
Two-level Graph Caching for Expediting Distributed
GNN Training

Zhe Zhang∗, Ziyue Luo∗, Chuan Wu∗
∗Department of Computer Science, The University of Hong Kong, Email: {zzhang2, zyluo, cwu}@cs.hku.hk

Abstract—Graph Neural Networks (GNNs) are increasingly
popular due to excellent performance on learning graph-
structured data in various domains. With fast expanding graph
sizes and feature dimensions, distributed GNN training has been
adopted, with multiple concurrent workers learning on different
portions of a large graph. It has been observed that a main
bottleneck in distributed GNN training lies in graph feature
fetching across servers, which dominates the training time of each
training iteration at each worker. This paper studies efficient
feature caching on each worker to minimize feature fetching
overhead, in order to expedite distributed GNN training. Current
distributed GNN training systems largely adopt static caching
of fixed neighbor nodes. We propose a novel two-level dynamic
cache design exploiting both GPU memory and host memory
at each worker, and design efficient two-level dynamic caching
algorithms based on online optimization and a lookahead batch-
ing mechanism. Our dynamic caching algorithms consider node
requesting probabilities and heterogeneous feature fetching costs
from different servers, achieving an O(log3 k) competitive ratio
in terms of overall feature-fetching communication cost (where
k is the cache capacity). We evaluate practical performance of
our caching design with testbed experiments, and show that our
design achieves up to 5.4x convergence speed-up.

I. INTRODUCTION

Graph Neural Networks (GNNs) [1–3] have been in-
creasingly adopted to encode complex features from graph-
structured data, for various downstream tasks such as user
interaction analysis in social networks [4], protein interface
prediction for drug discovery [5] and traffic prediction in
intelligent transportation systems [6]. Graphs in many real-
world systems are large, e.g., the citation graph has more
than 120 million nodes (published papers before 2019) [7]
with sophisticated citation connections. Graph size and feature
dimensions are also fast expanding, e.g., the social network
of Friendster [8] contains more than 1 billion edges and the
user features in Facebook’s ego data [9] have more than 250
dimensions. A large graph cannot be held entirely in the mem-
ory of a single modern server and is often partitioned among
multiple servers for distributed GNN training.

In distributed GNN training, multiple workers are deployed
on the servers storing the graph partitions; each worker fetches
node features from the local graph partition or other servers,
and trains a local copy of the GNN that aggregates the fea-
tures to generate low-dimensional graph representations (aka
embeddings). It has been observed that inter-machine com-
munication for feature fetching dominates the training time,
i.e., occupying up to 80% of the time in each training itera-
tion [10]. Efficient feature fetching is hence the key to improve
the performance of distributed GNN training. Existing efforts

on reducing feature communication time can be categorized
into two camps: (i) Transmission scheduling that pipelines
feature fetching and GNN computation [11, 12]. (ii) Communi-
cation traffic reduction with better graph partition and caching.
The current distributed GNN training frameworks (e.g., Dist-
DGL [11], SAR [13], Dorylus [14]) partition the input graph
using the METIS algorithm [15], minimizing cross-partition
edges. They also adopt one-hop neighbor caching (meta-data
such as node IDs only, instead of the node features), or static
feature caching for a few hops of neighbors according to node
degrees or sampling history [16–18].

We tackle the cross-server feature communication bottle-
neck in distributed GNN training from the perspective of effi-
cient feature caching on different servers. With static feature
caching, cache hit (i.e., features of a sampled node are cached
locally) heavily relies on the graph sampling method and the
batch size (i.e., the number of training nodes used in each
iteration) in GNN training. Static caching used in the current
distributed GNN training frameworks is oblivious to the poten-
tially different feature fetching costs (in case of cache misses)
from servers of different inter-connection bandwidth [16]. Be-
sides, existing caching designs only consider one-level cache
using the GPU [17, 19], not fully exploiting available device
or host memory capacities.

We propose a novel two-level cache design for distributed
GNN training, that exploits caching in both GPU memory and
host memory, caters to node requesting dynamics on different
servers and addresses potentially heterogeneous feature fetch-
ing costs among servers. The goal is to minimize the feature
fetching overhead and expedite distributed GNN training sub-
stantially. Our main contributions are summarized as follows:
▷ We design a dynamic two-level cache where the top-

tier cache is in the GPU memory and the second-tier cache
is in the host memory. To compose local training batches, a
worker (running on GPU(s)) fetches features of the training
nodes and their L-hop neighbors from the GPU memory, the
host memory, or other servers. The top-tier GPU cache stores
the current training batch, and evicts previously cached nodes
for hosting newly sampled nodes. The host memory caches
nodes fetched from other servers that are evicted from the
GPU memory, besides consistently storing nodes of the graph
partition assigned to this server.
▷ We design an efficient online algorithm for two-level

dynamic caching, such that the nodes evicted by top-tier GPU
cache can be handled by the second-tier CPU cache, to effec-
tively minimize feature fetching costs during iterative GNN

training. To our best knowledge, we are the first to propose
two-level dynamic caching with a lookahead mechanism, ex-
ploiting sampling, feature fetching and training parallelization
in distributed GNN training. Other highlights of the algorithm
design include the novel parallel probabilistic eviction trails in
deciding node evictions, which plays a key role in calculating
online caching policy fleetly.

▷ We adopt potential function analysis and carefully prove
that our online two-level caching algorithm achieves an
O(log3 k) competitive ratio in terms of overall feature-fetching
communication cost (k is the maximum between GPU cache
capacity and CPU cache capacity), as compared to the of-
fline optimum with full knowledge of future node requests in
distributed GNN training. We show low time complexity for
running our online caching algorithm at each worker during
distributed GNN training as well.

▷ Our caching design was evaluated through practical per-
formance testing by training representative GNN models on
various state-of-the-art large graph datasets under different
settings. The results of our experiments demonstrate that dis-
tributed GNN training with our dynamic feature caching con-
verges 3.37× faster in homogeneous cross-machine bandwidth
settings and achieves up to a 5.40× speed-up in heterogeneous
cross-machine bandwidth settings.

II. BACKGROUND AND RELATED WORK

A. Graph Neural Network and Distributed GNN training
Graph Neural Network (GNN) [1–3] is a type of neural

networks (NN) that encodes graph-structured data. For a L-
layer GNN, it takes the features of L-hop neighbors of training
nodes as input, and produces embeddings of the training nodes
through operations such as graph convolution [3] or graph
attention [2]. The embeddings are then fed into a downstream
model (e.g., another NN) for tasks such as node classification
and edge prediction [1, 5].

