors (i.e., gradients to be transmitted) according to their
generation order, in existing machine learning (ML) systems
such as MXNet and TensorFlow. After gradient synchro-
nization among workers, updated parameters are not needed
simultaneously for activation calculation in the next iteration,
but according to the sequence of computation operations
consuming them [5] [11]. In this case, FIFO tensor com-
munication scheduling is less than optimal: we can hide the
communication time better by adjusting the order of tensor
communications, to overlap them partly with activation calcu-
lation (of the next iteration), without affecting training results
(Sec. II-C) [12]. Unfortunately, it is not easy to achieve such
communication scheduling in modern ML frameworks [8] [9]
due to two main reasons (Sec. II).

First, while a DNN is often defined as a layer-by-layer struc-
ture by users, the computation graph of the DNN is not a lay-
ered structure. State-of-the-art ML frameworks represent the
training execution model as a sophisticated Directed Acyclic
Graph (DAG), where the nodes represent operators of compu-
tation or communication, and the edges represent dependencies
among operators. Previous communication scheduling solu-
tions (e.g., [1] [12] [13]) are restricted to layered computation
graphs and not easily applicable to DAG representation used
by ML engines. In a DAG, finding an optimal communication
schedule efficiently is a non-trivial challenge.

Second, the default sizes of gradient tensors are often not
ideal for scheduling and efficient bandwidth utilization. On the
one hand, the head-of-line blocking issue may occur when a
communication operator with a large tensor is scheduled: when
another tensor with a higher priority (e.g., needed sooner for
next iteration) arrives later, it has to wait for the completion of
the large tensor before its communication. On the other hand,
small communication tensors (e.g., less than 1MB) can not
fully utilize network bandwidth, due to the relatively larger
portion of overhead in its communication (e.g., time spent on
negotiation/synchronization among workers). The overhead is
non-trivial especially for all-reduce operations, due to the need
of strict synchronization among workers [1].

To address these issues, we design PACE, a communication



scheduler that preemptively schedules (potentially fused) all-
reduce communication tensors based on the DAG of DNN
training model, guaranteeing maximal overlapping of com-
munication with computation and efficient bandwidth utiliza-
tion. We focus on all-reduce gradient exchange paradigm in
synchronous data-parallel training, where workers exchange
gradients directly among each other without involving pa-
rameter servers. All-reduce is one widely adopted tensor
communication approach for distributed DNN training, sup-
ported by various ML frameworks (e.g., TensorFlow, PyTorch,
PaddlePaddle [14], Horovod [15]), and demonstrating better
scalability than the parameter server architecture [15].

PACE aims to identify the best schedule and granularity of
tensor communication to maximally overlap communication
with computation, in order to minimize the execution time of
the training DAG. It contains two integrated modules. First,
we devise a theoretically optimal approach for preemptive
scheduling of all-reduce communication operators according
to the given (fused) DAG. The preemption enables maximal
communication-computation overlap by preventing head-of-
line blocking of large communication tensors. Next, exploiting
the optimal communication scheduling as an oracle, we pro-
pose a dynamic programming approach to generate a good
DAG, by fusing small communication tensors to mitigate
communication overhead incurred by a large number of small
tensors and to achieve efficient bandwidth utilization. PACE
expedites distributed DNN training without requiring changes
in the DNN model or user code. Specifically, we make the
following contributions in developing PACE.
. We formulate a preemptive communication scheduling

problem for a general computation-communication depen-
dency graph for all-reduce based DNN training, and develop
a theoretically optimal scheduling solution (Sec. IV-B). The
preemptive scheduling achieves variable tensor size partition
for maximal overlap of computation and communication.
. We design a dynamic programming approach to fuse small

communication tensors and generate an efficient computation-
communication dependency graph to use (Sec. IV). The com-
munication scheduling module is integrated as an oracle, to
provide an execution-time minimization tensor schedule on
each given candidate graph, for efficiently identifying the near-
optimal graph. PACE produces the (fused) DAG and optimal
communication schedule on it in polynomial time.
. We have implemented PACE scheduler on Horovod [15],

using MXNet as the training framework. We evaluated PACE
using 4 representative DNNs on a GPU cluster under different
system settings (Sec. VI). Experiment results show that PACE
accelerates training speed by up to 36% compared to WFBP,
and up to 32% compared to Horovod.

II. BACKGROUND AND MOTIVATION

A. Distributed DNN Training

DNN training. In deep learning, a DNN model is trained
to minimize a loss function with a large dataset, which is
equally divided into mini-batches. In each iteration, we pass a
mini-batch through the DNN to obtain the loss, calculate the

gradients, and then update parameters based on an optimiza-
tion algorithm, e.g., Stochastic Gradient Descent (SGD) [16].
The iterative training is repeated until the DNN converges.
All-reduce. In each iteration of distributed DNN training,
gradient exchange among workers is typically through pa-
rameter server(s) or the all-reduce collective. All-reduce is
a collective operation that sums (or averages) the gradients
from all workers and disperses the aggregated (or averaged)
gradients to them [17]. This operation can be implemented
using various algorithms [1] [17]. Among them, ring all-reduce
algorithm is most widely adopted in ML frameworks (e.g.,
Horovod, PaddlePaddle), since it is proved to be bandwidth-
optimal, assuming that the all-reduce tensor (i.e., gradients
to be aggregated or averaged by the all-reduce operation) is
large enough [17]. Fig. 1 illustrates a ring all-reduce process
among 3 workers, for summing gradients generated by the
dReLu operator (AR1). The workers form a ring topology.
Each tensor is segmented evenly according to the number of
workers, and the tensor chunks are reduced (i.e., aggregated)
by walking the ring from different starting points.

