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Abstract—Recent advances in deep reinforcement learning
(DRL) have made it possible to train various powerful agents
to perform complex tasks in real-time environments. With the
next-generation communication technologies, making cloud-edge
collaborative artificial intelligence service with evolved DRL agents
can be a significant scenario. However, agents with different al-
gorithms and architectures in the same DRL scenario may not
be compatible, and training them is either time-consuming or
resource-demanding. In this article, we design a novel cloud-edge
collaborative DRL training framework, named Offline-Transfer-
Online, which is a new approach that can speed up the convergence
of online DRL agents at the edge by interacting with offline agents
in the cloud, with the minimum data interchanged and without
relying on high-quality offline datasets. Therein, we propose a novel
algorithm-independent knowledge distillation algorithm for online
RL agents, by leveraging pre-trained models and the interface
between agents and the environment to transfer distilled knowledge
among multiple heterogeneous agents efficiently. Extensive exper-
iments show that our algorithm can accelerate the convergence of
various online agents in a double to decuple speed, with comparable
reward achieved in different environments.

Index Terms—Distributed training, offline-transfer-online, deep
reinforcement learning, cloud-edge collaborative networks.

I. INTRODUCTION

W ITH the rapid commercialization of mobile edge
computing (MEC) and the fifth-generation (5G)
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communication technologies, real-time mobile applications
such as virtual reality (VR), augmented reality (AR), and video
analytics have gained increasing popularity [1]. The foreseen
sixth-generation (6G) [2], [3] services are expected to pro-
vide even higher data rates [4] and support native artificial
intelligence (AI) [5], including deep learning (DL) [6] and
deep reinforcement learning (DRL) [7]. However, the inherent
resource scarcity of mobile devices prohibits the wide adop-
tion of computation-and-data-intensive approaches at the edge.
Therefore, cloud-edge collaborative networks become a promis-
ing paradigm to support future 5G/6G based AI applications,
leveraging both abundant cloud resources and lightweight edge
services in proximity to the data.

As one of the most popular AI approaches for mobile ap-
plications, reinforcement learning (RL) is a general and effec-
tive algorithm framework for sequential decision-making [7].
With deep learning [6], state-of-the-art deep RL methods not
only have demonstrated their exceptional ability in performing
complex human tasks [8], [9], but also show great potential
in improving real-time mobile edge applications such as au-
tonomous driving and video analytics [3]. In the area of digital
twin such as sensing [10] and communication [11], DRL is
also adopted, where environmental observation and feedback
are fed into virtual objects to learn the optimal policies that
should be applied onto physical objects. In this sense, DRL
models can be deployed at the edge and used to generate online
predictions for these real-time applications. However, different
from offline supervised learning, DRL agents are usually trained
online through interactions with environments, which could
take hours [9] or even months [12] to complete due to the
highly-restrictive computation ability of the edge. It then can
benefit much from the cloud-edge collaboration by leveraging
the computation resources and services in the cloud (or edge
clusters, regional clouds) as substitutes. However, existing works
that consider deploying DRL in the cloud and edge mainly
focus on scheduling resources to support the model training
but fall short of enabling communication-efficient interactions
between the learning models themselves for boosting online
DRL training.

Inspired by the powerful capability of pre-trained models,
some recent studies advocate to train DRL models in an offline
manner [13], using pre-collected datasets [14] instead of online
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Fig. 1. Cloud-edge collaborative DRL framework.

interactions with the environments. This provides a feasible
alternative of DRL training to address the problem that using
fresh data only in DRL training can be costly and inefficient
for real-time mobile applications. However, it is infeasible to
deploy offline RL training in resource-scarce edge devices due
to the required large-scale pre-obtained datasets and potentially
big learning models. Moreover, these offline RL models may
not be able to generate adaptable predictions in online dynamics
for real-time applications. Therefore, we propose to exploit the
architecture of cloud-edge collaboration, by deploying offline
RL in the cloud as a service and performing distributed online RL
at the edge to make real-time predictions for smart applications.
As shown in Fig. 1, in our distributed cloud-edge collaborative
DRL framework, training offline models is supported by the
abundant cloud computation resources and storage capacity. In
contrast, online RL agents at the edge can efficiently interact with
the environments (e.g., if the application scenario is to optimize
the mobile cell selection) to continuously obtain fresh data for
online model adaptation. Although there are some approaches
for improving online RL with offline RL [15], there remains a
central question: how to design communication-efficient meth-
ods to boost the online model training through offline mod-
els that use potentially different models and policies from the
online counterparts and are deployed remotely at geograph-
ically distant networks? To this end, our system is a novel
cloud-edge collaborative distributed DRL framework, that is
scalable, lightweight, and does not require expert-level policies
or supreme-quality datasets from the offline models.