Given a graph G = (V,E), we denote the input feature of
node v by h

(0)
v , the neighbors of node v by N (v), and the edge

feature between node v and its neighbor u by evu. Then the
embedding of vertex v at layer l is calculated through h

(l+1)
v =

σ(h
(l)
v ,Aggu∈N (v)f(h

(l)
v , h

(l)
u , evu)), where σ(·) and f(·) are

trainable GNN model parameters and Agg is the aggregator
(e.g., min, max). There are two types of GNN training. (i) Full-
batch training [16]: the entire graph is used for GNN training
and node embedding generation. (ii) Mini-batch training [1]:
in each training iteration, a set of training nodes are selected;
for each training node, at most fl neighbors (fanout) in its l-
th neighbor hop are sampled, ∀l ∈ [1, L], and a subgraph is
constructed which serves as one training sample; the multiple
training samples corresponding to the training nodes constitute
a training batch, which is used for GNN training. Full-batch
training can easily suffer from GPU memory overflow and is
not suitable for training on larger graphs [19]. We focus on
mini-batch training.

In distributed GNN training, the large input graph is typi-
cally partitioned among multiple servers using algorithms such
as METIS [15], to minimize cross-partition edges and balance

the workload among partitions. Multiple samplers and trainers
run on the servers for training batch sampling and GNN train-
ing. Various neighbor sampling methods have been adopted,
including uniform sampling [1], random walk or importance-
based sampling [20]. In each training iteration, each trainer
carries out forward computation with the GNN using a training
batch, and then backward propagation to derive gradients of
the model (i.e., gradients of σ(·) and f(·)). Gradients produced
on different trainers are then synchronized to update the model
parameters globally.
B. Graph Data Cache in Existing GNN Training Systems

To mitigate communication, recent GNN systems adopt
graph data caching, which stores graph structure and features
in host/GPU memory of each server. Pagraph [16] runs GNN
training on multiple GPUs in a single server and adopts static
GPU caching of hot nodes with high degrees. Yang et al. [17]
found that this static caching is only effective when uniform
sampling or degree-based importance sampling is used on
power-law input graphs. They instead cache nodes with the
highest request numbers (i.e., those sampled for GNN training
for most times) in previous training epochs (an epoch includes
multiple training iterations during which all training nodes
are trained once) in GPUs, and the caches remain unchanged
in each epoch. Liu et al. [19] co-design a dynamic caching
policy and the neighbor sampling order. Their design improves
caching performance when used in conjunction with their
specific sampling method, but cannot generalize to different
sampling methods. We seek a dynamic caching design that
does not rely on particular sampling methods.
C. Theoretical Results of Caching

One-level online caching [21, 22] is a well-studied problem
with O(k)-competitive deterministic algorithms and O(log k)-
competitive randomized algorithms, where k is the cache ca-
pacity. The widely used Least Recently Used (LRU) cache
is proved to be O(k)-competitive [23]. Bansal et al. intro-
duce an O(log2 k)-competitive algorithm [24] for the gener-
alized cache problem where cached items have various sizes
and fetching costs, which is later improved to O(log k) by
Adamaszek et al. [22]. Recently, a number of studies combine
traditional one-level caching algorithms with black-box predic-
tions using machine learning (ML) models [25, 26]. Lykouris
et al. [25] and Bansal et al. [26] utilize future item-usage
predictions in learning-augmented cache design; competitive
ratios of such caching algorithms are positively correlated to
the prediction error and upper-bounded by O(log k). All those
algorithms only consider a single-level cache.

To our best knowledge, the recent work from Bansal et
al. [27] is the only theoretical study on multi-level caching,
and presents an O(log2 k) algorithm for a p-level cache with
different priorities for different cache levels. In their design,
each item is cached as several copies across different cache
levels and requests of different priorities are served by caches
of different levels. The setting is different from graph data
caching in GNN training, where node requests are not differ-
entiated in terms of priorities but may incur different fetching
costs, and the consumers (trainers on GPUs) always retrieve

node features from the high-level cache (in GPU memory).
Bansal et al.’s work does not consider different fetching costs
for cache replacements, and their algorithm is complex to be
applied in practical distributed GNN training, due to requir-
ing multiple rounds of item eviction probability updates and
evictions to meet cache capacity constraints.

III. SYSTEM MODEL

A. Distributed GNN Training System
We consider a distributed GNN training system that learns

over a large graph on M servers. The graph is divided into
M partitions using the METIS algorithm [15] (as in Dist-
DGL [11]) and each partition is assigned to be stored in
the host memory of one of the M servers. Without loss of
generality, we consider a simplified system model where each
server hosts one worker, with one GPU memory and one host
memory. Given the fast communication among GPUs in the
same server, this can be considered as an abstraction that treats
the potentially multiple GPUs on a server as one.

The worker on each server contains a sampler, a fetcher
and a trainer. In each training iteration, the sampler selects a
number of training nodes in the graph partition stored on this
server, samples L-hop neighbor nodes of the training nodes
with a given sampling method [1] and constructs a batch of
subgraph training samples (containing meta-data of the nodes
only, such as node IDs). The sampler typically runs on the
CPU [28]. The fetcher retrieves features of nodes in the batch
from the GPU memory, the host memory and other servers
(depending on where the features are cached). The trainer
utilizes those features to train the local GNN model, and
then exchanges model gradients/parameters with other trainers
using a communication primitive such as AllReduce [29].

We adopt a pipeline design across the sampler, the fetcher
and the trainer on each worker, as illustrated in Fig. 1. The
sampler feeds the sampled batch (which contains only meta-
data of the nodes) to a sampled batch queue. The fetcher reads
the batch from the sampled batch queue, fetches features of
nodes in the batch from the GPU cache, the CPU cache and
other servers to prepare a training batch (which contains the
full features of sampled nodes), and feeds it to a training batch
queue (in GPU). The fetcher then updates the GPU and CPU
caches, i.e., evicting some nodes from the respective cache and
replacing them with those in the current batch or evicted from
the GPU. The trainer reads training batches from the training
batch queue and uses them for GNN training. The two queues
allow sampling, feature fetching and training to be carried out
in a pipeline manner: the sampler can sample the next batch
without waiting for the fetcher or the trainer and the fetcher
can retrieve features for the next batch after it has prepared the
previous training batch. In this way, sampling, feature fetching
and training times overlap and the end-to-end GNN training
time is reduced.