B. Computation-communication Dependency DAG

Dependency DAG. State-of-the-art ML frameworks [8] [9]
use a dataflow graph to represent the training steps that a
worker carries out in each training iteration, in terms of the de-
pendencies among operators. The dataflow graph is typically a
sophisticated Directed Acyclic Graph (DAG), where the nodes
represent computation operators or communication operators,
and the directed edges represent their dependencies. The ML
engine executes an operator once it is ready, i.e., all operators
that it depends on have been finished.

Fig. 1 illustrates a contrived DAG in MXNet with 9 opera-
tors. Blue circles represent computation operators, and green
shapes indicate communication operators. For example, Add
depends on Mul and AR2, AR2 depends on dAdd, and dAdd
depends on dReLu. When executing the graph, the framework
engine has no idea of coarse DNN layers, but only concepts
of such fine-grained computation operators (e.g., MatMul,
BiasAdd, ReLu), communication operators (e.g., all-reduce)
and their dependencies.

C. Opportunities

Preemptive scheduling. By default, ML framework engines
(such as TensorFlow, MXNet and PyTorch) execute commu-
nication operations in a FIFO order, because the underlying
communication library (e.g., ZMQ [18] in MXNet) is typically
based on FIFO queues. As in Fig. 2 (corresponding to the
DAG in Fig. 1), AR1 is ready for execution first and then
gets executed first; then AR2 is executed before AR3 (once
AR1 is finished, both AR2 and AR3 are ready). However, if
we schedule AR3 ahead of AR2, Mul (which depends on
AR3) can start earlier, and its computation is overlapped with
AR2, resulting in reduced DAG execution time [5], [12].

In a DAG, the sizes of communication tensors can vary
significantly (e.g., the smallest tensor is 256B, and the largest
tensor is over 400MB for VGG16 [19]). A very large tensor,
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Fig. 2: Example scheduling strategies.

once started all-reduce, would block other tensors arriving later
than the large tensor, even if they need to be finished earlier.
Fig. 2 shows such a case: when AR2 is ready, AR1 has not
been finished and hence blocks AR2.

Therefore, only scheduling the transmission order of tensors
is not sufficient. A better strategy is to allow execution pre-
emption of the respective communication operator and resume
it at a later time. Since all-reduce is a primitive operation, to
achieve preemption of an all-reduce communication operator,
we can segment it into multiple operators, each responsible
for all-reduce of one partition of the original gradient tensor.
The smaller operators can be scheduled at different times to
allow newly-arrived all-reduce operators to be executed earlier.
For example, AR1 is partitioned into two smaller all-reduce
operators with uneven tensor partition, so that the completion
time of the first operator equals the ready time of AR2. AR2

is partitioned too to allow AR3 to be executed once it is ready.
After AR3 is completed, the second partition of AR2 will be
scheduled, followed by that of AR1. Compared with FIFO,
this preemptive schedule achieves 25% reduction of DAG
execution time. Finding the optimal preemption/partitioning
points of all-reduce operators in a DAG with large tensors is
a challenging task. We formulate the preemptive scheduling
problem and devise an optimal solution in Sec. IV.
Tensor fusion. When the size of a gradient tensor is small
(e.g., less than 1MB), all-reduce can not fully utilize the
network bandwidth: the communication overhead (e.g., ACK
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time for message transmission, negotiation time among all
workers before performing all-reduce on a tensor [15]) is non-
negligible as compared to the short transmission time. Fig. 3
shows the average measured execution time of ring all-reduce
operators with tensors of different sizes, obtained by running
all-reduce benchmark in our GPU cluster (see Sec. VI for
hardware details). Note that both x-axis and y-axis are in log
scale. When the tensor size is small (less than 1MB), the all-
reduce time does not decrease linearly with the decrease of
tensor size. Fig. 4 shows that over 50% gradient tensors in
ResNet50 [20] and Transformer [21] are less than 1MB in
size. For DNNs with these many tiny tensors, the overhead in
ring all-reduce communication can be significant.

One solution is to fuse multiple small tensors together
before performing all-reduce operation on them. After fusion,
the size of the result tensor is the sum of sizes of small tensors,
and the fused all-reduce operator is ready for execution when
all the small all-reduce operators are ready. Though the fused
tensor can potentially utilize the bandwidth better, its all-
reduce start time is delayed, which affects the completion time
of the DAG too. We design a dynamic programming approach
to obtain a fused DAG balancing this trade-off in Sec. V.

III. SYSTEM OVERVIEW

We consider distributed DNN training jobs using the all-
reduce architecture in modern ML frameworks (e.g., MXNet).
We design a communication scheduler, PACE, to schedule all-
reduce communication in DNN training for best overlapping
communication with computation, in order to minimize model
training time without affecting model quality.