Technically, leveraging the agent-environment interaction in-
terface, we design a three-stage DRL training framework, named
Offline-Transfer-Online (OTO). It can effectively transfer the
knowledge online from pre-trained RL agents to the target one
by achieving exceptional communication efficiency and learning
speed. Unlike prior offline-to-online [15] and transfer learn-
ing [16], [17] methods, ours does not require to feed pre-obtained
offline raw data into the replay buffers of the online agents or
the agents with same architectures. To facilitate the training of
different state-of-the-art DRL agents in various scenarios (e.g.,

deploying the training at edge devices or warehouse computer
clusters), OTO is designed to be distributed, scalable, and gen-
eralizable. That is, it can be applied to train heterogeneous DRL
agents (e.g., using deep Q-network (DQN), actor-critic algo-
rithms, etc.) simultaneously through concurrent online interac-
tions with the environments and pre-trained teacher RL agents.
Experiments show that our OTO framework can accelerate the
training process of various online RL agents by twice to ten times
faster with minimum communication overhead incurred, which
demonstrates the efficacy and the efficiency of our method.
Specifically, we make the following technical contributions.
� We propose a novel cloud-edge collaborative DRL frame-

work where heterogeneous DRL models can be trained
simultaneously by utilizing both offline agents in the cloud
platform and real-time interactions between online edge
agents with the environment. Compared with fully online
RL algorithms, the essential idea of OTO is to take full
advantage of powerful models built at resource-richer lo-
cations such as cloud and their valuable offline datasets,
but only require transmitting a small volume of data be-
tween the edge and cloud. The workflow of OTO contains
three stages periodically repeated. First, it trains an offline
RL model under pre-obtained datasets, both of which the
online agents can be oblivious to. Then, only the inference
results of the offline model are transmitted to the online
agents at the edge, wherein we nicely integrate conservative
Q-learning (CQL) [13] and relational knowledge distilla-
tion (RKD) [18] to boost online model training. Finally,
online agents (distributed at edge servers or powerful end
devices with sufficient resources to support training) con-
tinuously interact with environments and train their models
just like traditional DRL.

� At the core subroutine of OTO, our designed algorithm-
independent knowledge distillation (AIKD) strategy is
a novel transfer learning approach for boosting the Q-
value learning which can be used as policy evaluation in
heterogeneous multi-agent RL. Specifically, we design a
new loss function with RKD integrated to learn conser-
vative lower-bounds of the optimal Q-values. Given this,
we can effectively transfer the knowledge of the offline
models to the online training process and eliminate over-
estimation. Besides, our loss function for each agent does
not sample the inputs from the offline (or other agents’)
datasets, which can prevent severe action distribution shift
problems that classic offline RL suffers and offer better
data privacy. Moreover, OTO efficiently utilizes online
feedback to correct the bootstrap error of Q-values for
the out-of-distribution actions of the learned policy that
cannot be efficiently evaluated by using the offline data
solely. Besides, one advantage over prior transfer learning
methods for offline-to-online RL is that our information
transmitted between the teacher models in the cloud and
the edge student models is limited to the minimum, i.e.,
only inference results rather than raw data of the offline
agents. Therefore, OTO is communication-efficient and
suits well online DRL in edge computing systems with
WAN bandwidth being the bottleneck.
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� We propose several simple but effective techniques to
augment the DRL architecture. For instance, we also revise
the angle term to be a new metric which can extend the
RKD metric to be compatible with discrete actions. We also
design a fusion-policy architecture to address that problem
that Q-value based DRL implementation can not be di-
rectly applied into on-policy RL. By realizing the offline
RL knowledge provision through the agent-environment
interaction interface, our OTO framework is lightweight
and applicable to large-scale DRL systems with heteroge-
neous and geo-distributed online agents, which is particu-
larly suitable for online DRL deployed on distributed and
resource-constrained edge devices. Moreover, our OTO
treats the offline models as blackboxes which are allowed
to have different structures and policies from the online
models, saving the efforts of model selection on the cloud
side.

This paper is organized as follows. Prior works are listed in
Section II. In Sections III and IV, we introduce the preliminaries
and our methodology, respectively. Sections V and VI show and
analyze the results of the conducted experiments. We conclude
this paper with Section VII.

II. RELATED WORK

We now discuss prior works that are related to our framework
in this section.

A. Cloud-Edge Collaborative Learning Frameworks

Prior studies on cloud-edge collaborative learning frame-
works mainly focus on federated learning [19]. Leveraging the
hierarchical characteristic of cloud-edge collaborative networks,
the authors in [20] proposed a client-edge-cloud hierarchical
federated learning system, which allows multiple edge servers
to perform partial model aggregation. Focusing on DRL appli-
cations, the authors in [21] proposed a distributed cloud-edge
real-time training architecture for actor-critic based DRL agents
interacting with the realities. Thus, designing a general-purpose
cloud-edge collaborative DRL training framework should be on
the agenda.