We further enable one-batch lookahead for GPU caching:
After the fetcher has fed one training batch to the training
batch queue and before it updates the GPU cache with this
batch’s features, it reads the next batch’s meta data from the
sampled batch queue and sets the eviction probability of nodes

Table I: Notation Table
Notation Description
x(i, j) 1 if node i is evicted from GPU cache after j-th request
q(i, j) 1 if node i is evicted from CPU cache after j-th request
r(i, t) # of times of node i requested by time t

w1 cost for fetching node from host memory to GPU
w(i) cost for fetching node i from other server
N set of nodes in the whole graph
T total number of training iterations
A set of nodes in the local graph partition

S(t) training batch for training iteration t

B(t) set of nodes ever cached in GPU cache by t

kx, ky size of GPU cache and CPU cache

in the GPU cache, which belong to the next batch, to zero,
prohibiting those nodes from being evicted. Then the fetcher
updates the GPU cache with the current batch’s features and
starts to fetch features for the next batch.
B. Two-level Cache Design

We exploit both the GPU memory and the host memory on
each worker for feature caching, and design a two-level cache.
The top-tier cache, referred to as the GPU cache, is inside the
GPU memory (with capacity kx, excluding the memory used
for storing GNN model parameters, intermediate results, the
batch queues, etc.), and the second-tier cache, referred to as the
CPU cache, is in the host memory (with capacity ky , excluding
the memory used for storing assigned graph partition and by
the sampler, etc.). The GPU cache stores features of nodes
that are requested recently and have higher probabilities to be
requested in the near future. The CPU cache receives the nodes
evicted from the GPU cache, and evicts nodes that have been
copied to the GPU cache or with a lower expected cost to be
fetched again (when the CPU cache is full). An illustration of
our two-level cache is in Fig. 2.
C. Two-level online caching problem

We design the caching strategies for our two-level caches
by formulating and solving an online caching optimization
problem. The decisions are on which nodes to be evicted from
the GPU cache and the CPU cache, respectively, when new
node features are to be cached and the respective cache is full.
The goal is to minimize the overall feature fetching cost to
compose the training batches during T iterations of GNN train-
ing at each worker (where T is potentially a large number).

Consider a given worker in the distributed GNN training
system. Let binary variable x(i, j) denote whether node i is
evicted from its GPU cache after it has been sampled into j
training batches in the past, and binary variable q(i, j) rep-
resent whether node i is evicted from the CPU cache after it
has been sampled into j training batches. Let A be the set of
nodes in the graph partition assigned to this worker and stored
in its host memory (which will not be cached in the CPU
cache). N is the set of all nodes in the whole input graph.
For a node i sampled into a training batch, its fetching cost is
zero if it is in the GPU cache, w1 if its features are cached in
the host memory (in the CPU cache or local graph partition),
and w(i) if to be fetched from another server. w(i) is larger if
the graph partition containing node i is on a server with lower
inter-connection bandwidth with the current worker (server).

Figure 1: The processing pipeline of distributed GNN training Figure 2: Two-level cache design

Let S(t) be the training batch in training iteration t. For
each node i in the input graph, r(i, t) denotes the number
of times that node i has been sampled in and before training
iteration t. For a node in the training batch S(t), we have
r(i, t) = r(i, t− 1)+ 1. Let B(t) denote the set of nodes that
have ever been cached in the GPU cache in or before training
iteration t. At the beginning of the first training iteration, the
GPU cache and the CPU cache are filled with features of ran-
domly selected nodes from the local graph partition. The two-
level caching optimization problem is formulated as follows.
Notation is summarized in Table I.

minimize
∑
i∈A

r(i,T)∑
j=1

w1x(i, j)+

∑
i∈N\A

r(i,T)∑
j=1

((w(i)− w1) · q(i, j) + w(i) · x(i, j)) (1)

subject to∑
i∈B(t)\S(t)

x(i, r(i, t)) ≥ |B(t)| − kx, ∀ 1 ≤ t ≤ T (1a)

∑
i∈N\A

q(i, r(i, t)) ≥ |N\A| − ky, ∀ 1 ≤ t ≤ T (1b)

q(i, j) + x(i, j) ≥ 1, ∀ i ∈ N\A, 1 ≤ j ≤ r(i, T) (1c)
q(i, j) ∈ {0, 1}, ∀ i ∈ N\A, 1 ≤ j ≤ r(i, T) (1d)
x(i, j) ∈ {0, 1}, ∀ i ∈ N, 1 ≤ j ≤ r(i, T) (1e)

r(i, t) ≥ 0, ∀ i ∈ N, 1 ≤ t ≤ T (1f)
B(t) = {i : r(i, t) ≥ 1}, ∀ 1 ≤ t ≤ T (1g)

The objective function in (1) represents the overall fetching
cost to compose T training iterations at the worker: the first
part is the total feature fetching cost for sampled nodes that
belong to the graph partition A; the second part represents
the fetching cost of nodes in other graph partitions. For a
node i in A, w1x(i, j) indicates the cost for fetching the node
again from the host memory into a training batch after its j-
th request (the time when it has been sampled in j previous
batches): the cost is w1 if the node is evicted from the GPU
cache after its j-th request (x(i, j) = 1), and zero if the node
is not evicted and hence resides in the GPU cache after its j-th
request (x(i, j) = 0). For a node i in another graph partition
(N\A), it costs (w1−w(i))(1− q(i, j))+w(i)x(i, j) to fetch
the node again into a training batch after its j-th request: the
cost is w(i) if the node has been evicted from both the GPU
and CPU caches after its j-th request (q(i, j) = x(i, j) =
1) and needs to be fetched from the server storing its graph
partition, w1 if the node is evicted from the GPU cache but

is in the CPU cache (x(i, j) = 1, q(i, j) = 0), and zero if
it is not evicted from the GPU cache (x(i, j) = 0, q(i, j) =
1). Since (w1 − w(i))(1 − q(i, j)) + w(i)x(i, j) = (w1 −
w(i))−(w1−w(i))q(i, j)+w(i)x(i, j) and the constant term,
(w1 −w(i)), does not influence the caching strategy, we omit
it in the second term in the objective function.

Constraints (1a) and (1b) ensure that the capacities of
the GPU cache and the CPU cache are obeyed. To derive
(1a), first we have

∑
i∈B(t)(1 − x(i, r(i, t)) ≤ kx which

guarantees that the node feature size in the GPU cache is
less than kx at training iteration t. For a node i sampled
into the training batch S(t) in t, we have x(i, r(i, t)) =
0, and thus |B(t)| −

∑
i∈B(t) x(i, r(i, t)) ≤ kx leads to

|B(t)| −
∑

i∈B(t)\S(t) x(i, r(i, t)) ≤ kx. Hence we have∑
i∈B(t)\S(t) x(i, r(i, t)) ≥ |B(t)| − kx, that is, there should

be at least |B(t)| − kx nodes evicted from the GPU cache
at time t. Similarly, to derive (1b), we have

∑
i∈N\A(1 −

q(i, r(i, t))) ≤ ky which guarantees that the node feature
size in the CPU cache is less than ky by training iteration t.
Then we have |N\A| −

∑
i∈N\A q(i, r(i, t)) ≤ ky and hence∑

i∈N\A q(i, r(i, t)) ≥ |N\A| − ky , i.e., there should be at
least |N\A|−ky nodes evicted from the CPU cache. Constraint
(1c) ensures that at most one copy of each node is cached in
the CPU cache or the GPU cache at any time.

The caching optimization problem in (1) is an integer linear
program. In the next section, we design an online caching
algorithm to solve it, deciding cache eviction strategies during
iterative GNN training.