Upon submission of a DNN training job to the ML cluster,
PACE profiles the job and collects the following information
(by running the training for a few iterations if there is no
historical runtime trace): (i) the computation-communication
DAG, (ii) execution time of each operator in the DAG, and
(iii) size of the tensor to be all-reduced by each all-reduce
operator (in bytes).

PACE then produces a good DAG for the job’s training
by fusing small all-reduce operators using the dynamic pro-
gramming approach in Sec. V, and generates the optimal,
preemptive execution schedule of all-reduce operators in the
result graph using the optimization solution in Sec. IV.

After that, PACE uses the produced DAG and communi-
cation schedule to run the DNN training. All-reduce tensor
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fusion on the DAG and the communication schedule can be
recomputed periodically if necessary, e.g., when a significant
change of execution time of operators is detected. Fig. 5
illustrates the workflow.

IV. PREEMPTIVE COMMUNICATION SCHEDULING

Given the (fused) DAG, the communication scheduling
module in PACE computes an optimal schedule of all all-
reduce operators in the DAG, which minimizes the DAG’s
end-to-end execution time. The DAG is executed once per
training iteration at each worker in a distributed DNN training
job. Accelerating DAG execution speeds up job training.

A. Communication Scheduling Problem

DAG model. We consider a computation-communication DAG
containing M computation operators and N all-reduce com-
munication operators. A computation operator j ∈ [M ]
([M ] = {1, . . . ,M}) may depend on zero or more other
computation operators and zero or one all-reduce operator [8],
and it can only be executed after all those dependent operators
are done. Let Pj denote the set of computation operators that
j depends on, and Pj = ∅ if no such dependency. vj is the
precedent all-reduce operator that j depends on, and vj = ∅
if there is no such dependency. Suppose time is slotted into
small time slots, e.g., 5ms. Let fj be the computation time of
computation operator j (in terms of number of time slots). zj
is the completion time slot of computation operator j.

Each all-reduce operator i ∈ [N ] has a precedent com-
putation operator ui. ui does not depend on any all-reduce
operators directly or indirectly, i.e., no all-reduce operator(s)
among direct and indirect predecessors of ui, which is true for
all DNN training DAGs [8]. In some DNNs, one computation
operator may generate multiple all-reduce tensors, such as
weight and bias; we can treat them as one combined all-reduce
tensor as their dependency and ready time are the same. The
size of all-reduce tensor i is Si.

Communication schedule. At each time slot t, we select
at most one ready all-reduce operator to execute. Therefore,
the length of a time slot should be set to be no larger than
the execution time of the smallest (fused) all-reduce operator.
Let xi(t) denote whether all-reduce operator i should be
executed (i.e., whether its tensor i should be all-reduced) at
t: xi(t) is 1 if so, and 0, otherwise. Execution of an all-
reduce operator may take more than one time slots, and we
allow preemption of its execution. Therefore, the execution
of an all-reduce operator may span multiple, none-necessarily
consecutive time slots, i.e., the schedule of all-reduce operator
i can be described by {t|xi(t) = 1, t ∈ [T ]}. Let yi denote

TABLE I: Notation

xi(t) whether to execute all-reduce operator i at time slot t
zj completion time slot of computation operator j
yi completion time slot of all-reduce operator i
fi computation time of computation operator i
Si tensor size of all-reduce operator i
ui precedent computation operator of all-reduce operator i
vj precedent all-reduce operator of computation operator j
N # of all-reduce communication operators
M # of computation operators
Pj set of precedent computation operators of computation

operator j
gi time to complete all-reduce on tensor i
W # of workers T # of time slots

the completion time slot of all-reduce operator i, which is the
latest time slot with xi(t) = 1.

As illustrated in Sec. II-C, non-consecutive execution of an
all-reduce operator can be achieved by dividing its tensor into
(variable size) partitions according to the computed schedule,
and performing all-reduce on each tensor partition.
Execution time of all-reduce operator. Assume there are
W workers in the training job and ring-based all-reduce is
used [17]. The time to perform all-reduce on a tensor of
size Si is mainly spent on gradient transmission and gradient
aggregation at the workers: each worker receives one gradient
chunk while sending another at the same time; then the worker
sums the received chunk with its own before sending/receiving
the next chunk. Each worker transmits gradient chunks of
size Si/W for 2(W − 1) times and aggregates these gradient
chunks for W − 1 times in total. Suppose the workers are
homogeneous and synchronized. The time to complete ring
all-reduce on tensor i is:

gi =
Si
W
· 2(W − 1)

B
+

Si
W

(W − 1)

G
(1)

where B represents the bandwidth between workers and G is
the computation power (e.g., sum of floating points when using
GPU). In practice, we collect sample points (tensor size, all-
reduce time) during the profiling stage of a DNN job, and fit
a linear model to describe the above relation between Si and
gi. As shown in Fig. 3, such a linear model is quite accurate
when the tensor size is sufficiently large. We focus on such
cases in this section and will use the algorithm in Sec. V to
obtain the DAG with small tensors fused.

