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Abstract—Built on top of virtualization technologies, network
function virtualization (NFV) provides flexible and scalable
software implementation of various network functions. Virtual
network functions (VNFs), which are network functions imple-
mented as virtual machines, are chained together to provide
network services. Dynamic deployment of VNFs while satisfying
incoming network traffic demand is the key to cost optimization
of an NFV system. Besides considering server resource capacity
and incoming traffic rates, an optimal scaling policy needs to
strike a balance between VNF’s operational costs, the costs
for maintaining VNF instances, and VNF deployment costs,
additional costs when setting up new VNF instances on a server.
This paper targets dynamic scaling of VNF instances in a cloud
data center where multiple VNF chains are running. We propose
an online scaling algorithm to adjust the deployment of VNF
instances according to time-varying traffic demand, ensuring a
good competitive ratio. Through theoretical analysis and trace-
driven simulation, we demonstrate effectiveness of the proposed
online VNF scaling algorithm.

Index Terms—Network function virtualization, service chains,
online algorithm, dynamic scaling.

I. INTRODUCTION

NETWORK function virtualization is a new paradigm
that aims at more flexible and scalable provisioning

of softwarized network functions. While traditional network
functions are implemented by expensive dedicated hardware,
NFV leverages virtualization technologies to deploy virtual
network functions onto commodity hardware [1]. Multiple
VNFs are commonly chained (i.e., VNF service chains) to-
gether to provide a network service, e.g., “Web Application
Firewall → IDS → Load Balancer” for access control in Web
service.

A typical NFV proposal is to implement VNFs as virtual
machines (VMs) or containers in a cloud computing platform,
or the provider’s cloud cluster. The goal of NFV is to provide
network service with significant cost reduction, as compared to
using traditional hardware-based middleboxes. The significant
flexibility introduced by NFV with softwarized VNFs enables
the network operator to initialize, terminate and migrate VNFs
on the go according to demand, for substantial cost reduction.
Ideally, more VNF instances should be set up in response to
a rise in network traffic; in the case of decreasing network
traffic rates, idle VNF instances can be terminated.

This paper studies the problem of online VNF scaling within
a cloud data center. In contrast to the offline setting where
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traffic rates in all time slots are known, the key challenge in
such online scaling lies in the unknown network traffic rates
in future time slots. Further, when a network flow traverses
a VNF in a service chain, the traffic rate may change, e.g.,
deduplication or compression function is deployed in WAN
optimization which can reduce traffic rates of flows bypass-
ing it. The online algorithm should always deploy sufficient
VNF instances while addressing network traffic fluctuation as
well as cost minimization; it should avoid terminating VNF
instances while immediately creating new ones (due to traffic
rising again), even without known future flow rates.

We strategically design an online VNF scaling algorithm,
tending to various practical considerations of VNF deployment
in a datacenter, including server resource constraints, VNF
deployment and operating costs. Our main contribution in this
algorithm design is summarized as follows:
. We thoroughly investigate the problem of online VNF

scaling in a cloud data center and formulate the problem as
an integer linear program (ILP). The ILP enables dynamic
VNF scaling and deployment across servers in consideration
of incoming flow rate fluctuation, rate change after VNF
processing, traffic routing among multiple servers, VNF de-
ployment/operating costs and server capacities. We further
transform the ILP into an equivalent simplified ILP, which
serves as the foundation for online algorithm design.
. We leverage the regularization technique adapted from

online learning literature [2] to decouple the original online
ILP into a series of regularized sub-problems. We identify
that the deployment cost constraint serves as the connection
between consecutive time slots and lift it into the objective
function for decoupling. We relax each offline sub-problem as
a linear program (LP) and solve it efficiently using a convex
optimization algorithm to obtain a fractional solution.
. We adopt a novel online rounding algorithm based on

linear algebra and dependent rounding [3]. Our rounding
algorithm rounds a fractional solution to an integer solution
while doing its best to satisfy both the packing and covering
constraints in the original problem. Our rounding algorithm
together with online regularization-based algorithm guarantees
a good expected competitive ratio as compared with the offline
optimum of the original problem. Our rounding algorithm
ensures enough VNF instances for network traffic processing
while the resource capacity constraints may be violated by a
relatively small constant. We discuss the implication of this
violation in practice through evaluation.

The rest of the paper is organized as follows. We discuss
related work in Sec. II and introduce the system model in
Sec. III. Sec. IV presents our regularization-based online
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algorithm and the rounding algorithm is given in Sec. V.
Sec. VI discusses the complete online algorithm. Sec. VII
gives evaluation results, and Sec. VIII concludes the paper.

II. RELATED WORK

A. Enabling Technologies for NFV

There are recent works focusing on building practical
software-based networks with promising performance, e.g.,
CoMb [4], ClickOS [5] and NetVM [6]. For management
of VNF instances, Qazi et al. [7] implement an SDN-based
policy enforcement layer, SIMPLE, aiming at network traffic
steering within middleboxes. Claymen et al. [8] design an
orchestrator for network virtual node placement and network
service scheduling. A distributed orchestrater is implemented
for VNF creation and removal. FreeFlow, an NFV system
based on Split/Merge [9], enables transparent, balanced elas-
ticity for virtual middleboxes that can be scaled dynamically.
OpenNF [10] is a control panel architecture that achieves loss-
free and order-preserving flow state migration through observ-
ing VNF state changes and a two-phase scheme for network
forwarding state update. E2 [11] is a coherent framework for
NFV packet processing that performs scalable, application-
agnostic scheduling. The above studies pave the way for design
and implementation of VNF scaling algorithms.

B. Optimal Placement of VNFs

There have been some efforts on designing efficient algo-
rithms for optimal VNF placement. VNF-P [12] presents a re-
source allocation model for NFV systems in a hybrid network
system containing dedicated hardware and VNFs. Ghaznavi et
al. [13] propose a local search heuristic for geo-distributed
VNF chain placement aiming at minimal consumption of
physical resources. Cohen et al. [14] design an approximation
algorithm to minimize the distance cost between clients and
corresponding VNFs with theoretically proven performance.
Ma et al. [15] address the placement challenge for NFV
middleboxes with different dependency relations, e.g., totally-
ordered, partially-ordered, or non-ordered middlebox set. Two
heuristics are proposed considering scenarios where the flow
path is predetermined or not. However, these studies only per-
form one-time VNF placement without considering network
flow fluctuation.

Shi et al. [16] leverage MDP to model dynamic VNF
resource allocation and propose a heuristic algorithm based
on resource reliability prediction by Bayesian learning. Wang
et al. [17] design online algorithms for single VNF service
chain scaling and multiple VNF service chains scaling, re-
spectively. Jia et al. [18] develop an online VNF scaling
algorithm leveraging the regularization method and dependent
rounding technique. The algorithm is analyzed theoretically
with a worst-case performance guarantee. Fei et al. [19]
study proactive VNF provisioning considering a single type
of resource. The authors leverage an online learning method
to predict upcoming traffic and design an adaptive scaling
strategy for resource saving and cost minimization.

Our work serves as a complementary study to previous
work. We design a general online VNF scaling algorithm that

practically considers multiple resource constraints, network
traffic fluctuation and multiple VNF service chains.

III. SYSTEM MODEL

A. NFV System

Consider an NFV provider who rents computational re-
sources in a cloud data center to deploy S VNF service chains.
There are in total N types of VNFs available for constructing
service chains. For each service chain s, the VNF connectivity
is denoted by esn,n′ , with esn,n′ = 1 if VNF n is the predecessor
of VNF n′ in service chain s and esn,n′ = 0, otherwise,
∀n ∈ [N], n′ ∈ [N].1.