B. Online DRL With Environments

With the ideas of mini-batching and Q-learning [22], the
authors in [9] proposed the first practical DRL method, i.e.,
DQN, to train agents online with environments. Since then,
several improvements [23] have been made to accelerate and
stabilize the training process. Besides, deep actor-critic meth-
ods [24], [25], [26] inspired by [27] are introduced, which can
work well for discrete and continuous tasks [26]. Although these
methods are of numerous advantages, the training time is long,
and their architectures vary, leading to unideal training efficiency
especially when applied at edge devices with limited resources.

C. Offline DRL With Datasets

With the growing computational capability, using interaction
datasets to train RL agents in an offline way is possible [14],

and some novel methods have emerged in recent years [13].
Thereinto, the authors in [13] proposed the CQL algorithm
to accelerate the training procedure from the aspect of metric
learning. However, these methods require well-recorded datasets
which are large and resource-demanding, and are hard to deploy
in resource-constrained scenarios when the models are of large
sizes.

D. Improving Online RL With Offline RL

As a topical field, prior studies have employed offline DRL
agents and datasets to enhance the training performance of
online agents from the aspect of sample efficiency. The authors
in [15] introduced a novel offline-to-online RL training method
based on the CQL algorithm and balanced experience replay.
Additionally, the authors in [28] proposed an adaptive update
scheme based on the CQL algorithm by alternatively train-
ing with online interactions and previously collected datasets.
Nevertheless, these methods still rely on optimal datasets and
equivalent environments.

E. Transfer Learning in DRL

Using transfer learning to improve the performance of RL
agents has achieved expressive success [16]. There are many
variants in transfer learning, e.g., inductive transfer learning,
transductive transfer learning, unsupervised transfer learning,
etc [29], [30]. Thereinto, the authors in [17] made policy and
value distillation to transfer the knowledge among actor-critic
agents. These methods only consider the knowledge transfer
among the agents with same architectures. When it comes to
transferring among different algorithms or environments, these
methods might be hard to apply readily, as it is a common chal-
lenge in transfer learning [29], [30]. Thus, finding new transfer
training methods that are compatible with different agents is
necessary.

III. PRELIMINARIES

The preliminaries of our proposed framework are presented
in this section.

A. Online Reinforcement Learning

Reinforcement learning problems generally consider an on-
line Markov decision process (MDP) defined by a tuple
(S,A, T,R, γ), with spaces of states S and actions A, condi-
tional transition probabilities between states T : S ×A× S →
[0, 1], a reward R : S ×A× S → R+, and a discount factor
γ ∈ [0, 1]. Formally, at each time step t, the agent observes a
state st ∈ S , performs an action at ∈ A according to her policy
π(a

∣∣st), receives a reward rt from the environment, and then
transitions to the next state st+1. The objective of the agent
is to maximize the expected total reward (also called V-value
function) Eπ[

∑∞
t=0 γ

trt].
There are two RL schemes according to the consistency of the

current and the data-generation policies, i.e., on-policy and off-
policy RL algorithms. We first focus on off-policy algorithms,
which evaluate the agent’s parametric Q-value functionQθ(s, a)
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and improve its optional parametric policyπφ(a
∣∣s)with samples

generated by any given policies, where θ and φ could be neural
networks. For instance, Q-learning methods (e.g., DQN) learn
the Q-value function by iteratively applying the Bellman opera-
tor (BπQ)(s, a) = r(s, a) + γE

s′∼T (s′
∣∣s,a)[maxa′∈AQ(s′, a′)],

sinceBπ is a contraction mapping with a fixed point (the optimal
Q(s, a)) that exists according to Banach’s theorem. The loss
function for training Qθ in DQN is:

LDQN(θ) = E
(s,a,s′)∼B

[
((Qθ − BπQθ̄) (s, a))

2
]
, (1)

with a replay buffer B and delayed parameters θ̄ (cf. θ). Dif-
ferently, actor-critic methods alternate between updating Qπ

with the current policy π (critic) and improving π towards
maximizing the expected total reward (actor). For example,
soft actor-critic [26] (SAC) iteratively minimizes the following
losses, with a temperature parameter αSAC:

Lcritic
SAC (θ) = E

(s,a,s′)∼B
[(Qθ(s, a)− r(s, a)

− γ E
a′∼πφ

[
Qθ̄(s

′, a′)− αSAC log πφ
(
a′
∣∣s′)])2],

(2)

Lactor
SAC (φ) = E

s∼B,a∼πφ

[
αSAC log πφ

(
a
∣∣s)−Qθ(s, a)

]
. (3)

On-policy RL algorithm is another important research topic in
reinforcement learning. Since the data-generation policy is con-
sistent with the current policy, on-policy algorithms generally
require small replay buffers, which leads to high performance
in training speed. What is more, deep on-policy RL algorithms,
such as trust region policy optimization (TRPO) [24] and prox-
imal policy optimization (PPO) [25] algorithms, use V-value
function to estimate the utilities of states instead of Q-value
function. Typically, off-policy algorithms are more sample-
efficient than on-policy ones, while the training performance
of on-policy algorithms is more stable than the one of off-policy
algorithms [7].