Similarly, we can derive the execution time of all-reduce
operators using other all-reduce algorithms, e.g., binary tree,
recursive doubling, as a function of tensor size [1].
Optimization problem. We formulate the following optimiza-
tion problem to compute the best preemptive communication
schedule in a given DNN training DAG. The main decision
variables are xi(t),∀i ∈ [N ], t ∈ [T ]; yi and zj , ∀i ∈ [N ], j ∈
[M ], are auxiliary variables; all the other quantities are input.
The objective is to minimize the completion time of the latest
computation operator(s) (all-reduce operators are typically not
at the last of the DAG [8]), to minimize the DAG’s execution
time. Important notation is summarized in Table I for ease of
reference.



min max
j∈[M ]

zj (2)

subject to: ∑
t∈[T ]

xi(t) ≥ dgie, ∀i ∈ [N ] (3)

yi = max
t∈[T ]
{t | xi(t) = 1}, ∀i ∈ [N ] (4)

zj = fj +max
k∈Pj

{zk, yvj}, ∀j ∈ [M ] (5)∑
i∈[N ]

xi(t) ≤ 1, ∀t ∈ [T ] (6)

xi(t) = 0, ∀i ∈ [N ], t < zui (7)
xi(t) ∈ {0, 1}, ∀i ∈ [N ], t ∈ [T ] (8)
yvj = 0, ∀vj = ∅ (9)

Constraint (3) ensures that for each all-reduce operator i, a
sufficient number of time slots are allocated to accomplish its
all-reduce. The right-hand side of (3) is computed according
to the tensor size and all-reduce algorithm in use, e.g., Eqn. (1)
for ring all-reduce. Constraint (4) formulates the completion
time slot of all-reduce operator i. As in (5), the completion
time slot of computation operator j depends on the time when
all its dependencies (precedent computation operators k ∈ Pj

and all-reduce operator vj if it exists) are done and its own
computation time. Constraint (6) ensures that at most one all-
reduce operator is scheduled at each time slot. Constraint (7)
ensures that an all-reduce operator i can only be scheduled
after its precedent computation operator ui is done.

We assume ideal computation operator scheduling in our
communication scheduling problem above: there are sufficient
computation devices such that each computation operator can
immediately start execution once all its dependent operators
are done (constraint (5)). Computation scheduling with device
constraints is an open NP-hard problem [22], which is not
addressed due to our focus on communication scheduling.

B. Optimal Solution

The optimization problem in (2) involves integer variables
and non-conventional constraints in (4)(5). However, we are
able to transform it into an equivalent form with a nice
structure, which can be optimally solved in polynomial time.
Reducing constraints. Consider the example DAG on the left
of Fig. 6. According to (5), we can compute recursively that
(computation of other zi’s omitted due to space limit):

z7 = f7 +max{z6, y6} = y6 + f7

(because y6 > z6 as all-reduce operator 6 depends on
computation operator 6),

z12 = f12 +max{z9, z11, y1}
= max{y1 + f12, y2 + f9 + f12, y3 + f8 + f9 + f12,

y4 + f11 + f12, y5 + f10 + f11 + f12,

y6 + f7 +max{f8 + f9, f10 + f11}+ f12}

The completion time of the last computation operator 12,
z12, is the longest time among the following: completion time
of each all-reduce operator i, yi, plus the overall computation
time along the longest path from the computation operator j
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Fig. 6: An example DNN training DAG before and after
communication tensor fusion.

(which depends on i such that vj = i) to the last computation
operator, ∀i ∈ {1, . . . , 6}. That is, z12 = maxi∈{1,...,6}{yi +∑

j∈Li
fj}, where Li is the longest computation path from the

computation operator j with vj = i to the last computation
operator. Since yi = maxt∈[T ] txi(t) according to (4), we then
have z12 = maxt∈[T ],i∈{1,...,6}{txi(t) +

∑
j∈Li

fj}. We can
prove that this is in general true for DNN training DAGs, as
shown in Theorem 1 which uses Lemma 1.

Lemma 1. As there is no all-reduce operator among direct
and indirect predecessors of ui (∀i ∈ [N ]) in a DNN
training DAG, zui

can be directly computed based on (5) with
computation time of its predecessor computation operators.

Theorem 1. The objective function in (2) with constraints
(4)(5)(9) is equivalent to the following objective function:

max
t∈[T ],i∈[N ]

{txi(t) +
∑
j∈Li

fj}

where Li is the longest computation path from the computation
operator j with vj = i to the last computation operator.1

We prove Theorem 1 by induction on the last computation
operator. In the basic case where there is only one computation
operator, its finish time can trivially be presented as the form in
Theorem 1. For the general case, we formulate the finish time
of the last operator as a function of the latest finish time among
its precedent operators. Then we merge the terms including
the same yj and express them in the form of the longest
computation path, and derive the formula in Theorem 1 by
induction hypothesis. All missing detailed proof of the paper
is in our technical report.

Then the original problem (2) is equivalent to the following,
only with decision variables xi(t),∀i ∈ [N ], t ∈ [T ]:

min max
t∈[T ],i∈[N ]

{txi(t) +
∑
j∈Li

fj} (10)

s.t. (3)(6)(7)(8)

Converting to an ILP. We next transform the optimization
problem (10) into an equivalent integer linear program (ILP).
We will show that the ILP has a nice structure such that it is
efficiently solvable.