The system works in a time-slotted fashion, over a po-
tentially large span of T time slots. The duration of a time
slot typically ranges from minutes to hours. Input flow
rates to service chain s vary from time to time, denoted by
f s (t), t ∈ [T]. In addition, we consider that the flow rate may
change when traversing each VNF. We use λsn(t) to represent
the flow rate change ratio of VNF n in service chain s at t.
Let λ̄sn(t) denote the cumulative flow change ratio from the
first VNF to the immediate predecessor of VNF n, VNF n−,
in service chain s: λ̄sn = λ

s
n1 (t)λsn2 (t) . . . λs

n−
(t).

There are M servers and 2 types of key resources, e.g. CPU
and memory in the cloud datacenter. Without loss of generality,
we assume that the servers are homogeneous with a resource
capacity of Ck for resource k ∈ {0, 1}. Let Pn denote the
processing capability of one instance of VNF n ∈ [N], in
terms of the incoming flow rate that it can handle in a time
slot. We assume different flows belonging to different service
chains may share the same instance of the same type VNF n, if
they place VNF n in the same server, to minimize the number
of instances deployed. Each instance of VNF n requires cn,k
amount of resource k.

At the beginning of each time slot t, the NFV provider ad-
justs VNF deployment for all service chains. We use xm,n(t) to
denote VNF placement decision: xm,n(t) indicates the number
of VNF n deployed on server m at t. We use ysm,n,m′,n′ (t) as the
routing variable: ysm,n,m′,n′ (t) represents the amount of traffic
in service chain s forwarded from VNF n in server m to VNF
n′ in server m′ during time slot t.

B. Cost Structure

The goal of the NFV provider is to minimize the overall cost
of running the service chain to serve the flows. We consider
two types of costs.

1) Operating costs.: Let On be the operating cost for
running each instance of VNF n per time slot, e.g., for
renting a virtual machine or container with required resource
configuration for running the instance. The overall operational
cost for running all VNFs of the service chains at t is:

Coperate (t) =
∑

m∈[M]

∑
n∈[N ]

Onxm,n (t) (1)

1We use [X] to represent the set {1, 2, . . . , X } in the paper.
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2) Deployment costs.: We use Dn to denote the cost for
deploying VNF n anew in a server m, while there is no instance
of VNF n deployed in m in the previous time slot. The cost
is mainly due to the effort of copying the VNF’s image to
the server, and launching a VM/container with the image. The
cost is typically considered on the order of the operating cost
to run a server for a short period [20].

The total deployment cost in t can be formulated as:

Cdeploy (t) =
∑

m∈[M]

∑
n∈[N ]

Dn[xm,n (t) − xm,n (t − 1)]+ (2)

where [xm,n(t)− xm,n(t−1)]+ = max{0, xm,n(t)− xm,n(t−1)}.
The overall cost of the NFV system over the entire time

span T is hence:

Call =
∑
t∈[T ]

(Coperate (t) + Cdeploy (t)) (3)

We list important notation in this section in Table I.
The objective of our system is to minimize the overall cost,

Call . We can formulate the offline optimization problem as an
integer linear programming (ILP) as follows:

Minimize Call (4)

Subject to:

Pnxm,n (t) ≥
∑
s∈[S]

∑
m′∈[M]∪0

∑
n′∈[N ]∪0

esn′,ny
s
m′,n′,m,n (t),

∀m ∈ [M], n ∈ [N], t ∈ [T]
(4a)

∑
n∈[N ]

cn,k xm,n (t) ≤ Ck,∀m ∈ [M], k ∈ {0, 1}, t ∈ [T] (4b)

∑
m∈[M]

∑
n∈[N ]

es0,ny
s
0,0,m,n (t) ≥ fs (t),∀s ∈ [S], t ∈ [T] (4c)

∑
m′∈[M]

∑
n′∈[N ]

esn′,ny
s
m′,n′,m,n (t) =

λsn (t)
∑

m′∈[M]

∑
n′∈[N ]

esn,n′ y
s
m,n,m′,n′ (t),

∀s ∈ [S], n ∈ [N],m ∈ [M], t ∈ [T]

(4d)

xm,n (t) ∈ {0, 1, 2, . . .},∀m ∈ [M], n ∈ [N], t ∈ [T] (4e)

ysm,n,m′,n′ (t) ≥ 0,∀m,m′ ∈ [M], n, n′ ∈ [N], s ∈ [S], t ∈ [T] (4f)

Constraint (4a) ensure that NFV provider deploys enough
VNF instances for all flows of all service chains at each time
slot. Constraint (4b) makes sure that each resource required
by VNF instances at each server does not exceed the resource
capacity. In constraint (4c), ys0,0,m,n(t) denotes the incoming
traffic rate from the dummy VNF 0 on an imaginary server 0
directed to instances of VNF n on server m. Thus, constraint
(4c) ensures the deployed VNFs handle all the incoming
flow of the service chain. Constraint (4d) represents flow
conservation with flow change ratio in consideration.

TABLE I
NOTATION

S # of service chains
M # of servers
T # of time slots
N # of VNFs
On operating cost per instance of VNF n
Dn deployment cost for deploying

VNF n anew in a server
Pn processing capability per instance of VNF n
Ck capacity of resource k in each server
cn,k resource requirement for resource k

per instance of VNF n
λsn (t) flow change ratio of VNF n a for

service chain s at t
λ̄sn (t) accumulated flow change ratio from first VNF

in service chain s to VNF n at t
f s (t) flow rate of service chain s at t
es
n,n′ VNF n is the predecessor of VNF n′

in service chain s
un (t) minimal # of instances of VNF n at t
xm,n (t) # of VNF n deployed in m at t
dm,n (t) [xm,n (t) − xm,n (t − 1)]+
ys
m,n,m′,n′ (t) amount of traffic in service chain s forwarded

from VNF n in server m to VNF n′ in server m′ in t

C. A Simplified Offline Optimization Problem

By carefully studying the structure of the offline optimiza-
tion problem (4), we observe that the offline optimization
problem can be simplified through removing routing variable
ysm,n,m′,n′ (t) and calculating the minimal number of instances
for each VNF type in the entire system. We derive the minimal
number of VNF instances based on constraints (4a), (4c) and
(4d). In addition, we replace [xm,n(t) − xm,n(t − 1)]+ with
variable dm,n(t).

Theorem 1. The minimal number of instances of VNF n for
servicing all the incoming traffic across service chains at t is

un(t) =


∑
s∈[S]

λ̄sn (t) f s (t)

Pn


.

The detailed proof is given in Appendix A.
Therefore, we convert the original offline optimization prob-

lem (4) into the following simplified one:

Minimize
∑
t∈[T ]

∑
m∈[M]

∑
n∈[N ]

(Onxm,n (t) + Dndm,n (t)) (5)

Subject to: ∑
m∈[M]

xm,n (t) ≥ un (t),∀n ∈ [N], t ∈ [T] (5a)

∑
n∈[N ]

cn,k xm,n (t) ≤ Ck,∀m ∈ [M], k ∈ {0, 1}, t ∈ [T] (5b)

xm,n (t) − xm,n (t − 1) ≤ dm,n (t),∀m ∈ [M], n ∈ [N], t ∈ [T] (5c)

dm,n (t) ≥ 0,∀m ∈ [M], n ∈ [N], t ∈ [T] (5d)

xm,n (t) ∈ {0, 1, 2, . . .},∀m ∈ [M], n ∈ [N], t ∈ [T] (5e)
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Algorithm 1 Online Regularization-Based Fractional Algo-
rithm - ORFA
Input: x(t − 1), M, N,O,D,C, c, u, ε
Output: x∗(t)

1: Set x = 0;
2: for t ∈ [T] do
3: Observe u;
4: Leverage Interior Point Method to solve P̃(t);
5: return: optimal solutions to P̃(t): x(t);
6: end for

Theorem 2. The above offline VNF provisioning problem in
(5) is equivalent to the offline problem in (4).