IV. TWO-LEVEL ONLINE CACHING ALGORITHM

A. The online caching algorithm
Inspired by the caching algorithm in Bansal et al.’s

work [27], we design an efficient dynamic caching algorithm
that each worker carries out during its iterative GNN training,
to decide node replacements in its two-level cache in each
training iteration. The algorithm is given in Alg. 1. For nota-
tion simplicity, we use x(i) and q(i) to represent x(i, r(i, t))
and q(i, r(i, t)) in the algorithm, which indicate the eviction
probability of node i’s features from the GPU cache and from
the CPU cache, respectively.

For each node in the training batch S(t), we set its eviction
probability from the GPU cache to zero (x(i) = 0) and also
set q(i) = 1 to satisfy the exclusive caching constraint in (1c)
(Lines 6-9). With the one-batch lookahead mechanism, we also
set the eviction probability of nodes cached in the GPU and
appearing in the next sampled batch to zero (Line 13).

We then decide the nodes to evict from the GPU cache to
allow GPU caching of nodes in S(t), that are not cached in
the GPU yet. We increase the eviction probability x(i) for all
nodes inside the GPU cache that are not sampled in S(t), i.e.,
i ∈ N\S(t) and x(i) < 1, with a step decided by parameters
α and β (Line 16). α ≥ 0 and β ≥ 0 can be set by grid
search on a small set of candidate parameter pairs that lead
to the highest GPU cache hit ratio, by running a few training
iterations. Then we simulate node i’s eviction with probability
γx · x(i), where γx is a scalar chosen uniformly randomly in
the range [O(1), O(log kx)]: we sample a random variable z
uniformly randomly over [0, 1]; if z ≤ γx · x(i), we consider
node i as evicted (i.e., increment the corresponding eviction
count in vector Vx), as the probability of z ≤ γx · x(i) is
exactly min{1, γx · x(i)}. We simulate eviction of nodes for
multiple times (five times as in our experiments) with inde-
pendently randomly generated scaling factors γx, and record
the number of times that a node in the GPU cache is evicted in
those eviction trials in vector Vx. The rationale of scaling the
eviction probability xi by γx (chosen in [O(1), O(log kx)]) is
to ensure that an appropriate number of nodes are potentially
evicted (related to the competitive ratio achievable). Then we
choose the top b+ c nodes with the largest eviction counts in
Vx (by calling a TopK function in Line 29), where b+ c is the
required number of nodes to evict from the GPU cache (with b
and c being the number of nodes in S(t) which are cached in
the host memory and fetched from other servers, respectively),
and replace those b+ c nodes in the GPU cache with the b+ c
nodes in S(t) which were not cached in the GPU (Lines 30-
33). We assume that the GPU cache can hold at least b+c
nodes here to simplify the analysis. It can be extended to the
case where the GPU cache is smaller by randomly selecting
a subset of the b+ c nodes to cache.

Next, we decide nodes to evict from the CPU cache, for the
CPU cache to hold evicted nodes from the GPU. We remove
from the set of nodes evicted from the GPU, E, the nodes that
belong to the local graph partition (Line 34), which are always
in the host memory. We increase the eviction probability q(i)
of nodes in the CPU cache by an amount inversely propor-
tional to the fetching cost w(i)− w1 (Line 36), such that the
node with a larger fetching cost has a lower probability to be
evicted. For example, a node belonging to a graph partition
stored in another server with low inter-connection bandwidth
with the current worker is less likely to be evicted. Then,
similar to the eviction simulation of nodes in the GPU cache,
we simulate node eviction from the CPU cache with scaled
eviction probabilities, and record in vector Vy the eviction
times of nodes in the CPU cache over multiple eviction trials.
We choose the top |E| nodes with the largest eviction counts
in Vy and replace them in the CPU cache with nodes in E
evicted from the GPU (Lines 47-51).
B. Competitiveness of the online caching algorithm

We next show that our online caching Alg. 1 achieves an
O(log3 k) competitive ratio, where k = max{kx, ky}, the
larger between the capacities of the GPU cache and the CPU
cache. To prove this, we introduce an online fractional caching

algorithm that solves the optimization problem in (1) by re-
laxing the integrity constraints (1d) and (1e) and allowing fea-
tures of a sampled node to be partially cached in/evicted from
the respective cache, and analyze the competitive ratio of the
online fractional algorithm; then we connect the performance
of Alg. 1 with that of the online fractional algorithm and show
the competitive ratio of Alg. 1.

The online fractional caching algorithm for each worker in
each training iteration includes three main steps:

Step (i): Set eviction fractions x(i) = 0 and q(i) = 1 for
nodes in the training batch, i.e., ∀i ∈ S(t).

Step (ii): Evict enough nodes from the GPU cache for
accommodating nodes in the training batch (that are not cached
in the GPU cache), by updating the eviction fraction x(i) for
all nodes inside the GPU cache and not in the training batch
by an amount proportional to the current eviction fraction:
x(i) = max{1, x(i) + x(i)+1/kx

w1
∆x}, where ∆x is a small

update step. We keep updating x(i)’s until the GPU cache
capacity constraint (1a) is satisfied.

Step (iii): Evict enough nodes from the CPU cache to store
nodes evicted by the GPU cache which are not in the local
graph partition, by updating eviction fractions for nodes in the
CPU cache by an amount proportional to the current eviction
fraction and inversely proportional to the fetching cost of the
node: q(i) = max{1, q(i) + q(i)+1/ky

w(i)−w1
∆q}, where ∆q is a

small update step. We keep increasing the eviction fractions
until the CPU cache capacity constraint (1b) is satisfied.

We prove that the online fractional algorithm achieves a
competitive ratio of O(log k), computed by dividing the ob-
jective value of (1) achieved by the fractional solutions by
the offline optimal objective value of (1) with optimal integer
solutions.

Theorem 1. Assuming w1 ≤ w(i) ≤ mw1 (where m is an
upper bound on w(i)

w1
) and ky ≥ kx, the online fractional algo-

rithm is O(log k)-competitive in solving the two-level caching
problem in (1), where k = max{kx, ky}.

Proof. We provide a proof sketch here and leave the full proof
in the technical report. We use a potential function inspired
by Bansal et al. [27] to prove the competitive ratio:

∆On +∆Φ ≤ O(log k)∆OPT + const (3)
where On is the objective value (1) of the online fractional
algorithm, OPT is the objective value (1) of the offline optimal
algorithm (with integer solutions), and const is independent
of the sequence of training batches. ∆On and ∆OPT represent
the change of the objective value upon node eviction with the
online fractional algorithm and the offline optimal algorithm,
respectively. ∆Φ is the change of the potential function value
with node eviction conducted by online fractional algorithm or
offline optimal algorithm. The potential function Φ is defined
as

Φ = 2
∑
i∈N

(w1vx(i) ln
1 + 1/kx

x(i) + 1/kx
+ (w(i)− w1)vq(i) ln

1 + 1/ky

q(i) + 1/ky
)

(4)
where vx(i) and vq(i) denote the decisions from the OPT
algorithm. vx(i) = 1 if OPT evicts node i from the GPU cache,

Algorithm 1 Dynamic two-level caching algorithm at each worker in training iteration t