We first transform the objective function in (10) into a
convex function, exploiting a lexicographical order of the
items txi(t) +

∑
j∈Li

fj ,∀t ∈ [T ], i ∈ [N ]. We sort these
NT items in non-increasing order and put them into a vector:

1If there are more than one computation operators with no successor in the
DAG, we can add one dummy computation operator to be the last.



α(x) =(. . . , txi(t) +
∑
j∈Li

fj , . . .)

α(x′) is lexicographically smaller than α(x), if α(x′)[k] <
α(x)[k] for the first index k where α(x′)[k] and α(x)[k]
differ [23]. Then the objective function in (10) is equivalent
to the following lexicographical minimization: lexminxα(x),
i.e., finding the set of decision variables x∗ such that α(x∗)
is lexicographically no larger than α(x) of any other x. The
rationale is that since α(x) is in non-increasing order, the value
of the first item in α(x) is maxt∈[T ],i∈[N ]{txi(t)+

∑
j∈Li

fj};
x∗ achieves the smallest maxt∈[T ],i∈[N ]{txi(t) +

∑
j∈Li

fj},
which is the optimal solution of (10).

We introduce a function φ(α) to convert vector α(x) into a
scalar, which preserves the lexicographical order (where |α| =
TN ) [24]:

φ(α) =

|α|∑
k=1

|α|α[k] =
∑

t∈[T ],i∈[N ]

(TN)
txi(t)+

∑
j∈Li

fj

Then problem (10) is equivalent to the following problem:
min
x

φ(α(x)) (11)

s.t. (3)(6)(7)(8)

where the objective function (11) is a summation of
(TN)txi(t)+

∑
j∈Li

fj , which is a convex function of variable
xi(t) since TN > 0, t > 0.

Next, we adopt the λ-representation technique [25] to trans-
form (11) into an equivalent ILP. We have a set of λ0i (t) and
λ1i (t) ∈ R+, which satisfy:

xi(t) = λ1
i (t), ∀i ∈ [N ], t ∈ [T ] (12)

λ0
i (t) + λ1

i (t) = 1,∀i ∈ [N ], t ∈ [T ] (13)

Then we can use linear function (TN)
∑

j∈Li
fjλ0i (t) +

(TN)t+
∑

j∈Li
fjλ1i (t) to approximate the integer convex func-

tion (TN)txi(t)+
∑

j∈Li
fj , and their values are proven to be

equal with integer xi(t)’s in [25]. Then we can convert (11)
to the following ILP, and rest assured that their integer optimal
solutions are the same:

min
x,λ

∑
t∈[T ],i∈[N ]

((TN)
∑

j∈Li
fjλ0

i (t) + (TN)
t+

∑
j∈Li

fjλ1
i (t))

(14)
s.t. (3)(6)(7)(8)

(12)(13)

λ0
i (t), λ

1
i (t) ∈ R+, ∀i ∈ [N ], t ∈ [T ]

Solving the ILP. The ILP in (14) is efficiently solvable due
to the following:

Theorem 2. The coefficient matrix of constraints
(3)(6)(7)(12)(13) is a totally unimodular matrix.

We prove that the coefficient matrix satisfies the criteria of
total unimodularity [26]. It is known that for an ILP where
constraint matrix is totally unimodular and the constants in
the constraints are integers, there exists an optimal integer so-
lution [26]. Therefore, we can solve the optimization problem

1 2 3 5 64
2' 4'

Fig. 7: Fusion of all-reduce operators in Fig. 6.

in (14) without integer constraint (8) using any efficient LP
solvers, such as interior-point methods, and obtain an optimal
integer solution in polynomial time. The optimal solution to
problem (14) is also an optimal solution to problem (2), i.e.,
an optimal schedule of all all-reduce operators in the DAG.

V. BALANCED COMMUNICATION TENSOR FUSION

We now design an all-reduce tensor fusion algorithm for
producing the DAG, which works together with optimal com-
munication scheduling in Sec. IV to minimize iteration time.

A. Design Rationale

Our design strives to achieve a good trade-off between (a)
efficient bandwidth utilization and (b) delay of execution start
of fused all-reduce operators and their successor computation
operators. For the example in Fig. 6, suppose all-reduce tensors
2 and 3 are small, and we merge them as a new all-reduce
operator 2′ for better bandwidth utilization. The new all-reduce
operator 2′ can not start execution until both computation
operators 2 and 3 are done. Computation operators 8 and 9
cannot start before the fused tensor 2′ is all-reduced.

To minimize the impact of (b), we fuse all-reduce operators
with similar ready time, which leads to less start delay as
compared to fusing operators that are far apart in ready time.
To group tensors with similar ready time for fusion, we sort
all-reduce operators in non-decreasing order of their ready
time, i.e., zui

(the completion time of predecessor computation
operator ui of all-reduce operator i), and construct a chain N .
Fig. 7 gives an example chain of all-reduce operators from
Fig. 6, assuming f2 + f3 < f4. We group adjacent all-reduce
operators on the chain, and show the following:

Lemma 2. Fusing adjacent all-reduce tensors, in non-
decreasing order of their ready time, is better than fusing non-
adjacent tensors, in terms of ready time of the fused tensor.