The detailed proof is given in Appendix B
In the following sections, we relax the integrality constraints

of (5) and apply a novel regularization method to design
an efficient online algorithm for solving the relaxed linear
program. Then we design efficient rounding algorithms for
producing the integer solutions.

IV. FRACTIONAL ONLINE ALGORITHM VIA
REGULARIZAITON

A. Regularization Method

Let P denote the relaxed LP of (5). The dual program [21]
of P is donated by D. We derive D as follows:

Maximize
∑

n∈[N ]

∑
t∈[T ]

un (t)an (t) −
∑

m∈[M]

∑
k∈{0,1}

∑
t∈[T ]

Ckbm,k (t)

(6)
Subject to:

an (t) −
∑

k∈{0,1}
cn,kbm,k (t) − wm,n (t) + wm,n (t + 1) ≤ On,

∀m ∈ [M], n ∈ [N], t ∈ [T]
(6a)

wm,n (t) ≤ Dn,∀m ∈ [M], k ∈ {0, 1}, t ∈ [T] (6b)

an (t) ≥ 0,∀n ∈ [N], t ∈ [T] (6c)

bm,k (t) ≥ 0,∀m ∈ [m], k ∈ {0, 1}, t ∈ [T] (6d)

wm,n (t) ≥ 0,∀m ∈ [m], n ∈ [N], t ∈ [T] (6e)

where, an(t), bm,k (t) and wm,n(t) are Lagrangian dual vari-
ables associated with (5a), (5b), and (5c), respectively.

The main idea of our fractional online algorithm is to
remove the correlation of our objective function between time
slot t − 1 and t, and decouple the original offline problem into
multiple sub-problems, each of which is solvable at a time
slot. To this end, we lift constraint (5c) into our objective func-
tion with a smooth convex function, ∆(xm,n(t) | |xm,n(t − 1)),
through regularization technique [2]:

xm,n(t) ln
xm,n(t)

xm,n(t − 1)
+ xm,n(t − 1) − xm,n(t) (7)

This smooth convex function is the sum of the relative entropy
(xm,n(t) ln xm,n (t)

xm,n (t−1) ) and the movement cost in linear term.
To ensure the validity of our convex function, we need to
guarantee denominator of xm,n (t)

xm,n (t−1) is non-zero. Consequently,

we add a positive constant term ε
MN to xm,n(t) and xm,n(t−1)

in case xm,n(t − 1) = 0. The positive constant value ε should
be small enough, satisfying:

ε ≤
M N

e
Dn
On

ln Xmax−1
,∀n ∈ [N] (8)

where Xmax denotes the maximum number of VNF instances
of any type that can be deployed onto one server at the same
time. Moreover, we define a weight parameter η = ln(1+MN

ε ).
We multiply (7) with 1/η to normalize the deployment cost
by regularization.

Let P̃ represent the new problem in which we lift constraint
(5c) by adding the above constructed function into the objec-
tive function. Let P̃(t) denote the new sub-problem of P̃ at t.
Thus, we have P̃ =

∑
t∈[T ]

P̃(t). We present P̃(t) as follows:

Minimize
∑

m∈[M]

∑
n∈[N ]

Onxm,n (t) +
∑

m∈[M]

∑
n∈[N ]

Dn

η

×((xm,n (t) +
ε

M N
) ln

xm,n (t) + ε
MN

xm,n (t − 1) + ε
MN

+ xm,n (t − 1) − xm,n (t))

(9)

Subject to: ∑
m∈[M]

xm,n (t) ≥ un (t),∀n ∈ [N] (9a)

∑
n∈[N ]

cn,k xm,n (t) ≤ Ck,∀m ∈ [M], k ∈ {0, 1} (9b)

xm,n (t) ∈ {0, 1, 2, . . .},∀m ∈ [M], n ∈ [N] (9c)

B. Online Algorithm

We present our online algorithm that derives a fractional
solution to P in (5) in Alg. 1, ORFA, by solving P̃(t) at
each time step t, respectively. Since P̃(t) is a standard convex
problem, it can be optimally solved in polynomial time by
the interior point method [21]. At each time slot t, Alg. 1
calculates an optimal solution to P̃(t) which is independent of
the rounds prior to t−1. Based on Theorem 3, we observe that
Alg. 1 produces a feasible solution to P, the original relaxed
offline problem.

Theorem 3. Alg. 1, ORFA, produces a feasible solution of P
in polynomial time.

The detailed proof is given in Appendix C.

C. Competitive Analysis of ORFA

We analyze the competitive ratio achieved by Alg. 1 through
the primal-dual framework. We use P∗ and D∗ to denote the
optimal value of P and D. In addition, we abuse P and D
slightly to denote the objective value of P and D, respectively.
Strong duality guarantees that P∗ = D∗. Any feasible solution
D serves as a lower bound to P∗. Therefore, the key point is
to construct a feasible solution to D.

To derive a feasible solution to D, we explore P̃ and its
dual problem, D̃. We define the Lagrangian dual variables in
D̃ as ãn(t) and b̃m,k (t), associated with constraints (9a) and
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TABLE II
KKT OPTIMALITY CONDITION FOR P̃ AND D̃

∀n ∈ [N], t ∈ [T] :∑
m∈[M]

x∗m,n (t) − un (t) ≥ 0 (10.1)

a∗n (t)(
∑

m∈[M]
x∗m,n (t) − un (t)) = 0 (10.2)

∀m ∈ [m], k ∈ [K], t ∈ [T] :∑
n∈[N ]

cn,k x∗m,n (t) − Ck ≤ 0 (10.3)

b∗
m,k

(t)(
∑

n∈[N ]
cn,k x∗m,n (t) − Ck ) = 0 (10.4)

∀m ∈ [m], n ∈ [N], t ∈ [T] :
On +

Dn
η ln x∗m,n (t)+ ε

MN

x∗m,n (t−1)+ ε
MN
− a∗n (t)+∑

k∈[K]
cn,kb∗

m,k
(t) ≥ 0 (10.5)

x∗m,n (t)×

(On +
Dn
η ln x∗m,n (t)+ ε

MN

x∗m,n (t−1)+ ε
MN
− a∗n (t)+∑

k∈[K]
cn,kb∗

m,k
(t)) = 0 (10.6)

(9b), respectively. The optimal solution to P̃ must satisfy the
KKT condition [21]:

KKT Optimality Condition (10)

presented in Table II.
Solving the KKT Optimality Condition, a solution to D can

be derived:

an(t) = a∗n(t), bm,k (t) = b∗m,k (t),

wm,n(t) =
Dn

η
ln

1 + ε
MN

x∗m,n(t − 1) + ε
MN

Theorem 4. The dual solution we obtain is a feasible solution
to D.

The detailed proof is given in Appendix D.
Based on Theorem 4, we now compare the total cost

using online algorithm ORFA with that of the offline optimal
algorithm. We observe that our cost is comprised of operating
costs and deployment costs. We derive the competitive ratio
in terms of each cost to obtain the overall competitive ratio.

Lemma 1. The operating cost of P is no larger than D.

The detailed proof is given in Appendix E.

Lemma 2. The deployment cost of P is no larger than ln(1+
MN
ε )(1 + ε

MN ) times of D.

The detailed proof is given in Appendix F.