1: Input S(t): sampled nodes in t
2: Output updated cache states with x(i), i ∈ N (probability

of evicting node i from GPU cache) and q(i), i ∈ N\A
(probability of evicting node i from CPU cache)

3: b := number of nodes in S(t) and cached in CPU
4: c := number of nodes in S(t) and fetched from other

servers
5: for each node i ∈ S(t) do
6: if node i is in the GPU cache, keep it there
7: if node i is in the CPU cache, evict it from the CPU

cache and prepare to cache it into the GPU
8: if node i is fetched from another server, prepare to

cache it into the GPU
9: x(i) := 0, q(i) := 1

10: end for
11: // one-batch lookahead
12: for each node i ∈ sampled batch of t+1 and x(i) < 1 do
13: x(i) := 0
14: end for
15: for each node i ∈ N\S(t) and x(i) < 1 do
16: x(i) := min{1, x(i) + α · (x(i) + β)}
17: end for
18: Vx := [0]∗kx // a kx-dimensional vector recording eviction

counts of each node in the GPU cache
19: Vy := [0]∗ky // a ky-dimensional vector recording eviction

counts of each node in the CPU cache
20: do parallel
21: γx ∼ Uniform[O(1), O(log kx)]
22: for each node i ∈ N\S(t) and x(i) < 1 do
23: z ∼ Uniform[0, 1]

24: if z ≤ γx · x(i) then
25: Vx(i) := Vx(i) + 1
26: end if
27: end for
28: end parallel
29: E := TopK(Vx, b+ c) // Nodes to be evicted from GPU
30: for each node i in E do
31: x(i) := 1, q(i) := 0
32: end for
33: Replace nodes in E in GPU cache by sampled nodes in

S(t) that were not in the GPU cache
34: E := E∧(N\A) // remove nodes in local graph partition

from E
35: for each node i ∈ N\A and q(i) < 1 do
36: q(i) = min{1, q(i) + minj∈N\A w(j)−w1

w(i)−w1
}

37: end for
38: do parallel
39: γy ∼ Uniform[O(1), O(log ky)]
40: for each node i ∈ N\A and q(i) < 1 do
41: z ∼ Uniform[0, 1]
42: if z ≤ γy · q(i) then
43: Vy(i) := Vy(i) + 1
44: end if
45: end for
46: end parallel
47: F := TopK(Vy, |E|) // Nodes to be evicted from CPU
48: for each node i in F do
49: q(i) := 1
50: end for
51: Replace nodes in F in the CPU cache with nodes in E.

and 0, otherwise. vq(i) = 1 if OPT removes node i from the
CPU cache, and 0, otherwise. x(i) and q(i) are the decisions
of online fractional algorithm. The main idea of the proof is
to show that inequality (3) holds with all node evictions con-
ducted by online fractional algorithm or offline optimal algo-
rithm. Then it leads to ∆On ≤ O(log k)∆OPT and summing
up over all training iterations, we get On ≤ O(log k)OPT and
complete our proof of the O(log k) competitive ratio.
Theorem 2. When the eviction fractions of nodes from the
GPU and CPU caches increase by at least 1/ log k in each
step (ii) and each step (iii) of the fractional algorithm (e.g.,
by setting ∆x = ∆q = 1/ log k), the objective value of (1),
i.e., the overall feature fetching cost, incurred by Alg. 1 is at
most O(log2 k) times that of the online fractional algorithm.

Proof. We give the proof sketch here and leave the full proof
in our technical report. The main idea is that when the eviction
probability of nodes from the CPU and GPU caches increases
at least 1/ log k in each training iteration in the fractional
algorithm, the expected fetching cost of our algorithm is at
most O(log k) times the expected cost of the fractional algo-
rithm. Evicting nodes with scale γx leads to γx times the cost
without the scale factor, and the expected fetching cost without

scale factor is exactly at most O(log k) times the fetching cost
of fractional algorithm. With γx bounded by O(log k), the
expected fetching cost of our algorithm is at most O(log2 k)
times that of the fractional algorithm. Our lookahead reduces
the fetching cost of the next batch S(t + 1), thus reducing
the total expected fetching cost. Therefore, the expected cost
induced by Alg. 1 is at most O(log2 k) times that of the
fractional algorithm.

Combining Theorem 1 and Theorem 2, we can readily show
that Alg. 1 is O(log3 k)-competitive.

Theorem 3. The two-level online caching algorithm in Alg. 1
is O(log3 k)-competitive in solving problem (1).

We also show the time complexity of running our online
caching algorithm.

Theorem 4. Alg. 1 produces feasible cache update strategies
in each training iteration with time complexity O(k log k).

Proof. In each training iteration, Alg. 1 evicts b+c nodes from
the GPU cache, exactly the number of nodes that are requested
and not cached in GPU yet, and |E| nodes from the CPU
cache, exactly the number of nodes that are evicted from GPU
and not in the local graph partition. Therefore, Alg. 1 computes

feasible cache update solutions. In each training iteration,
Alg. 1 updates cache probabilities with O(k) time complexity
and chooses the top b+ c or |E| entries with O(k log k) time
complexity from a vector of size kx or ky . Therefore, the
total time complexity is O(k log k) per training iteration. The
algorithm is run on GPU for parallel computation of cache
update, eviction trials and TopK operations.

V. EXPERIMENTAL EVALUATION

A. Methodology
Implementation. We implement a distributed GNN train-
ing system with the two-level cache based on the popular
distributed GNN training framework, DGL 0.8.2 [28]. The
caching strategies are implemented using Python 3.9.5 and
PyTorch 1.10.2 [30]. We modify the sampler component to
separate the sampling batches and training batches and add
a fetcher to fetch features of nodes in the sampled batches.
We implement the two-level cache between the sampler and
trainer as shown in Sec. III. We also modify the training batch
loader provided by DGL to a data loader reading batches from
training batch queue. Besides, we reuse the DGL’s neighbor
sampling component, graph store and execution runtime [28].
We use Ring AllReduce [29] to exchange model parameters
with primitives provided by the gloo backend of PyTorch [30].
Testbed. We run distributed GNN training on 4 fully-
connected servers, each with one 1080Ti 11GB GPU, one Intel
Xeon E5-1660 v4 (3.20 GHz) CPU and 48GB host memory.
We limit the server NIC bandwidth to 1Gbps, 10Gbps and
20Gbps in our experiments.
Workload. We train three representative GNN models, Graph-
SAGE [1], GAT [2] and GCN [3] on the ogbn-products dataset
(containing 2.4 million nodes, 61.9 million edges and 100
feature dimensions) [31] and the reddit dataset (containing
0.2 million nodes, 114.6 million edges and 602 feature di-
mensions) [1]. The GraphSAGE model uses a hidden size of
256 and the mean aggregator to aggregate neighbor features.
In the GAT model, we use a hidden size of 128, 4 heads
for each layer and 0.6 dropouts for both feature and attention
layers. The GCN model has a hidden size of 256. We use the
METIS algorithm [15] to partition the graph and the Adam op-
timizer [32] with a learning rate of 0.001 for GNN training. We
adopt uniform neighbor sampling [1], with fan-outs of 5 and
10 for two-layer models, 5,10 and 15 for three-layer models.
Baselines. We compare our design with five baselines: (1)
Direct Fetch, which does not cache any nodes in both GPU
and CPU; (2) Static caching of hot nodes: cache nodes with the
largest degrees in GPU; (3) Static caching of neighbor nodes:
cache nodes in GPU that are 1-hop neighbors of nodes in the
local graph partition; (4) One-level LRU: enable only the GPU
cache which evicts nodes that are least recently requested; (5)
Two-level LRU: enable both GPU cache and CPU cache using
LRU, with the GPU cache evicting nodes to the CPU cache.
Settings. We set the fetching cost w(i) according to our pro-
filed fetching overhead among servers: 5, 3 and 1 from a server
of 1 Gbps, 10 Gbps and 20Gbps bandwidth, respectively. We
choose γ among 0.3, 0.5, 1, 2, and 5. We use grid search