The reason is obvious: given two groups for tensor fusion (as
shown in Fig. 7), if we exchange two operators across the two
groups, the ready time of the first fused tensor is delayed.

To achieve (a), we should ensure sizes of fused tensors are
similar and sufficiently large, to lower-bound the worst perfor-
mance of communication. This is related to two decisions: (i)
the number of groups R, that we partition the operator chain
into; (ii) the tensor-size-balanced group partition.

Given R, we design a dynamic programming approach to
find balanced tensor groups, by maximizing the minimum total
tensor size among partitioned groups:

MaxMinSize(N , R)

= max
N ′⊂N

min{
∑
i∈N ′

Si,MaxMinSize(N \N ′, R− 1)}

Here N ′ is a prefix subchain of N , always starting from the
first operator in the chain. We enumerate N ′ from containing



the first all-reduce operator only to containing the first N −
R+ 1 operators. Given N ′, we let the rest of the chain to be
partitioned into R− 1 balanced groups. We compare the total
tensor size in N ′ (

∑
i∈N ′ Si) with the minimal size of fused

tensors of the R − 1 maximally balanced groups, obtain the
minimal fused tensor size among all R groups and identify
the group partitions maximizing this minimal size. Finding
the best R − 1 partitions within the subchain N \ N ′ is a
similar problem as partitioning N into R groups, except for
at a smaller scale.

The number of tensor groups for fusion, R, cannot be too
small, as otherwise the tensor groups are large and the start
delay of fused tensors is significant. On the other hand, R
cannot be too large, as then the fused tensors are still too
small to fully utilize the bandwidth. We can find the best R
by enumerating all possible values from 1 to N when N is
small (e.g., dozens), or using a stochastic search method such
as Momentum-SGD [27] when N is large. Table II shows the
number of all-reduce operators in 4 representative DNNs.

B. Tensor Fusion Algorithm

Alg. 1 shows how to find the best R (using the enumeration
approach), produce R balanced tensor groups and generate the
training DAG with potentially fused all-reduce tensors. At each
R, we use the dynamic programming function MaxMinSize
to produce the balanced R partitions along the ordered chain
of all-reduce operators (line 4). Then we fuse the all-reduce
operators in the original DNN training DAG accordingly
(line 5), and compute the optimal communication schedule on
the fused DAG using the optimization method in Sec. IV-B
as an oracle (line 6). We compare the end-to-end execution
time of the fused DAG achieved at different values of R, and
identify the best R (and thus the fused DAG) that has the
smallest end-to-end execution time (lines 7-9).

Theorem 3. Alg. 1 runs in polynomial time and produces
optimally balanced all-reduce tensor fusion results.

In the recursive function call (line 18), we store the results
of MaxMinSize(N , R) computed at different N and R, to
avoid re-computing the same subproblem in later iterations.
Then line 4 can be done in polynomial time. We can also
obtain the optimal scheduling solution from line 6 in polyno-
mial time. So the entire Alg. 1 runs in polynomial time. The
maximally balanced chain partition is ensured by the max-min
dynamic programming function.

VI. PERFORMANCE EVALUATION

A. Implementation

We implement PACE using C++11 and Python>= 2.7 on
top of Horovod [15], an open-source all-reduce communi-
cation library that uses NCCL [28] for executing ring all-
reduce operations. We use MXNet 1.5 as the ML frame-
work with Horovod for training DNNs. PACE wraps the
DistributedOptimizer class in Horovod and intercepts all
calls of ring all-reduce operations for executing our commu-
nication schedule. It receives tensor fusion instructions and

Algorithm 1 Balanced All-Reduce Tensor Fusion
Input: DNN Training DAG G, number of all-reduce operators N

and computation operators M , computation time fj ,∀j ∈ [M ],
tensor size Si, all-reduce time gi, ∀i ∈ [N ]

Output: Fused DAG and optimal communication schedule
1: Order all all-reduce operators in G in non-decreasing order of

their ready time into chain N .
2: min iter time =∞, R∗ = 0, Ĝ∗ = ∅, h = ∅
3: for R ∈ {1, . . . , N} do
4: (maxmin t size, t groups) = MaxMinSize(N , R)
5: Fuse all-reduce tensors according to obtained groups in
t groups, and produce fused DAG Ĝ (where the precedent
computation operator of a fused all-reduce operator is specified
as the one with the latest completion time among precedent
computation operators of original tensors).

6: Compute the optimal communication schedule h and end-to-
end execution time iter time of Ĝ by solving (14).

7: if iter time < min iter time then
8: min iter time = iter time,R∗ = R
9: Ĝ∗ = Ĝ, h∗ = h

10: return fused DAG Ĝ∗ and optimal communication schedule h∗

11: function MaxMinSize(N , R)
12: if R = 1 then
13: return

∑
i∈N Si, {N}

14: else if R > number of tensors in N then
15: return −∞, ∅
16: maxmin size = 0, best groups = ∅
17: for N ′ ⊂ N do
18: t size, t groups = MaxMinSize(N \N ′, R− 1)
19: temp size = min(

∑
i∈N ′ Si, t size)

20: if maxmin size < temp size then
21: maxmin size = temp size
22: best groups = t groups ∪ {N ′}
23: return maxmin size, best groups

optimal preemptive schedule of the (fused) tensors computed
by Alg. 1, and implements communication scheduling as
follows: it assigns a priority t to the (partitioned) all-reduce
operator (due to preemptive scheduling), whose execution is to
start from time slot t (a (partitioned) operator can be scheduled
over multiple consecutive time slots), and a smaller value
indicates higher priority; it enqueues these all-reduce operators
into a priority queue and executes them according to their
priorities. We also add a few lines of code to MXNet to collect
the profiling trace (e.g., the duration of each operator, the sizes
of communication tensors).