Theorem 5. Our online algorithm ORFA achieves a 1+ ln(1+
MN
ε )(1 + ε

MN )-ratio compared to the offline optimum, P∗, of
the original problem in (5).

Proof. Taking the ratios in Lemma (1) and (2), we have:

P(OFRA)
D

≤ 1 + ln(1 +
M N
ε

)(1 +
ε

M N
)

Thus, we have:

P(OFRA)

≤ (1 + ln(1 +
M N
ε

)(1 +
ε

M N
))D

≤ (1 + ln(1 +
M N
ε

)(1 +
ε

M N
))P∗

�

V. ROUNDING ALGORITHM BASED ON LINEAR ALGEBRA
AND RANDOMIZATION

A. Rounding Scheme

We now present a rounding algorithm, RA, that rounds the
fractional solution x∗m,n(t) obtained by Alg. 1 in Sec. IV to an
integral solution denoted by x̄m,n(t). We design the rounding
algorithm based on [3].

Our rounding algorithm is composed of two phases: Phase 1
applies a linear-algebra-based rounding technique that reduces
the number of fractional variables to construct a simple
bipartite graph, and Phase 2 leverages dependent rounding
technique [22] to compute the final solution. Each iteration h
is in either Phase 1 or Phase 2. The value of xm,n(t) after
iteration h is denoted by xhm,n(t); the fractional part of xhm,n(t)
is represented as ρhm,n(t), i.e., ρhm,n(t) = xhm,n(t) − bxhm,n(t)c.

The algorithm, RA, starts from Phase 1 and then goes into
Phase 2. At the beginning of iteration h + 1, let a VNF n be
called a floating VNF, if any instance of VNF n is currently
assigned fractionally to more than one server, i.e., ρhm,n(t) ∈
(0, 1) for more than one m. We call a server m a floating
server if it currently has at least one floating VNF assigned to
it. In addition, a server is a key server if it is assigned with
no less than four floating VNFs. We use N ′, Mf and M ′ to
represent the set of floating VNFs, floating servers and key
servers at the current iteration. The set of currently unrounded
pairs is expressed as V , i.e., V = {(m, n) : ρhm,n(t) ∈ (0, 1)}.
The current set of unrounded pairs between floating VNFs
and key servers is denoted as V ′, i.e., V ′ = {(m, n) : ρhm,n(t) ∈
(0, 1),m ∈ M ′, n ∈ N ′}.

Now we discuss the two phases in detail.
Phase 1. The current iteration is in Phase 1 if |V ′ | > |N ′ | +
2|M ′ |. We consider the following linear system:∑

m∈[M′]
xm,n(t) =

∑
m∈[M′]

xhm,n(t),∀n ∈ N ′ (11)

∑
n∈N ′

cn,k xm,n(t) =
∑
n∈N ′

cn,k xhm,n(t),∀m ∈ M ′, k ∈ {0, 1} (12)

We use Ax = b to represent the above linear system. By
ensuring |V ′ | > |N ′ | + 2|M ′ |, we observe that the number of
variables, |V ′ |, exceeds the number of constraints. Thus, we
can find in polynomial time a non-zero vector r that satisfies
Ar = 0. Furthermore, we calculate two positive values α and
β that satisfy:
• All entries of ρ + αr and ρ − βr are in [0,1];
• At least one entry in ρ + αr and ρ − βr is in {0,1}.
Eventually, with probability β

β+α , RA sets xh+1
m,n (t) =

xhm,n(t) + αr,∀(m, n) ∈ V ′; with probability α
β+α , RA sets
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xh+1
m,n (t) = xhm,n(t) − βr,∀(m, n) ∈ V ′. ∀(m, n) < V, xh+1

m,n (t) =
xhm,n(t).

We observe that while |V ′ | > |N ′ |+2|M ′ |, we can find such
non-zero vector r and perform the above rounding process ac-
cordingly. During the process, the numbers of unrounded pairs,
floating VNFs and key servers decrease. Once we encounter
|V ′ | ≤ |N ′ | + 2|M ′ |, RA transits into Phase 2. Otherwise,
RA stays in Phase 1 until all the fractional assignments are
eliminated.
Phase 2. If the current iteration is in Phase 2, we construct
a bipartite graph G = (Mf , N ′, E), where we set up an edge
(m, n) iff (m, n) ∈ V . RA leverages Depth-First-Search to find
an even circle2 or a maximal path3 in G, and partitions the
edges in it into two distinct matchings Ψ1 and Ψ2, e.g. if (m, n)
is in Ψ1, than the next edge (m′, n) must be in Ψ2.

Define

α = min{γ > 0 : ((∃(m, n) ∈ Ψ1 : ρhm,n (t) + γ = 1)

∨(∃(m, n) ∈ Ψ2 : ρhm,n (t) − γ = 0))}

β = min{γ > 0 : ((∃(m, n) ∈ Ψ1 : ρhm,n (t) − γ = 0)

∨(∃(m, n) ∈ Ψ2 : ρhm,n (t) + γ = 1))}

The rounding step is as follows:
With probability β

β+α , set xh+1
m,n (t) = xhm,n(t) + α,∀(m, n) ∈

Ψ1, and xh+1
m,n (t) = xhm,n(t) − α,∀(m, n) ∈ Ψ2;

With probability α
β+α , set xh+1

m,n (t) = xhm,n(t) − β,∀(m, n) ∈
Ψ1, and xh+1

m,n (t) = xhm,n(t) + β,∀(m, n) ∈ Ψ2.
We describe the complete rounding algorithm, RA, in

Alg. 2.

VI. THE COMPLETE ONLINE ALGORITHM

We present the complete online algorithm in Alg. 3.

A. Competitive Analysis of COA

Now we analyze the competitive ratio obtained by Alg. 3.

Lemma 3. RA ensures E[x̄m,n(t)] = x∗m,n(t),∀m ∈ [M], n ∈
[N], t ∈ [T].

The detailed proof is given in Appendix G.
Let P̄(COA) denote the objective value of original problem

(5) obtained by Alg. 3. In addition, the operational costs and
deployment cost through Alg. 3 are expressed as P̄(operate)
and P̄(deploy), respectively.

Lemma 4. E[P̄(operate)] is no larger than P(OFRA).

The detailed proof is given in Appendix H.

Lemma 5. E[P̄(deploy)] is no larger than Ω times of
P(OFRA), where Ω = maxn∈[N ]{

Dn

On
}.

The detailed proof is given in Appendix I.

Theorem 6. E[P̄(COA)] is no larger than (1+ln(1+ MN
ε )(1+

ε
MN ))(1 + Ω) times the offline optimal objective value P∗ of
the original problem (5).