to find appropriate α and β (in Alg. 1) under different cache
sizes and batch sizes, e.g., α = 1.9 and β = 0.01 for cache
size 500,000 and batch size 1024. We experiment on both a
homogeneous server bandwidth setting (all servers use 20Gbps
NIC bandwidth) and heterogeneous bandwidth settings (1Gbps
bandwidth at one server and 20Gbps at the other three servers,
unless stated otherwise).
B. GNN Training Convergence

We first compare GNN training convergence time with
different baselines in both homogeneous and heterogeneous
settings. The training batch size (number of training nodes in
each iteration) at each worker is 1024 and both GPU and CPU
cache sizes are 500, 000 (the number of cached nodes, with a
400-byte feature per node for ogbn-products). Table II gives
the model training time to reach the target training accuracy
for different GNN models with two or three layers. Fig. 3
further shows detailed model training convergence under the
heterogeneous setting. GNN training using our caching strate-
gies achieves up to 3.37× (5.40×) speed-up in the homoge-
neous (heterogeneous) setting, compared to training without
caching (direct fetch), and outperforms all other baselines with
1.06× to 3.03× speed-up. Dynamic caching strategies (LRU
and ours) in general perform better than static caching due
to higher cache hit rates. One-level LRU and two-level LRU
underperform static caching in some cases when training a
two-layer model. It is because relatively low feature fetch-
ing cost is incurred when training a two-layer model, and
dynamic caching has a higher policy time for cache update
(i.e., the time for computing caching decisions and updating
the cache entries), which offsets the benefit brought by the
higher cache hit rate. Our algorithm achieves higher speed-up
in the heterogeneous setting than in the homogeneous setting.
The larger speed-up results from our lookahead mechanism
and efficient weighted caching strategy, which gives nodes
to be fetched from other servers with lower inter-connection
bandwidth lower eviction probabilities from the CPU cache.

We further train the 3-layer GraphSAGE model on two
datasets and in three heterogeneous settings as shown in Ta-
ble III (e.g., (1,20,20,20) Gbps indicate one server with 1 Gbps
bandwidth and three servers with 20 Gbps bandwidth). We use
a batch size of 1024 and a GPU/CPU cache size of 500,000
or 50,000 for ogbn-products dataset and reddit dataset, respec-
tively, since reddit has a relatively small number of nodes.
Our caching design achieves 1.28× to 2.19× faster training
convergence as compared to static caching with hot nodes.
C. Cache hit rate and average feature fetch time

We train the 3-layer GraphSAGE model [1] with 100 itera-
tions (batches), and obtain the hit rate of our two-level cache
(the ratio of the number of nodes that are cached in the GPU
or CPU caches divided by the number of nodes in the training
batch) and the average feature fetching time in each iteration
(the time from when the fetcher obtains the sampled batch to
when it sends the training batch to the training batch queue).
We vary the training batch size per worker and GPU cache
size, and set the CPU cache size to the same as the GPU cache
size for all two-level caches.

Table II: GNN Training Convergence Time (seconds). × indicates the speed-up computed by dividing the respective convergence
time by the convergence time achieved with our caching algorithm.

Dataset ogbn-products
Model GraphSAGE GAT GCN

of Layers / Convergence Accuracy 2 / 85% 3 / 90% 2 / 77% 3 / 80% 2 / 89% 3 / 90%

Homo-
geneous

Direct Fetch 15.83 1.47× 228.38 2.40× 79.23 1.79× 395.388 2.17× 46.85 1.51× 345.56 3.37×
Static (Hot Node) 13.56 1.26× 115.03 1.21× 54.14 1.23× 256.95 1.41× 33.71 1.08× 116.83 1.14×
Static (Neighbor) 13.84 1.28× 168.43 1.77× 57.39 1.30× 282.20 1.53× 43.09 1.39× 135.38 1.32×
One-level LRU 11.86 1.10× 137.01 1.44× 52.42 1.19× 278.61 1.53× 35.40 1.14× 170.29 1.66×
Two-level LRU 12.71 1.18× 130.54 1.37× 66.35 1.50× 195.79 1.07× 40.27 1.30× 156.54 1.53×

Ours 10.78 / 95.06 / 44.15 / 182.60 / 31.08 / 102.57 /

Hetero-
geneous

Direct Fetch 90.89 2.42× 1604.52 4.15× 338.49 2.52× 1761.79 3.29× 259.26 3.98× 1972.20 5.40×
Static (Hot Node) 42.77 1.14× 789.29 2.04× 189.04 1.41× 1084.76 2.03× 104.12 1.57× 934.88 2.56×
Static (Neighbor) 61.59 1.64× 1169.61 3.03× 196.82 1.46× 1088.24 2.03× 143.41 2.16× 958.81 2.62×
One-level LRU 41.56 1.10× 855.39 2.21× 146.15 1.09× 834.61 1.56× 95.88 1.44× 1012.07 2.77×
Two-level LRU 43.10 1.15× 686.29 1.78× 142.17 1.06× 783.69 1.46× 98.39 1.48× 521.67 1.43×

Ours 37.51 / 386.20 / 134.46 / 535.43 / 66.51 / 365.32 /

(a) 2-layer GraphSAGE (b) 3-layer GraphSAGE (c) 2-layer GAT (d) 3-layer GAT (e) 2-layer GCN (f) 3-layer GCN
Figure 3: GNN Training Convergence (with Gaussian filter σ = 2): heterogeneous server bandwidths

Table III: Convergence Time (seconds) of 3-layer GraphSAGE
on different datasets and heterogeneous settings