B. Offline Reinforcement Learning

Existing offline RL algorithms are typically off-policy RL
algorithms using pre-collected datasets D for training. Among
them, CQL [13] advocates to pessimistically learn the lower
bound of the true Q-value functions, using the following loss
function:

LCQL(θ) = max
μ

RCQL(μ, θ) + Ltask(θ), (4)

RCQL(μ, θ) = R(μ) + αCQL E
s∼D

[
E

a∼μ
[Qθ]− E

a∼π̂β

[Qθ]

]
,

(5)

Ltask(θ) =
1

2
E

(s,a,s′)∼D

[
((Qθ − BπQθ̄) (s, a))

2
]
, (6)

where αCQL is a trade-off factor, μ = μ(a
∣∣s) denotes the state-

marginal in D, π̂β = π̂β(a
∣∣s) := ∑

s′,a′∈D 1[s′=s,a′=a]
∑

s′∈D 1[s′=s] denotes

the empirical behavior policy, and R(μ) denotes a particular
regularizer. When R(μ) is set to be the KL-divergence against a
prior distribution ρ(a

∣∣s) = Unif(a), i.e., R(μ) = −DKL(μ, ρ),
RCQL(μ, θ) can be simplified further as

RCQL(θ) = αCQL E
s∼D

[
log

∑
a

exp(Qθ)− E
a∼π̂β

[Qθ]

]
, (7)

which can be applied to off-policy algorithms.

IV. OFFLINE-TRANSFER-ONLINE FRAMEWORK

In this section, we propose our Offline-Transfer-Online (OTO)
framework to speed-up online DRL model training through
lightweight knowledge transfer from cloud-based offline RL
models and datasets.

To accelerate the online training process with offline RL,
perhaps the most straightforward way is to store offline and
online data into the replay buffer, which is similar to policy
distillation. However, it is memory-inefficient and may require
strategical sample selection. Meanwhile, this intuitive method
can lead to negative transfer, due to the differences between
the environments. Therefore, we choose to train the online
agents with the data sampled from the replay buffer that only
contains the online dynamics, and intend to conservatively learn
the lower-bound of the Q-value function when utilizing the
inference results from offline agents as offline data to mitigate
the over-estimation.

A. AIKD for Online Reinforcement Learning

1) Knowledge Distillation With Interface: As elaborated
above, the way of using inference results (actions) from the
offline policy rather than the entire dataset shares the spirit of
knowledge distillation in that we intend to compress and transfer
the learned knowledge from a potentially better model to speed
up the training of new models under communication-constraint
scenarios. A naive solution to achieve this is to distill the
neural networks in agent models directly. However, due to the
architectural differences in the agent networks, direct knowledge
distillation could be lacking in efficiency [29], [30]. Motivated
by this, we attempt to explore a knowledge distillation method
with a unified interface to boost different online agents with
the knowledge transferred from various offline agents, while
imposing no restrictions on the types of those agents. Thus, we
leverage the agent-environment interaction interface shown in
Fig. 2 as the distillation basis, which provides the agents with a
general protocol on the actions of the interacted environment
without knowing the details of the participating agents. For
example, we show in Fig. 2 that online DRL agents deployed at
the edge for various applications may adopt different types of
models and policies. They interact with the environment through
this interface by passing limited information that is in the same
form. Thus, the agents with different models or architectures can
share the knowledge if the corresponding interacted environ-
ments are controlled similarly, leading to a scalable distributed
DRL paradigm.
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Fig. 2. Agent-environment interaction interface in RL.

2) CQL-Based Loss Function: Different from the one in
supervised learning, there is no ground truth data for knowledge
distillation in RL, and our teacher-student distillation process is
online, making it non-trivial to design a proper loss function.
To address this issue and enable our framework to accelerate
the training for heterogeneous RL agents, we reform CQL’s
objective function (5) as follows. First, we substitute the online
replay buffer B for the offline dataset D, and then replace
the empirical behavior policy π̂β calculated by the state-action
dynamics in the offline data D with a teacher policy π̂τ , which
can also be the one used by the offline agents, or an ensemble.
This simple modification has the benefits of not only increasing
data efficiency and safety, but also mitigating the distribution
shift problem due to choosing offline dynamics to train the
Q-value function but using current policy’s output actions as
target Q-values in the mean squared error term. Finally, we
chooseR(μ) = −DKL(μ, ρ), which can simplify (5) in that only
the actions are needed to calculate the loss, and our base objective
function can then be formulated as:

LBASE
AIKD(θ) = αAIKDRBASE

AIKD(θ) + αtaskLtask(θ), (8)

RBASE
AIKD(θ) = max

μ
E
s∼B

[
E

a∼μ
[Qθ]− E

a∼π̂τ

[Qθ]

]
−DKL(μ, ρ)

(9)

= E
s∼B

[
log

∑
a

exp (Qθ)− E
a∼π̂τ

[Qθ]

]
, (10)

where Ltask is the task loss (e.g., (1) or (2)), αAIKD and αtask
are trade-off factors.