2An even circle is a circle containing an even number of edges.
3A maximal path is a non-circle path with the maximal number of edges

Algorithm 2 Rounding Algorithm - RA
Input: x∗(t), M, N,O,D,C, c
Output: x̄(t)

1: Set x = x∗(t)
2: Set phase = 1;
3: while V , ∅ do
4: if |V ′ | ≤ |N ′ | + 2|M ′ | and phase == 1 then
5: phase = 2;
6: end if
7: if phase == 1 then
8: Obtain the non-zero vector r based on linear system

(11) and (12);
9: Calculate α and β according to r;

10: With probability β
β+α , set xm,n(t) = xm,n(t) +

αr,∀(m, n) ∈ V ;
11: With probability α

β+α , sets xm,n(t) = xm,n(t) −
βr,∀(m, n) ∈ V ;

12: Removing (m, n) from V if xm,n(t) is integer;
13: else
14: Set phase = 2;
15: Construct the bipartite graph G = (Mf , N ′, E);
16: Leverage depth-first-search algorithm to find the

maximum path / a even circle in G and partition the
edges in it into to matchings, Ψ1 and Ψ2;

17: Set ρm,n(t) = xm,n(t) − bxm,n(t)c,∀(m, n) ∈ V ;
18: Define

α = min{γ > 0 : ((∃(m, n) ∈ Ψ1 : ρm,n (t) + γ = 1)
∨(∃(m, n) ∈ Ψ2 : ρm,n (t) − γ = 0))}

β = min{γ > 0 : ((∃(m, n) ∈ Ψ1 : ρm,n (t) − γ = 0)
∨(∃(m, n) ∈ Ψ2 : ρm,n (t) + γ = 1))}

19: With probability β
β+α , set xm,n(t) = xm,n(t) +

α,∀(m, n) ∈ Ψ1, and xm,n(t) = xm,n(t) −α,∀(m, n) ∈
Ψ2;

20: With probability α
β+α , set xm,n(t) = xm,n(t) −

β,∀(m, n) ∈ Ψ1, and xm,n(t) = xm,n(t)+ β,∀(m, n) ∈
Ψ2.

21: Removing (m, n) from V if xm,n(t) is integer;
22: end if
23: end while
24: Set x̄(t) = x

Algorithm 3 Complete Online Algorithm - COA
Input: M, N,O,D,C, c
Output: x̄

1: Set x̄(0) = 0;
2: Initialize ε ;
3: for t ∈ [T] do
4: x∗(t) = ORFA(x̄(t − 1), M, N,O,D,C, c, u, ε);
5: x̄(t) = RA(x∗(t), M, N,O,D,C, c);
6: end for

Proof.
E[P̄(COA)] = E[P̄(operate)] + E[P̄(deploy)]

≤ (1 +Ω)P(OFRA)

≤ (1 + ln(1 +
M N
ε

)(1 +
ε

M N
))(1 +Ω)P∗
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B. Constraint Violation Analysis of COA

In the analysis of constraint violation, we make the follow-
ing assumption:

Assumption 1.

On

Dn
≥ ln

(
XmaxM N

ε
+ 1

)
/ ln

(
M N
ε
+ 1

)
,∀n ∈ [N]

Typical On

Dn
is within [5, 10] since deployment cost is on

the order of the cost to run a VNF instance for several
minutes [20]. Assuming On

Dn
is 5 and Xmax is at most 20,

we can safely set ε
MN to 0.1 to satisfy the above assumption.

Assumption 1 ensures the objective function (9) is monotoni-
cally non-decreasing and paves the way for Lemma 6.

Lemma 6. Every VNF that needs to be rounded is assigned
fractionally to more than one server.

The detailed proof is given in Appendix J.

Lemma 7. In any iteration of Phase 2, any floating server
has at most four floating VNFs assigned fractionally to it.

The detailed proof is given in Appendix K.

Lemma 8. Suppose the first iteration entering Phase 2 is h.
Our complete online algorithm, Alg. 3, ensures:∑

n∈N ′

ρ̄m,n(t) ∈ {b
∑
n∈N ′

ρhm,n(t)c, d
∑
n∈N ′

ρhm,n(t)e},∀m ∈ [M]

∑
m∈M′

ρ̄m,n(t) ∈ {b
∑

m∈M′

ρhm,n(t)c, d
∑

m∈M′

ρhm,n(t)e},∀n ∈ [N]

where ρ̄m,n(t) denotes the final rounding result of ρhm,n(t)
produced by RA.

The detailed proof is given in Appendix L.

Theorem 7. For every floating VNF, we have with probability
exactly 1: ∑

m∈[M]
x̄m,n(t) = un(t)

The detailed proof is given in Appendix M.

Theorem 8. For every floating server, we have with probabil-
ity exactly 1:∑
n∈[N ]

cn,k x̄m,n(t) ≤ Ck + 2 max
n∈[N ]

cn,k − min
n∈[N ]

cn,k,∀k ∈ {0, 1}

The detailed proof is given in Appendix N.
In conclusion, Alg. 3 ensures enough VNF instances for

flow processing, with the resource capacity constraints violated
by at most 2 maxn∈[N ],k∈{0,1} cn,k −minn∈[N ],k∈{0,1} cn,k .
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VII. PERFORMANCE EVALUATION

A. Simulation Setup

System settings. We evaluate our online algorithm, Alg. 3,
through trace-driven simulation. We set the whole period to
be five days and each time slot lasts one hour, i.e. 120 time
slots in total. Traffic rates to the service chain are generated
based on real-world traffic statistics from Huawei Inc. The
peak load is 720Mpbs appearing between 9 and 11 PM, and
the peak-to-mean ratio (PMR) is 1.56.

Following the CPU requirements and process capacity pre-
sented in [23], we summaries the VNF configurations in
Table III. We identify CPU and memory as the key resources.
In addition, we set the memory requirements according to
the respective VM instances provided by Amazon EC2 [24].
Change ratios for Firewall and Intrusion Detection System
(IDS) are between 0.8 and 1, and change ratios for Network
Address Translation (NAT) and Proxy remain 1. The operating
costs per hour are equal to the Amazon on-demand prices
for respective VM instances [25]. As the deployment cost is
considered on the order of the operating cost to run a server
for several minutes [20] and one time slot is one hour, we set
On

Dn
to be 10.

The number of servers is set to 200. According to Amazon
EC2, each vCPU is a thread of an Intel Xeon core and each
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TABLE III
VNF CONFIGURATIONS

VNF vCPU Mem Instance Capacity Change
Type Ratio

NAT 2 8GB m4.large 900Mbps 1.0
Firewall 4 16GB m4.xlarge 900Mbps 0.8-1.0
Proxy 4 16GB m4.xlarge 900Mbps 1.0
IDS 8 32GB m4.2xlarge 600Mbps 0.8-1.0

core holds at most two threads [24]. Thus, we set the vCPU
capacity of a server to be 2×24 units and the memory capacity
to be 256GB. The base setting is 100 service chains, each
containing 2-4 VNFs randomly chosen from the four VNF
types. Parameter ε

MN is fixed to 0.1.

B. Performance of COA

We evaluate the competitive ratio achieves by COA, which
is the ratio between the overall cost by COA and the offline
optimal cost computed exactly by the CVXPY optimizer using
Python. The results presented in Fig. 1-5 are obtained in
scenarios without resource over-utilization.
Baselines.We propose the following baselines for comparison:
• ORFA: Performance of using fractional solution obtained

by ORFA.
• IR: Performance of using a randomized independent

rounding algorithm that rounds the fractional solution of
ORFA to its nearest integral solution. The performance
is counted only if the rounded solution is feasible.

Comparasion. We compare the competitive ratio achieved by
COA with the baselines in different settings. We observe COA
presents stable and near-optimal performance across various
scenarios.

1) Different numbers of service chains: Intuitively, a larger
number of service chains results in a large amount of network
traffic, which needs more VNF instances to process. Besides,
the proportion of VNFs will also change more dramatically,
yielding possible huge deployment costs when poorly sched-
uled. However, as Fig. 1 illustrated, COA exhibits stable
performance as we vary the number of service chains from
50 to 100. COA achieves competitive ratios close to those by
ORFA and significantly outperforms IR. Competitive ratios
by COA are nearly 1 and are notably less than the theoretical
expected upper bound which is 4.00 in our setting.

2) Different numbers of servers: We evaluate the impact of
different server numbers on COA performance in Fig. 2. As the
number of servers decreases, re-scheduling of computational
resources for current VNF instances becomes more frequent.
Again, we observe that COA handles the situation well with
satisfying competitive ratios that are close to 1.