Dataset ogbn-products reddit
Convergence Accuracy 90% 95%

Settings Static(Hot Node) Ours Static(Hot Node) Ours
(1,20,20,20) Gbps 789.29 386.20 841.72 656.32
(1,10,20,20) Gbps 858.74 391.47 888.89 677.17
(1,10,10,20) Gbps 959.80 462.84 938.95 716.38

a) Homogeneous server bandwidths: Fig. 4 shows that our
algorithm with one batch lookahead increases the hit rate by up
to 32%, 41%, and 11% as compared to the static-hot caching,
one-level LRU and two-level LRU, respectively. Caching with
lookahead achieves 7% higher cache hit rate than without
lookahead. Fig. 5 shows that our algorithm saves 67%, 69%
and 36% feature fetching time per training iteration as com-
pared to static-hot caching, one-level LRU and two-level LRU,
respectively, and up to 21% with lookahead than without.
b) Heterogeneous server bandwidths: Our further experiments
on heterogeneous server bandwidths also show that our algo-
rithm with lookahead achieves up to 28%, 37% and 8% hit rate
increase as compared to static-hot cache, one-level LRU and
two-level LRU, respectively. The lookahead mechanism en-
ables up to 4% higher hit rate than without. Besides, our cache
saves 91%, 92% and 76.6% feature fetching time per iteration
compared to static-hot, one-level LRU and two-level LRU,
respectively, and up to 49% with lookahead than without. Our
algorithm achieves higher time reduction in the heterogeneous
setting, due to retaining more nodes fetched through costly
inter-server connection in the cache saves more feature re-
fetching time. The result figures in the heterogeneous setting
are included in our technical report due to space limit.
D. Cache Policy Time

We compare the policy time which includes the caching
decision computation time and cache entry update time per
training iteration under different batches and cache sizes, when

training the 3-layer GraphSAGE in the heterogeneous setting.
Fig. 6 shows that with the increase of the batch size, the policy
time increases sub-linearly, as the number of cache entries to
be updated increases. When increasing the cache size, increase
of the policy time with dynamic caching strategies slows down.
This is because when the cache gets larger, the cache hit rate is
higher and the increase of cache entries that require updating
becomes smaller. Although the policy time of dynamic caching
is non-trivial as compared to static caching (which is zero since
no cache update is needed), dynamic caching reduces the end-
to-end model convergence time since it largely reduces the
feature fetching time and the cache update can overlap with
model training.
E. Impact of CPU cache size

We train the 3-layer GraphSAGE with a batch size of 1024
and a GPU cache size of 50,000 in the homogeneous setting,
and vary the CPU cache size from 50,000 to 1,000,000. In
Fig. 7, we observe that the cache hit rate increases and the
feature fetch time decreases when the CPU cache gets larger.
The marginal reduction of fetch time per unit CPU-cache-
size increase decreases. The policy time for updating the CPU
cache increases, and the increase is small compared to the
reduction of the fetch time. According to these observations,
a larger CPU cache is more beneficial.
F. Impact of lookahead batch number

We train the 3-layer GraphSAGE with both GPU and CPU
cache sizes fixed to 500,000 in the homogeneous setting, and
vary the number of lookahead batches. When we look ahead
h sampled batches in each training iteration, we reduce the
GPU eviction probability of node i by 1/2h−1 if it appears in
the h-th lookahead batch (Line 13 in Alg. 1). For example, if
the node appears in the next batch (i.e., first lookahead batch),
then its eviction probability is set to 0; if the node appears

Figure 4: Cache hit rate under different cache sizes and batch sizes: homogeneous server bandwidths.

Figure 5: Average feature fetch time under different cache sizes and batch sizes: homogeneous server bandwidths.

Figure 6: Cache policy time Figure 7: Hit rate and feature fetch
time: different CPU cache sizes

Figure 8: Convergence time: dif-
ferent lookahead batch numbers

in the second and third lookahead batches given its previous
eviction probability p, then its eviction probability becomes
p′ = p − 1/2p − 1/4p. Fig. 8 shows the model convergence
time to reach the respective target model accuracy. We see that
model training with one-batch lookahead leads to the best per-
formance. The convergence time increases with more looka-
head batches because sampling of more future batches takes
more time, leading to delay of cache update by the fetcher and
the trainer training (i.e., less efficient sampler/fetcher/trainer
pipelining), and processing multiple lookahead batches leads
to higher cache policy time by the fetcher as well.
G. Comparison with offline optimal caching

We compare the average hit rate and one epoch training time
with the offline optimal two-level caching of solving problem
(1) exactly (by pre-sampling the batches in one training epoch
and evicting nodes that will be requested in the farthest future -
shown to be optimal in [33]). We train the 3-layer GAT model
in the homogeneous setting. One epoch includes 95 batches
(aka training iterations) when the batch size is 512 and 47
batches when the batch size is 1024 on ogbn-products dataset.
We vary the GPU cache size and set the CPU cache size to
the same as GPU cache size. As Fig. 9 shows, our algorithm
achieves lower hit rates than the offline optimal cache, but
better training speeds in most cases. It is because we overlap
sampling, feature fetching and GNN computation, while the
offline optimal cache requires nontrivial time for pre-sampling
and constructing the look-up table for nodes’ farthest request
time. Besides, the offline optimal cache occupies much more
space in GPU memory than ours due to the look-up table.

(a) Batch size: 512 (b) Batch size: 1024
Figure 9: Cache hit rate and epoch time compared to offline
optimum: training 3-layer GAT in homogeneous setting

VI. CONCLUSION

This paper proposes an efficient two-level dynamic cache
in distributed GNN training, exploiting both GPU memory
and host memory for feature fetching expedition. We carefully
design sampling, feature fetching and training parallelization,
and decide the caching strategies based on online optimization
and a lookahead mechanism. Our online two-level caching
algorithm considers heterogeneous feature fetching costs from
different servers and leverages parallel probabilistic node evic-
tion trials to achieve fast online caching policies. We prove an
O(log3 k) competitive ratio of our online algorithm. Testbed
experiments show that our design achieves up to 5.4× con-
vergence speed-up on representative GNN training workloads
under various fetching cost settings.

ACKNOWLEDGMENT

This work was supported in part by grants from Hong
Kong RGC under the contracts HKU 17204619, 17208920 and
17207621.

REFERENCES

[1] W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in Neural Information Process-
ing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA, USA, 2017.

[2] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò,
and Y. Bengio, “Graph attention networks,” in International
Conference on Learning Representations, 2018. [Online]. Available:
https://openreview.net/forum?id=rJXMpikCZ

[3] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in ICLR 2017. OpenReview.net, 2017.

[4] H. Kwak, C. Lee, H. Park, and S. B. Moon, “What is twitter, a social
network or a news media?” in WWW 2010, M. Rappa, P. Jones, J. Freire,
and S. Chakrabarti, Eds. ACM, 2010, pp. 591–600.

[5] A. Fout, J. Byrd, B. Shariat, and A. Ben-Hur, “Protein interface pre-
diction using graph convolutional networks,” in Advances in Neural
Information Processing Systems 30: Annual Conference on Neural In-
formation Processing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA, 2017, pp. 6530–6539.