3) Additional Regularizer for Improving Estimation: After
removing the reliance on the offline (or teachers’) raw data
and using online collected data for Q-value function learning,
we discover that the proposed loss function may lead to over-
estimation of Q-values. Specifically, our RBASE

AIKD in (10) is in fact
lower than the one that yields a conservative lower-bound of the
optimal Q-values previously used in the CQL method, and their
gap decreases with the growing of the data size in the replay
buffer. We prove this argument in Appendix A, available online.

Therefore, extra regularizers should be added to eliminate the
over-estimation by compensating for the loss function drift due
to using the online collected data for training. In addition, the
choice of such regularizer should have the benefits of: 1) bridging
the gap between the offline (teachers’) actions and the online
agent’s (students’); 2) decreasing with more data collected to
cover the diminishing model drift. To address this, we extend
the design of RKD-formed regularizers as follows. First, the
regularizer consists of two parts, defined as:

RRKD
AIKD(π̂τ , π̂σ) = RRKD-D(π̂τ , π̂σ) +RRKD-A(π̂τ , π̂σ), (11)

where RRKD-D measures the distance between the teacher policy
π̂τ and the student policy π̂σ , andRRKD-A measures the relational
adaptation distance between them. The difficulty is to design a
proper formulation of RRKD-A to suit the scenario where the
communicated data between offline teacher policies and online
student ones should be in small sizes. Therefore, we propose
to use the actions with the maximal probability output by the
agents to substitute for the probabilistic policies in (11). In this
case, we define RRKD-D as the negative log likelihood loss for
discrete actions and the mean squared error loss for continuous
ones, and formally define RRKD-A as

RRKD-A(π̂τ , π̂σ) = E
s,s′∼B

[lMSE (ψ
τ
A(s, s

′), ψσ
A (s, s

′))] , (12)

where lMSE represents the mean squared error loss. To make it
work for discrete actions, which are very common for mobile
edge applications, we design ψτ

A and ψσ
A to be the adaptations

by computing the midpoints of the action vectors, which are
continuous and friendly to discrete actions. Recall that the
student policy of the online agent is associated with Qθ, the
RKD-formed regularizer can be denoted as RRKD

AIKD(θ).
The final objective function of our AIKD algorithm is

LAIKD(θ) = αAIKDRAIKD(θ) + αtaskLtask(θ)

= αAIKD
(
δRBASE

AIKD + ηRRKD
AIKD

)
(θ) + αtaskLtask(θ),

(13)

where RBASE
AIKD follows (10), RRKD

AIKD follows (11), and δ and η
are trade-off factors. By employing (13) as the loss function to
evaluate the Q-value functions, we can realize efficient knowl-
edge distillation for heterogeneous deep RL agents via the
agent-environment interaction interface.

B. Offline-Transfer-Online Reinforcement Learning

We next describe our OTO framework in detail. To anable
scalable and distributed DRL systems, OTO supports simulta-
neous training with multiple offline (i.e., teacher) agents and
online (i.e., student) agents with the help of the inference system.
The overview of the OTO algorithm is depicted in Fig. 3. Each
offline agent contains a training agent in the cloud and an online
inferring agent at the edge (deployed in the edge server or
powerful devices), while each online agent is just a training
agent. The online inferring agent is implemented as the same RL
model but using delayed model parameters as the training agent.
In default, we use agents that are well trained with offline data
as our teacher models, but we also allow the models which are
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Fig. 3. Overview on Offline-Transfer-Online algorithm.

trained in advance with environments to receive online training,
since what we need is only the updated knowledge of the offline
agents rather than their raw data. We implemented both types of
the teacher agents and show the viability in Section V. Illustrated
in Fig. 3, the procedure of the OTO algorithm consists of three
stages: Offline, Transfer, and then Online, which can be repeated
through each episode. To facilitate the following reading, we
categorize the procedure into Algorithms 1 and 2 for offline and
online agents, respectively.

1) Offline Stage: Offline stage can be regarded as a pre-
train stage, where each offline agent is trained with its own
pre-obtained dataset. At the first Offline stage, only the offline
training procedure is performed. But since the three stages are
continuously transitioning, online inference provided by the
offline agent and online training of the online agent (the red
and blue arrows in this stage, both with the dashed lines) will
be concurrently conducted with the offline training procedure
in the following Offline stages. The objective functions in the
offline teacher agents and the ones in the online student agents
remain the same as their original versions (without our designed
augmentation in the loss for the OTO algorithm). For example,
if the offline teacher agent is CQL-based and the online student
agent is powered by the SAC algorithm, the teacher agent will
take (5) as its objective function, and the student agent will
update its parameters according to (2) and (3). When the offline
teacher agent satisfies the stage-ending requirement (it can be
either a time-out or test rewards exceeding a threshold), the
Transfer stage will be started immediately.