3) Different Dn/On: We further investigate how different
ratios of deployment costs to operating costs affect the perfor-
mance of COA in Fig. 3. In accordance with the theoretical
analysis, we observe an apparent upward trend in competitive
ratio as Dn

On
grows. However, simulation results demonstrate

huge gaps between the competitive ratios and the theoretical
upper bounds. The gaps are due to that the theoretical upper

bounds only happen in worst cases which are rare in realistic
scenarios.

4) Different PMR: Fig. 4 shows the performance of COA
under different PMR. We fix the peak flow rate and reduce
the mean flow rate to simulate different PMRs. A larger PMR
implies a more dramatic traffic fluctuation in the NFV system.
Nonetheless, our COA performs properly under different levels
of PMR.

5) Different ε/(M N ): Theorem 6 shows that ε
MN influ-

ences the theoretical upper bound. Therefore, we evaluate the
performance of COA with different ε

MN in Fig. 5. We observe
no obvious change in competitive ratio as we vary ε

MN from
0.01 to 1.
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Fig. 7. Percentage: unserved flow rate

TABLE IV
BACKUP SERVERS

# of # of # of # of
Chains Backup Servers Chains Backup Servers

100 0 500 2
200 1 600 2
300 1 700 2
400 1 800 3

Over-utilizing Resources. We are now turning our attention
to over-utilizing resources. We fix the number of servers to
100 while varying the number of flows from 200 to 800. The
results are summarized in Fig. 6 and Fig. 7.

Fig. 6 presents the percentage of resource-overuse time
slots. We can observe an obvious upward trend as incoming
flow traffic raises. This is consistent with our intuition: as
the flow traffic becomes larger, the probability for resource
overuse increases. However, the simulation results show that
most of the time slots do not suffer from violation of resource
capacity. Moreover, most of the overuse situations occur
during peak hours.

During the experiment, we observe that CPU is the bot-
tleneck for our NFV system. However, the maximum CPU
violation on a single server is at most 8 vCPUs, while our
theoretical upper bound for CPU violation is 14 vCPUs.
To tackle such resource over-utilization, our system removes
some VNF instances to meet the resource constraints at the
price of allowing some network flows to be unserved. Fig. 7
demonstrates the percentage of unserved flow rate. A black
dot represents the average percentage; the thick lines indicate
the standard errors of the percentage across the respective
group of service chains, while the thinner grey lines show
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the maximum and minimum unserved flow percentages across
these chains. We see that the percentage of unserved flow rate
is very small. When the number of service chains is 800, the
unserved percentage in a single time slot is at most 3.40%,
and the average unserved percentage remains 1.29%. Thus,
we can effectively solve such a dilemma by adding a small
amount of back-up resources catering for the unserved network
traffic, i.e., deploying additional VNF instances on backup
servers. The numbers of backup servers needed at different
total numbers of service chains are presented in Table IV. We
observe that deploying three backup servers is sufficient to
handle unserved flows from up to 800 service chains.

VIII. CONCLUSION

While the fast development of NFV enables flexible network
function deployment, new challenges are introduced that re-
quire a more dynamic algorithm for VNF scaling. Our work
targets online VNF scaling in a cloud data center under multi-
resource constraints. We present a novel online VNF scaling
algorithm based on the regularization technique and dependent
rounding. Our approach achieves upper-bounded competitive
ratio and resource capacity constraint violation, according to
thorough theoretical analysis. Trace-driven simulation further
verifies the analytical results and demonstrates good perfor-
mance of our method.

APPENDIX A
PROOF OF THEOREM 1

Due to the flow conservation constraints (4c) and (4d),
the total incoming flow rate to all VNF n instances is∑
s∈[S]

λ̄sn(t) f s (t). Since the process capability of one VNF

n instance is Pn, the minimal instance number required is

∑
s∈[S]

λ̄sn (t) f s (t)

Pn


.

APPENDIX B
PROOF OF THEOREM 2

We derive constraint (5a) from constraints (4a), (4c) and
(4d). Therefore, any feasible solution to problem (4) is a
feasible solution to problem (5). On the other hand, given any
feasible solution to problem (5), we can route total network
flow to each type of VNF proportion to the number of VNF
instances to each server. In these way, we can guarantee the
feasibility of constraints (4a), (4c) and (4d) and obtain a
feasible solution to problem (4). In conclusion, problem (4)
and problem (5) share the same objective function and any
feasible solution to one problem corresponds to one feasible
solution to the other problem. Therefore, the two problem is
equivalent.

APPENDIX C
PROOF OF THEOREM 3

Proof. P̃(t) is solved through Interior Point Method in poly-
nomial time [21]. We observe that constraints (9a) and (9b) in
P̃(t) equal to (5a) and (5b) in P. In addition, constraints (5c)
in P can be easily met by calculate dm,n(t) based on xm,n(t).
Thus, we show that each solution to P̃ is a feasible solution
to P. �

APPENDIX D
PROOF OF THEOREM 4

Proof. For (6a), we have:

wm,n(t + 1) − wm,n(t) = −
Dn

η
ln

xm,n(t) + ε
MN

xm,n(t − 1) + ε
MN

≤ On − an(t) +
∑

k∈{0,1}
cn,kbm,k (t)

where the first inequality is due to (10.5).
For (6b), we have:

wm,n(t) =
Dn

η
ln

1 + ε
MN

x∗m,n(t − 1) + ε
MN

≤ Dn

since x∗m,n(t − 1) ≥ 0.
Thus, we show that the dual variables satisfy D. �

APPENDIX E
PROOF OF LEMMA 1

Proof.∑
t∈[T ]

Coperate (t) =
∑
t∈[T ]

∑
m∈[M]

∑
n∈[N ]

Onxm,n (t)

=
∑
t∈[T ]

(
∑

m∈[M]

∑
n∈[N ]

an (t)xm,n (t)

−
∑

m∈[M]

∑
n∈[N ]

∑
k∈{0,1}

cn,kbm,k (t)xm,n (t)

−
∑

m∈[M]

∑
n∈[N ]

Dnxm,n (t)
η

× ln
xm,n (t) + ε

MN

xm,n (t − 1) + ε
MN

) (13)

Equality (13) follows from condition (10.6). Due to condi-
tions (10.2) and (10.4), we ensure:∑

t∈[T ]

∑
m∈[M]

∑
n∈[N ]

an (t)xm,n (t) =
∑
t∈[T ]

∑
n∈[N ]

un (t)an (t) (14)

∑
t∈[T ]

∑
m∈[M]

∑
n∈[N ]

∑
k∈{0,1}

cn,kbm,k (t)xm,n (t) =∑
t∈[T ]

∑
m∈[M]

∑
k∈{0,1}

Ckbm,k (t)
(15)

Furthermore, we have:∑
t∈[T ]

∑
m∈[M]

∑
n∈[N ]

Dnxm,n (t)
η

ln
xm,n (t) + ε

MN

xm,n (t − 1) + ε
MN

=

∑
m∈[M]

∑
n∈[N ]

Dn

η
(
∑
t∈[T ]

(xm,n (t) +
ε

M N
) ln

xm,n (t) + ε
MN

xm,n (t − 1) + ε
MN

−
∑
t∈[T ]

ε

M N
ln

xm,n (t) + ε
MN

xm,n (t − 1) + ε
MN

)

(16)

Following by telescopic sum and the fact that:∑
i

ai log(
ai
bi

) ≥ (
∑
i

ai) log(
∑

i ai∑
i bi

)

and:
a − b ≤ a ln(a/b)



10

Since xm,n(0) = 0, We have:

−
∑
t∈[T ]

ε

M N
ln

xm,n (t) + ε
MN

xm,n (t − 1) + ε
MN

= −
ε

M N
ln

xm,n (T ) + ε
MN

xm,n (0) + ε
MN

≥ −
ε

M N
ln

xm,n (T ) + ε
MN

xm,n (0) + ε
MN

= −(xm,n (0) +
ε

M N
) ln

xm,n (T ) + ε
MN

xm,n (0) + ε
MN

≥ xm,n (0) − xm,n (T ) (17)

and:

∑
t∈[T ]

(xm,n (t) +
ε

M N
) ln

xm,n (t) + ε
MN

xm,n (t − 1) + ε
MN

≥ (
∑
t∈[T ]

(xm,n (t) +
ε

M N
)) ln

∑
t∈[T ]

(xm,n (t) + ε
MN )∑

t∈[T ]
(xm,n (t − 1) + ε

MN )

≥
∑
t∈[T ]

(xm,n (t) +
ε

M N
) −

∑
t∈[T ]

(xm,n (t − 1) +
ε

M N
)

= xm,n (T ) − xm,n (0) (18)

Plug (17) and (18) into (13), we arrive at the result that:

∑
t∈[T ]

Coperate (t)

≤
∑
t∈[T ]

∑
n∈[N ]

un (t)an (t) −
∑
t∈[T ]

∑
m∈[M]

∑
k∈{0,1}

Ckbm,k (t)

= value of D (19)

Therefore, we prove that operating cost in P is no larger
than D. �

APPENDIX F
PROOF OF LEMMA 2

Proof.

Cdeploy (t) = η
∑

m∈[M]

∑
n∈[N ]

∑
xm,n (t)>xm,n (t−1)

Dn

η
(xm,n (t) − xm,n (t − 1))

≤ η
∑

m∈[M]

∑
n∈[N ]

∑
xm,n (t)>xm,n (t−1)

((xm,n (t) +
ε

M N
)

Dn

η
ln

xm,n (t) + ε
MN

xm,n (t − 1) + ε
MN

(20)

= η
∑

m∈[M]

∑
n∈[N ]

∑
xm,n (t)>xm,n (t−1)

((1 +
ε

M N xm,n (t)
)

xm,n (t)(−On + an (t) −
∑

k∈{0,1}
cn,kbm,k (t)) (21)

≤ η(1 +
ε

M N
)

∑
m∈[M]

∑
n∈[N ]

∑
xm,n (t)>xm,n (t−1)

(xm,n (t)(−On + an (t) −
∑

k∈{0,1}
cn,kbm,k (t)) (22)

≤ η(1 +
ε

M N
)

∑
m∈[M]

∑
n∈[N ]

(xm,n (t)(an (t) −
∑

k∈{0,1}
cn,kbm,k (t))) (23)

= η(1 +
ε

M N
)

∑
m∈[M]

∑
n∈[N ]

(xm,n (t)an (t) −
∑

k∈{0,1}
xm,n (t)cn,kbm,k (t)) (24)

Inequality (20) follows as a − b ≤ a ln(a/b). Equality (21)
follows from condition (10.6) as xm,n(t) > xm,n(t − 1) ≥ 0.
Inequality (22) follows as xm,n(t−1) ≥ 1. To prove inequality
(23), we consider other three conditions:

• xm,n(t) = xm,n(t − 1)

In these case, we have:

−On + an (t) −
∑

k∈{0,1}
cn,kbm,k (t) =

Dn

η
ln

xm,n (t) + ε
MN

xm,n (t − 1) + ε
MN

= 0

Since On > 0, we have an(t) −
∑

k∈{0,1}
cn,kbm,k (t) > 0

• xm,n(t) < xm,n(t − 1) and xm,n(t) = 0.

Then xm,n(t)(an(t) −
∑

k∈{0,1}
cn,kbm,k (t)) = 0.

• xm,n(t) < xm,n(t − 1) and xm,n(t) > 0.
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We have:

an (t) −
∑

k∈{0,1}
cn,kbm,k (t) = On +

Dn

η
ln

xm,n (t) + ε
MN

xm,n (t − 1) + ε
MN

≥ On +
Dn

η
ln

xm,n (t)
xm,n (t − 1)

(25)

≥ On +
Dn

η
ln

1
Xmax

(26)

= On −
Dn

ln(1 + MN
ε )

ln Xmax

≥ On −
Dn

ln(1 + MN
MN

e

Dn
On

ln Xmax−1

)

× ln Xmax (27)
= 0

Inequality (25) holds as a+c
b+c ≥

a
b , b > a > 0, c > 0. Inequal-

ity (26) follows when xm,n(t) = 1 and xm,n(t − 1) = Xmax .
Inequality (27) follows as we substitute ε with its upper-bound.

Consider all three above conditions, we show inequality (23)
holds.

Now we first consider term
∑

m∈[M]

∑
n∈[N ]

xm,n(t)an(t). If

an(t) = 0, we have:∑
m∈[M]

xm,n(t)an(t) = un(t)an(t)

And if an(t) > 0, by condition (10.2), we ensure∑
m∈[M]

xm,n(t) = un(t),∀n ∈ [N]. Therefore, we obtain that:∑
m∈[M]

xm,n(t)an(t) = un(t)an(t)

Combining the above two equation, we have:∑
m∈[M]

∑
n∈[N ]

xm,n (t)an (t) =
∑

n∈[N ]
un (t)an (t),∀t ∈ [T] (28)

Then, we consider term∑
m∈[M]

∑
n∈[N ]

∑
k∈{0,1}

xm,n(t)cn,kbm,k (t). If bm,k (t) = 0, we

see: ∑
n∈[N ]

xm,n(t)cn,kbm,k (t) = Ckbm,k (t)

Otherwise, if bm,k (t) > 0, by condition (10.4), we have∑
n∈[N ]

cn,k x∗m,n(t) = Ck . Based on it, we obtain that:∑
n∈[N ]

xm,n(t)cn,kbm,k (t) = Ckbm,k (t)

Take the above two conditions into consideration, we arrive
at the conclusion that:

(24) = η(1 +
ε

M N
)(

∑
n∈[N ]

un (t)an (t) −
∑

m∈[M]

∑
k∈{0,1}

Ckbm,k (t))

(29)

Summing up (29) we have:∑
t∈[T ]

Cdeploy (t) = η(1 +
ε

M N
)

∑
t∈[T ]

×(
∑

n∈[N ]
un (t)an (t) −

∑
m∈[M]

∑
k∈{0,1}

Ckbm,k (t))
(30)

which is η(1 + ε
MN ) times of D. Therefore, we show that

deployment cost of P is no larger than ln(1 + MN
ε )(1 + ε

MN )
times of D. �

APPENDIX G
PROOF OF LEMMA 3

Proof. We considered the two phases respectively. If the
current iteration h + 1 is in Phase 1, we have:

E[(xh+1
m,n (t))] =

β

β + α
(xhm,n (t) + αrm,n) +

α

β + α
(xhm,n (t) − βrm,n)

= xhm,n (t)

If the current iteration h + 1 is in Phase 2 and xh+1
m,n (t) is in

the matchings, we have:

E[(xh+1
m,n (t))] =

β

β + α
(xhm,n (t) + α) +

α

β + α
(xhm,n (t) − β)

= xhm,n (t)

or

E[(xh+1
m,n (t))] =

β

β + α
(xhm,n (t) − α) +

α

β + α
(xhm,n (t) + β)

= xhm,n (t)

In conclusion, the expectation of each variable xm,n(t) re-
mains the same throughout RA. �

APPENDIX H
PROOF OF LEMMA 4

Proof.