B. Methodology

Testbed. We build a Kubernetes cluster [29] of 8 GPU servers
connected by a Dell Z9100-ON switch. The peak bandwidth
between any two servers is about 25Gbps, measured using
iPerf [30]. Each server has one 8-core Intel E5-1660 CPU, two
GTX 1080Ti GPUs, 48GB RAM, and one MCX413A-GCAT
50GbE NIC. We installed NVIDIA GTX driver 384.90, CUDA
9.0, CuDNN 7.0 and NCCL 2.4.7 in each Ubuntu server.
Benchmark models. We experiment with jobs training 2
CNN models, VGG16 [19] and ResNet50 [20], on Ima-
geNet dataset [31], and 2 RNN models, Seq2Seq [32] and
Transformer [21], on WMT dataset [33] (see Table II for
details). The training scripts are from the official MXNet



TABLE II: Benchmark models

DNN # of parame- # of all-reduce # of computa-
Models ters (Million) operators tion operators
VGG16 138.4 32 80

ResNet50 25.5 157 335
Seq2Seq 67.2 32 293

Transformer 91.8 164 1061

examples [34], [35]. Each worker process has 1 GPU and batch
sizes per GPU for the 4 models are 64, 32, 4096 and 2048 sam-
ples, respectively. We use training speed (images/sec for CNNs
and tokens/sec for RNNs) as the performance metric, which is
computed by 1

training time per iteration × batch size, where the
training time per iteration is the end-to-end execution time of
the model’s DAG. All the reported speed numbers are averaged
over 1000 training iterations.
Baselines. We compare PACE with three representative
baselines: (i) WFBP [3], default communication optimization
implemented in most ML frameworks (e.g., MXNet, PyTorch),
which overlaps all-reduce communication with gradient cal-
culation and schedules ready all-reduce operators using FIFO,
without tensor fusion. (ii) Default Horovod [15], the state-of-
the-art all-reduce communication framework which integrates
a few optimization techniques, such as WFBP and fusion
of small tensors. (iii) TicTac [5], a heuristic communication
scheduler for PS architecture in TensorFlow, which greedily
reduces the blocking time of activation calculation by changing
the communication order. P3 [12] adopts a similar idea.

C. Worker Number vs. Speed

We train each DNN using different numbers of workers in
a 10Gbps network (we limit the available bandwidth using
Linux tc tool), which is a typical bandwidth setting for AWS
instances (e.g., g3.4xlarge GPU instance) [36]. In Fig. 8, we
observe desirable linear scaling of the total training speed
achieved by PACE with the worker number. We see that PACE
outperforms WFBP by 20%-36%, default Horovod by 3%-
32% and TicTac by 13%-21% across the 4 benchmark models.

PACE achieves much higher speed than Horovod on the
models except ResNet50. This is because ResNet50 has fewer
parameters (see Table II) and the all-reduce time in a 10Gbps
network is much shorter than the computation time, leaving
little room for improvement with communication scheduling.
On the contrary, other models are more communication-
intensive and benefit significantly from PACE.

The outperformance of PACE over TicTac is mainly due to
its better communication granularity, as TicTac only considers
communication order without tensor fusion nor partition. For
large models such as VGG16 and Transformer, PACE achieves
a higher speedup due to preemptive scheduling, which avoids
the head-of-line blocking issue caused by large tensors (e.g.,
two largest tensors in VGG16 are 67MB and 410MB). For
ResNet50 with a lot of small tensors, PACE fuses them to
mitigate all-reduce overhead and better utilize the network.

D. Bandwidth v.s. Speed

We investigate how much performance gain PACE can
achieve at different bandwidth levels. In this experiment, we

use 12 workers to train each model.
In Fig. 9, we observe that on our testbed, the training speed

becomes stable when the network bandwidth is larger than 10-
15Gbps, as then the bandwidth is no longer the bottleneck in
further reducing the communication time, while the overhead
of ring all-reduce (e.g., negotiation time) is. PACE tends to
achieve its highest speed at a smaller bandwidth level than
the others, revealing its more efficient bandwidth usage and
overlap of communication with computation.

PACE outperforms Horovod by up to 32% for VGG16
at 12Gbps network bandwidth and 27% for Transformer at
14Gbps. Training of models with fewer parameters also bene-
fits from PACE when communication time is more important:
as compared to Horovod, PACE achieves 32% speed-up with
ResNet50 at 6Gbps bandwidth.