2) Transfer Stage: Transfer stage is the core of our OTO
algorithm. During this stage, the offline teacher agents will
transfer their knowledge in the form of inferred actions accord-
ing to the requests of states generated by the online student
agents. At the beginning of the stage, every offline agent will
update the online inferring agent on the inference system by
replacing it with its training agent. After the deployment, the

offline training agent will continue to be trained with its dataset.
As for the online student agent, it interacts with the environment
but updates its parameters according to the AIKD algorithm.
When interacting with the environment, the online agent will
collect the states (denoted as s) into batches, and send requests to
the corresponding online inferring agent asynchronously. After
receiving the inferred actions (denoted as â) from the offline
agent, the online student agent will calculate the loss according
to the function defined in (13). In this case, we mainly consider
the situation that the state representation and the control method
of the online environments are similar to the ones in offline
interaction datasets. However, the states in the requests and the
inferred actions need to be transferred to the representations of
offline and online agents, respectively, if that is not the case.
When receiving actions from multiple teacher agents, (13) can
be extended into

LAIKD(θ) =
αAIKD
N

N∑
i=1

Ri
AIKD(θ) + αtaskLtask(θ), (14)

where N is the teacher agent count, and Ri
AIKD is the AIKD

regularizer between the ith teacher agent’s inference result and
the actual chosen action inputted to the environment. Using (14),
we manage to transfer the knowledge from multiple teachers to
the online student agents, and the OTO algorithm will transition
to the next stage when the requirements are met.

3) Online Stage: Online stage is similar to what agents in
fully online RL encounter, in which online RL agents interact
with the environments and perform model training. In our frame-
work, the offline agents can offer inference to other online agents
and perform training concurrently in this stage. Different from
the Offline stage, our framework provides another feature, which
is that the online agents can optionally submit their data in the
replay buffer to the offline agents for renewing their datasets in
this stage. The OTO algorithm can choose to end this episode
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Algorithm 1: Offline-Transfer-Online (Offline Agents).

or transition to the next Offline stage as in the loop of our
Algorithms 1 and 2 according to the given tasks and tunable
parameters to decide the time length of each stage.

C. Implementation and Deployment

We implement our proposed algorithms (i.e., Algorithms 1
and 2) on top of the Tianshou [31] RL framework, which
provides a fast pythonic interface for building DRL agents.

1) Implementation on DRL and Fusion Policy Design: For
offline agents, the OTO algorithm is applied to not only the DRL
algorithms based on offline training methods like CQL, but also
the ones that are pre-trained with environments or simulators.
With the agent-environment interaction interface, the offline
agents in our OTO framework can have different architectures
and implementations with different RL frameworks comparing
with the online agents, indicating that the proposed algorithm is
cross-platform and scalable.

For off-policy based online agents, the OTO training al-
gorithm is applied to Tianshou’s implementations of quantile
regression deep Q-network (QRDQN) [23] and SAC [26]. We
use default hyper parameters from Tianshou, except that the pa-
rameter ε in QRDQN’s ε-greedy policy is set to be the final value
of the decay function of ε used in Tianshou. We observe that this

Algorithm 2: Offline-Transfer-Online (Online Agents).

adjustment of ε, which controls the extent of exploration, can
yield higher final reward achieved.

For on-policy based online agents, due to the differences
elaborated in Section III, the Q-value based OTO algorithm can
not be applied directly. Therefore, we propose a fusion-policy
architecture for on-policy based online DRL agents depicted
in Fig. 4, which can merge the benefits from off-policy and
on-policy algorithms. With our design of integrating auxiliary
critic networks to generate Q-values and auxiliary loss for the
actor, the OTO training algorithm can be applied to the on-policy
based online agents like PPO [25] with the help of fusion-policy
architecture and Tianshou’s implementation of SAC [26].

2) System Design and Deployment: On the system design
side, we leverage a scalable and distributed computing frame-
work, Ray [32], to implement the real-time interaction between
the offline and online agents in the transfer stage. Our im-
plemented framework is well compatible with PyTorch [33],
meaning that few modifications are required to realize it from
scratch. To enhance system efficiency, we use the future-promise
mechanism in Python to realize the asynchronous communica-
tion among agents in the Transfer stage of the OTO algorithm.

On the deployment side, we deploy the offline training agents
in the cloud, and distribute the online inferring agents of the
corresponding offline agents in the edge networks according to
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Fig. 4. Fusion-policy architecture for on-policy agents.

their computation demands. To provide low-latency services, the
training of online agents can be performed on edge devices that
can meet the demands of computation resources.

V. STANDARD DRL EXPERIMENTS

In this section, we first conduct discrete and continuous
experiments to demonstrate the efficacy of the OTO algorithm
using two classic DRL applications. To facilitate the following
reading, we suppose that the environments interacted with the
online student agents are homogeneous to the ones that are used
to train the offline teacher agents.