[6] L. Zhao, Y. Song, C. Zhang, Y. Liu, P. Wang, T. Lin, M. Deng, and H. Li,
“T-GCN: A temporal graph convolutional network for traffic prediction,”
IEEE Trans. Intell. Transp. Syst., vol. 21, no. 9, pp. 3848–3858, 2020.

[7] M. Fire and C. Guestrin, “Over-optimization of academic
publishing metrics: observing Goodhart’s Law in action,” Giga-
Science, vol. 8, no. 6, 05 2019, giz053. [Online]. Available:
https://doi.org/10.1093/gigascience/giz053

[8] J. Yang and J. Leskovec, “Defining and evaluating network communities
based on ground-truth,” Knowl. Inf. Syst., vol. 42, no. 1, pp. 181–213,
2015.

[9] J. J. McAuley and J. Leskovec, “Learning to discover social circles in
ego networks,” in Advances in Neural Information Processing Systems
25: 26th Annual Conference on Neural Information Processing Systems
2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe,
Nevada, United States, P. L. Bartlett, F. C. N. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, Eds., 2012, pp. 548–556.

[10] S. Gandhi and A. P. Iyer, “P3: distributed deep graph learning at scale,”
in OSDI 2021, 2021.

[11] D. Zheng, C. Ma, M. Wang, J. Zhou, Q. Su, X. Song, Q. Gan, Z. Zhang,
and G. Karypis, “Distdgl: Distributed graph neural network training for
billion-scale graphs,” in 10th IEEE/ACM Workshop on Irregular Ap-
plications: Architectures and Algorithms, IA3 2020, Atlanta, GA, USA,
November 11, 2020. IEEE, 2020, pp. 36–44.

[12] T. Kaler, N. Stathas, A. Ouyang, A. Iliopoulos, T. B. Schardl, C. E.
Leiserson, and J. Chen, “Accelerating training and inference of graph
neural networks with fast sampling and pipelining,” in Proceedings of
Machine Learning and Systems 2022, MLSys 2022, Santa Clara, CA,
USA, August 29 - September 1, 2022, D. Marculescu, Y. Chi, and C. Wu,
Eds. mlsys.org, 2022.

[13] H. Mostafa, “Sequential aggregation and rematerialization: Distributed
full-batch training of graph neural networks on large graphs,” in Pro-
ceedings of Machine Learning and Systems 2022, MLSys 2022, Santa
Clara, CA, USA, August 29 - September 1, 2022, D. Marculescu, Y. Chi,
and C. Wu, Eds. mlsys.org, 2022.

[14] J. Thorpe, Y. Qiao, J. Eyolfson, S. Teng, G. Hu, Z. Jia, J. Wei, K. Vora,
R. Netravali, M. Kim, and G. H. Xu, “Dorylus: Affordable, scalable,
and accurate GNN training with distributed CPU servers and serverless
threads,” in OSDI. USENIX Association, 2021, pp. 495–514.

[15] G. Karypis and V. Kumar., “Metis–unstructured graph partitioning and
sparse matrix ordering system,” in Technical Report, 1995.

[16] Z. Lin, C. Li, Y. Miao, Y. Liu, and Y. Xu, “Pagraph: Scaling GNN
training on large graphs via computation-aware caching,” in SoCC ’20.
ACM, 2020.

[17] J. Yang, D. Tang, X. Song, L. Wang, Q. Yin, R. Chen, W. Yu, and
J. Zhou, “GNNLab: a factored system for sample-based GNN training
over gpus,” in EuroSys ’22. ACM, 2022.

[18] J. Dong, D. Zheng, L. F. Yang, and G. Karypis, “Global neighbor
sampling for mixed CPU-GPU training on giant graphs,” in KDD ’21:
The 27th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, Virtual Event, Singapore, August 14-18, 2021, F. Zhu, B. C.
Ooi, and C. Miao, Eds. ACM, 2021, pp. 289–299.

[19] T. Liu, Y. Chen, D. Li, C. Wu, Y. Zhu, J. He, Y. Peng, H. Chen, H. Chen,
and C. Guo, “BGL: gpu-efficient GNN training by optimizing graph
data I/O and preprocessing,” in NSDI’23, 2023.

[20] G. Nikolentzos and M. Vazirgiannis, “Random walk graph neural net-
works,” in NeurIPS 2020, 2020.

[21] N. Bansal, N. Buchbinder, and J. Naor, “A primal-dual randomized algo-
rithm for weighted paging,” J. ACM, vol. 59, no. 4, pp. 19:1–19:24, 2012.

[22] A. Adamaszek, A. Czumaj, M. Englert, and H. Räcke, “An O(log k)-
competitive algorithm for generalized caching,” ACM Trans. Algorithms,
vol. 15, no. 1, pp. 6:1–6:18, 2019.

[23] D. D. Sleator and R. E. Tarjan, “Amortized efficiency of list update and
paging rules,” Commun. ACM, vol. 28, no. 2, pp. 202–208, 1985.

[24] N. Bansal, N. Buchbinder, and J. Naor, “Randomized competitive algo-
rithms for generalized caching,” SIAM J. Comput., vol. 41, no. 2, pp.
391–414, 2012.

[25] T. Lykouris and S. Vassilvitskii, “Competitive caching with machine
learned advice,” in Proceedings of the 35th International Conference on
Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018, ser. Proceedings of Machine Learning Research, J. G.
Dy and A. Krause, Eds., vol. 80. PMLR, 2018, pp. 3302–3311.

[26] N. Bansal, C. Coester, R. Kumar, M. Purohit, and E. Vee, “Learning-
augmented weighted paging,” in Proceedings of the 2022 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2022, Virtual Conference /
Alexandria, VA, USA, January 9 - 12, 2022, J. S. Naor and N. Buch-
binder, Eds. SIAM, 2022, pp. 67–89.

[27] N. Bansal, J. S. Naor, and O. Talmon, “Efficient online weighted multi-
level paging,” in SPAA ’21: 33rd ACM Symposium on Parallelism
in Algorithms and Architectures, Virtual Event, USA, 6-8 July, 2021,
K. Agrawal and Y. Azar, Eds. ACM, 2021, pp. 94–104.

[28] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma,
L. Yu, Y. Gai, T. Xiao, T. He, G. Karypis, J. Li, and Z. Zhang, “Deep
graph library: A graph-centric, highly-performant package for graph
neural networks,” arXiv:1909.01315, 2019.

[29] P. Patarasuk and X. Yuan, “Bandwidth optimal all-reduce algorithms for
clusters of workstations,” J. Parallel Distributed Comput., vol. 69, no. 2,
pp. 117–124, 2009.

[30] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Z. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in NeurIPS ’19, 2019.

[31] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and
J. Leskovec, “Open graph benchmark: Datasets for machine learning on
graphs,” CoRR, vol. abs/2005.00687, 2020.

[32] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[33] L. A. Belady, “A study of replacement algorithms for virtual-storage
computer,” IBM Syst. J., vol. 5, no. 2, pp. 78–101, 1966. [Online].
Available: https://doi.org/10.1147/sj.52.0078