When the bandwidth is higher, the speed-up by PACE, as
compared to the baselines, may become smaller. PACE out-
performs Horovod by 13% and 9% when training VGG16 and
Transformer at 20Gbps bandwidth, respectively; they achieve
similar speeds with ResNet50 and Seq2Seq. Communication
takes less time when bandwidth is higher, which is especially
so for small models such as ResNet50 and Seq2Seq, leaving
PACE less room for improvement. On the other hand, when
bandwidth is very small, all-reduce communication time dom-
inates training iteration time, and overlapping communication
with computation brings little gain. This explains the similar
training speed achieved by all strategies at very low bandwidth.

We note that the training speed and performance gain that
PACE can achieve are decided by both network bandwidth and
computation capacity. On our testbed, we use one GTX 1080Ti
GPU per worker and the highest gain can be achieved when
network bandwidth is about 10-15Gbps. In a (commercial) AI
cloud equipped with more powerful computation devices (e.g.,
Tesla V100 GPU which is 2x-9x faster than GTX 1080Ti), the
highest gain can be reached at much higher bandwidth levels
(e.g., 50-100Gbps) due to the much faster computation.

E. Bandwidth Usage

We further examine the bandwidth usage when training each
model using 12 workers. We measure the outbound traffic
in worker 0 at the NIC level using Linux ethtool every 5
milliseconds. Inbound traffic and outbound traffic are the same
across workers in ring all-reduce.

In Fig. 10, we observe that both PACE and Horovod ex-
perience regular peaks (i.e., communication burst) and valleys
(i.e., network idle) in network usage. The duration of the cycle
is the time of one training iteration, with the valley happening
during activation computation and the peak indicating large
tensor transmission. Compared to Horovod, PACE significantly
improves bandwidth usage by nearly fully overlapping com-
munication with computation in most models, as shown by the
very short duration of valleys of only a few milliseconds. In the
special case of Seq2Seq model, the heaviest communication
operations are near the input of the DNN, and all all-reduce
operations have already been completed when the latter part of
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Fig. 8: Training speed with different numbers of workers per job.

5 10 15 20 25
Bandwidth (Gbps)

0.0

0.4

0.8

1.2

1.6

Sp
ee

d 
(im

ag
es

/s
ec

) 1e3
WFBP
Horovod

TicTac
PACE

(a) VGG16

5 10 15 20 25
Bandwidth (Gbps)

0.0

0.8

1.6

2.4

Sp
ee

d 
(im

ag
es

/s
ec

) 1e3
WFBP
Horovod

TicTac
PACE

(b) ResNet50

5 10 15 20 25
Bandwidth (Gbps)

0.0
0.6
1.2
1.8
2.4

Sp
ee

d 
(to

ke
ns

/s
ec

) 1e5
WFBP
Horovod

TicTac
PACE

(c) Seq2Seq

5 10 15 20 25
Bandwidth (Gbps)

0.0
0.3
0.6
0.9
1.2

Sp
ee

d 
(to

ke
ns

/s
ec

) 1e5
WFBP
Horovod

TicTac
PACE

(d) Transformer

Fig. 9: Training speed at different bandwidth levels.
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Fig. 10: Network bandwidth usage during training.

the model begins activation calculation. This leaves PACE less
room for overlapping communication with more computation.

VII. RELATED WORK

Communication acceleration. Existing communication op-
timization approaches include: (1) speeding up individual
messages using high performance network, e.g., RDMA [7],
or GPU-optimized collective library, e.g., NCCL [28]; (2)
reducing data traffic by leveraging techniques such as gradient
quantization [4] [37] [38] and sparse parameter synchroniza-
tion [39]; (3) mitigating stragglers by adopting load-aware
and interference-aware resource scheduling [40]–[43]; (4) re-
ducing synchronization overhead by allowing stale parameter
updates, e.g., Bounded Staleness Parallel [44] or Round-
Robin Synchronous Parallel [45]; (5) improving network-layer
performance by using multicast or flow control [46]. These
efforts are complementary to our work.
Overlapping communication with computation. Most DNN
frameworks, e.g., TensorFlow, PyTorch, MXNet, Poseidon and
B-Caffe, support overlapping communication with gradient
calculation. P3 [12] further overlaps parameter synchroniza-
tion with forward propagation using priority scheduling in
MXNet PS architecture. TicTac [5] proposes a similar idea but

without preemption and tensor fusion, and shows a smaller
training speed-up (less than 20%) in TensorFlow PS archi-
tecture. iBatch [13] batches parameter pulls in BigDL PS
architecture. Instead, PACE focuses on the all-reduce archi-
tecture. We adopt the natural DAG representation in modern
ML frameworks and address issues caused by sub-optimal
granularity of communication tensors using preemptive com-
munication scheduling and tensor fusion.

VIII. CONCLUSION

PACE is an all-reduce communication scheduler for accel-
erating DNN training. At its core is a theoretically optimal
algorithm of preemptive communication scheduling for DAG
representation in modern ML frameworks. We also design
a dynamic programming approach to fuse small tensors to
improve bandwidth utilization. Through extensive evaluation
on multiple DNNs with different training settings in our GPU
testbed, we demonstrate that PACE can achieve near-optimal
overlapping of communication with computation, with up to
36% improvement in terms of training speed when compared
to state-of-the-art communication scheduling approaches.
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