Our experimental setups are listed as follows. The discrete
experiments are conducted with the environments provided by
Gym [34] and the Arcade Learning Environment [35]. The cor-
responding offline datasets are provided by RL Unplugged [36].
The continuous experiments are conducted with the MuJoCo
physics engine [37]. All the experiments are conducted on a
edge cluster consisting of two devices with 16 CPU cores, an
NVIDIA 3090 GPU, and 60 GB memory. The results of the
experiments are averaged over ten environments with different
random seeds.

A. Discrete Experiments: Atari

For discrete experiments, we apply our OTO algorithm to
the agents based on QRDQN and conduct experiments with
Atari video games via Gym. As for the offline teacher agents,
we choose QRDQN-based CQL agents which are trained with
expert-level and random-level offline interaction datasets from
RL Unplugged [36]. The results are shown in Figs. 5 and 6,
which are trained with expert-level and random-level datasets,
respectively.

In ablation studies, we compare the performance of our OTO
algorithm with the ones of the knowledge distillation methods
that are only with (10) (denoted as AIKD-BASE) and (11)
(denoted as AIKD-RKD), respectively. The learning curves in
Figs. 5 and 6 indicate that the OTO algorithm can outperform the

compared methods with higher speed to become state-of-the-art.
We also make comparisons with the online trained benchmarks
(denoted as QRDQN in the figures) provided by Tianshou [31].
The results show that the OTO algorithm can accelerate the
training procedure by twice to ten times faster. Furthermore, in
some experiments, such as Qbert and Pacman, the OTO-trained
agents can have better performance than the online trained
ones whether the dataset in use is expert-level or not. These
experiments demonstrate the efficacy of the OTO algorithm.

B. Continuous Experiments: MuJoCo

Next, we apply our OTO algorithm to PPO-based agents
with the proposed fusion-policy architecture and conduct the
continuous experiments with the MuJoCo physics engine [37].
To illustrate the compatibility of model architecture, we em-
ploy pre-trained SAC agents as the teacher agents, instead of
using offline RL agents trained with the corresponding datasets.
Fig. 7 depicts the conducted experimental results.

In Fig. 7, the OTO algorithm with our designed fusion-
policy architecture (denoted as OTO), the knowledge distillation
method only with (11) (denoted as AIKD-RKD), and the pure
online trained PPO agent are compared together. One can see
that the OTO algorithm outperforms in almost all the conducted
experiments. Some experiments, such as Half Cheetah and
Walker, show that the OTO algorithm can not only speed up
training but also enhance the final rewards double to triple.
These experiments show the efficacy and the compatibility of
the proposed algorithm.

VI. CROSS-ENVIRONMENT EXPERIMENTS

For many cloud-edge collaborative DRL scenarios, the envi-
ronments of the online student agents and the ones for collecting
datasets to train the offline teacher agents are heterogeneous
but similar with each other. The reason is that, as the service
provider, the cloud platform will try to find the most relevant
pre-obtained datasets and teacher model upon the request of
the developer of online DRL; however, the environments of
the offline model may not exactly match what the online DRL
will encounter in the future. Therefore, in this section, we
conduct two sets of cross-environment experiments to evaluate
the generalizability of our OTO algorithm. We first consider in
Section VI-A transferring knowledge from a standard continu-
ous control task named Inverted Pendulum (offline teacher in the
cloud) to a similar online environment called Pendulum, which
requires discrete actions chosen by online agents deployed at the
edge. We then build in Section VI-B two mobile cell selection
environments: one is the 4G LTE scenario where the offline agent
was trained, and the other is 5G environment which the online
agent will interact with.

A. CartPole Control

We consider a discrete control task, CartPole, and its continu-
ous counterpart, Inverted Pendulum, supported by the Gym [34]
environments. To demonstrate the capability of our OTO al-
gorithm on training heterogeneous RL agents simultaneously
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Fig. 5. Atari CQL-QRDQN experiments with expert-level offline datasets.

Fig. 6. Atari CQL-QRDQN experiments with random-level offline datasets.

Fig. 7. MuJoCo experiments with PPO-based agents.

in a distributed manner, we employ a continuous SAC agent
trained with Inverted Pendulum as the teacher agent, and discrete
QRDQN agents as the student agents to train with CartPole.
Both environments share the same control method and the same
optimization goal, where a cart can be pushed left or right to
balance the pole on the top of the cart by applying forces on the
cart. However, the definitions of the observation space and the
parameters of the environments are heterogeneous. Therefore,
additional learnable transfer techniques are needed in the OTO

algorithm. There are two variants of CartPole: CartPole-v0 is
the environment whose maximum reward and episode length
are 200, while CartPole-v1 is the one whose maximum reward
and episode length are 500. We use CartPole-v1 for comparative
evaluation with the method proposed by [17]. All the results in
the tests are averaged over ten seeds.

In Fig. 8, we compare our algorithm with the knowledge
distillation method proposed by [17] (denoted as KD in the
figure), which utilizes policy distillation and value matching to
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Fig. 8. Performance on CartPole with SAC-QRDQN transfer.

transfer the knowledge for online RL agents. Fig. 8 presents that,
with the assistance of the inference results from the Inverted
Pendulum-trained SAC agent (our teacher model), the agent
trained by OTO converges to the optimal policy in a short
time, while the KD and the QRDQN baseline algorithms take
a long period of time to converge. Specifically, Fig. 8 shows
that the OTO algorithm only takes about 90k steps to train
an optimal QRDQN agent, while the KD algorithm can be
negatively transferred due to the differences in the observation
spaces. Therefore, the proposed OTO algorithm is superior in
training heterogeneous RL agents with different environments
efficiently.

B. Mobile Cell Selection

We next provide a case study in mobile networking. Specifi-
cally, cell selection is a very important problem to achieve effi-
cient mobile communications [38]. We leverage the environment
mobile-env provided by [39], one can easily build digital twins
of mobile communication systems with multiple base stations
(BS) and mobile devices.

We conduct the mobile cell selection experiment with the
vehicle-to-everything migration scenario from 4G Long Term
Evolution (LTE) standard [40] to 5G standard [41]. To simplify
the computation, we choose the medium version of mobile-env
with one mobile device and seven base stations. For better
simulations, the mobility of the device follows the random
waypoint movement, where the moving speed of the mobile
device in the 5G environment is the six times of the LTE’s device
moving velocity, indicating the differences between the offline
and online environments. The actions of the environment are to
toggle the connection between the device and the corresponding
base station. The observations are defined as the concatenation
of the following.

1) Current connections. This variable indicates to which
cells the mobile device is currently connected. The device
will hold its connections until it receives connection or
disconnection signals.

Fig. 9. Cell selection learning curves of QRDQN agents.

2) Signal-to-noise ratio (SNR). This normalized variable in-
dicates the BS with the strongest signal. It may be affected
by the frequency of the signal and the distance between
the device and the BS.

3) Utility. With current connections and SNR, mobile-env
can compute the logarithm value of the received data
rate and scale to range [−1, 1] as the utility of the
mobile device, which is also the step reward of the
environment.

With two mobile-env environments of 5G NR 77 standard (we
settle 3300 MHz in frequency and 100 MHz in bandwidth) [41]
and LTE band 33 standard (we settle 2100 MHz in frequency and
20 MHz in bandwidth) [40], respectively, we conduct compara-
tive experiments with QRDQN agents. For the OTO algorithm,
we employ a Stable-Baselines3 [42] PPO agent trained with
the LTE environment as the teacher agent and a QRDQN agent
trained in the 5G environment as the student agent. We compare
the cell selection performance of the OTO algorithm with the
QRDQN agent trained with the 5G environment (denoted as
online) and the one trained in LTE but tested with 5G (denoted as
off-to-on). Fig. 9 depicts the learning curves of QRDQN agents,
where the results are averaged over one hundred random seeds.
One can see that the OTO algorithm has the highest and stablest
performance among the compared agents, with the help of the
LTE-trained PPO agent.

We also conduct extensive experiments with the following
baselines.

1) Fixed. A rule-based selection method where the device
connects to a fixed BS.

2) Random. A selection method where the device connects
to a randomly chosen connectable BS.

3) Full. A rule-based selection method where the device
connects to all the connectable base stations.

4) LTE [43]. A greedy method which selects the strongest
BS in SNR to connect.

5) Clustering [44]. A static clustering approach which groups
all cells into fixed-size clusters and then selects the
strongest one to connect.
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Fig. 10. Mobile cell selection performance benchmarks.

6) Dynamic [45]. A heuristic method for device-centric mul-
tiple cell selection, which is a generalization of the LTE
greedy method [43].

Fig. 10 shows that our OTO-trained agent outperforms the
benchmarks of the compared mobile cell selection algorithms in
the 5G environment. OTO not only achieves the highest reward
but also and stablest performance on reward during one hun-
dred time steps in the experiments. Compared with rule-based,
heuristic, and DRL-based methods, the proposed OTO algorithm
is superior in the mobile cell selection task using offline DRL
trained in the LTE environments to boost the online agent in a 5G
scenario with the minimum communication between these two
agents, indicating its generalizability in cross-environment cases
and viability for cloud-edge collaborative mobile applications.

VII. CONCLUSION

In this paper, we propose a novel Offline-Transfer-Online
RL training method for cloud-edge collaborative RL, which
bridges online and offline RL by taking advantage of our
algorithm-independent knowledge distillation design through an
agent-environment interaction interface. Our proposed AIKD
loss function integrates the ideas of conservative learning and
transferring the relationship patterns between selected actions
of the offline policy to online agents. This module can be used
in different types of RL algorithms without the need to share
agents’ buffer data. Furthermore, we implement the proposed
methods as a distributed RL system. Extensive experiments
demonstrate that OTO framework has great advances in speeding
up the model training and achieving the highest reward scores
among the state-of-the-art RL algorithms, as well as reducing the
communication overhead compared to classic offline-to-online
RL methods.
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