E[P̄(operate)] = E[
∑
t∈[T ]

∑
m∈[M]

∑
n∈[N ]

On x̄m,n (t)]

=
∑
t∈[T ]

∑
m∈[M]

∑
n∈[N ]

OnE[x̄m,n (t)]

=
∑
t∈[T ]

∑
m∈[M]

∑
n∈[N ]

Onx∗m,n (t)

≤ P(ORF A)

The second equality is due to Lemma 3. �

APPENDIX I
PROOF OF LEMMA 5

Proof.

E[P̄(deploy)] = E[
∑
t∈[T ]

∑
m∈[M]

∑
n∈[N ]

Dn x̄m,n (t)]

=
∑
t∈[T ]

∑
m∈[M]

∑
n∈[N ]

DnE[x̄m,n (t)]

=
∑
t∈[T ]

∑
m∈[M]

∑
n∈[N ]

Dnx∗m,n (t)

≤
∑
t∈[T ]

∑
m∈[M]

∑
n∈[N ]

max
n∈[N ]

{
Dn

On
}Onx∗m,n (t)

≤
∑
t∈[T ]

∑
m∈[M]

∑
n∈[N ]

ΩOnx∗m,n (t)

≤ ΩP(ORF A)

�
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APPENDIX J
PROOF OF LEMMA 6

Proof. We calculate the partial derivative of objective function
Fobj of problem (9) with respect to each variable xm,n(t)

∂Fobj

∂xm,n(t)
= On +

Dn

η
ln

xm,n(t) + ε
MN

xm,n(t − 1) + ε
MN

Thus, we have:

∂Fobj

∂xm,n(t)
= On +

Dn

η
ln

xm,n(t) + ε
MN

xm,n(t − 1) + ε
MN

= Dn(
On

Dn
+

1
η

ln
xm,n(t) + ε

MN

xm,n(t − 1) + ε
MN

)

≥
Dn

η
(ln(

XmaxM N
ε

+ 1) + ln
xm,n(t) + ε

MN

xm,n(t − 1) + ε
MN

)

where the inequality is because of Assumption 1.
Furthermore, we have:

ln
xm,n(t) + ε

MN

xm,n(t − 1) + ε
MN

≥ ln
ε

MN

Xmax +
ε

MN

Therefore, we observe:

∂Fobj

∂xm,n(t)
≥

Dn

η
(ln(

XmaxM N
ε

+ 1) + ln
xm,n(t) + ε

MN

xm,n(t − 1) + ε
MN

)

≥
Dn

η
(ln(

XmaxM N
ε

+ 1) + ln
ε

MN

Xmax +
ε

MN

)

= 0

In conclusion, we see that Fobj is always increasing as
each variable xm,n(t) increases. Thus, constraint (9a) is always
tight, i.e., constraint (9a) becomes equality constraint. If con-
straint (9a) is not tight, we can always remove the overflowing
part,i.e.,

∑
m∈[M]

xm,n(t) − un(t), to reduce objective value.

Now, if there exists such VNF n needing to be rounded is
assigned fractionally to exactly one server, then

∑
m∈[M]

xm,n(t)

is fractional, which contradicts the above conclusion. Thus,
we prove the correctness of Lemma 6. �

APPENDIX K
PROOF OF LEMMA 7

Proof. We start by considering the first iteration entering
Phase 2. At the iteration, we have |V ′ | ≤ |N ′ |+2|M ′ |. Also we
observe that |V ′ | ≥ 2|N ′ | due to Lemma 6 and |V ′ | ≥ 4|M ′ |
based on definition. Leveraging above observations, we have
|V ′ | = 2|N ′ | = 4|M ′ |. Thus, we ensure that each key server
is assigned with exactly 4 floating VNFs. Every other floating
server is with less than 4 floating VNFs. In the following
iterations, the number of floating VNFs assigned to each
floating servers only reduces. �

APPENDIX L
PROOF OF LEMMA 8

Proof. For each floating server or floating VNF, if it only has
one floating edge, it is easy to observe that Lemma 8 holds.
Now, suppose the floating server or floating VNF has at least
two floating edges. If the floating server or VNF is in the

path/even circle, then it must has exactly two floating edges in
it. And there must be one edge in Ψ1 and the other edge in Ψ2.
Since the edge in Ψ1 increases/decreases the same amount as
the edge in Ψ2 decreases/increases, the overall amount remains
the same. Thus, we show that Lemma 8 holds. �

APPENDIX M
PROOF OF THEOREM 7

Proof. Since every iteration h in Phase 1 respects the linear
system (11) and (12), we have:∑
m∈[M]

xhm,n(t) =
∑

m∈[M]
x∗m,n(t) = un,∀n ∈ [N], h in Phase 1.

(31)
Because un is always an integer, we can combine equa-

tion (31) with Lemma 8 to show:∑
m∈[M]

x̄m,n(t) =
∑

m∈[M]
x∗m,n(t) = un,∀n ∈ [N]

�

APPENDIX N
PROOF OF THEOREM 8

Proof. During iterations in Phase 1, it is easy to see that our
rounding method respects:∑

n∈[N ]
cn,k xhm,n(t) =

∑
n∈[N ]

cn,k x∗m,n(t),∀m ∈ [M], k ∈ {0, 1}

Thus, we focus on Phase 2. Based on Lemma 7, each server
is with at most four floating edges.

We first investigate floating machine m with four floating
edges at the beginning iteration h of Phase 2. Let the four
floating jobs be j1, j2, j3 and j4. And let the fractional part
of xm, j1 (t), xm, j2 (t), xm, j3 (t) and xm, j4 (t) be ρ1, ρ2, ρ3 and
ρ4. There are four possible cases:
. Case 1: All four fractional parts are rounded up.

Based on Lemma 8, we have:

(1 − ρ1) + (1 − ρ2) + (1 − ρ3) + (1 − ρ4) ≤ 1 (32)

And the additional resource k consumption due to rounding
is:

cj1,k (1 − ρ1) + cj2,k (1 − ρ2) + cj3,k (1 − ρ3) + cj4,k (1 − ρ4)
≤ max

n∈[N ]
cn,k ((1 − ρ1) + (1 − ρ2) + (1 − ρ3) + (1 − ρ4))

≤ max
n∈[N ]

cn,k

where the last inequality is due to (32).
. Case 2: Three fractional parts are rounded up while one
fractional part is rounded down.

Without loss of generality, we assume ρ1, ρ2 and ρ3 are
rounded up and ρ4 is rounded down. And because of Lemma 8,
we ensure:

(1 − ρ1) + (1 − ρ2) + (1 − ρ3) − ρ4 ≤ 1 (33)
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The additional resource k consumption is:

cj1,k (1 − ρ1) + cj2,k (1 − ρ2) + cj3,k (1 − ρ3) − cj4,k ρ4

≤ max
n∈[N ]

cn,k ((1 − ρ1) + (1 − ρ2) + (1 − ρ3)) − min
n∈[N ]

cn,k ρ4

≤ max
n∈[N ]

cn,k + ( max
n∈[N ]

cn,k − min
n∈[N ]

cn,k )ρ4

< 2 max
n∈[N ]

cn,k − min
n∈[N ]

cn,k

The second inequality is based on (33), and the last inequal-
ity holds since ρ4 ∈ (0, 1).
. Case 3: Two fractional parts are rounded up while two
fractional parts are rounded down.

We assume ρ1 and ρ2 are rounded up, and ρ3 and ρ4 are
rounded down. Due to Lemma 8, we see:

(1 − ρ1) + (1 − ρ2) − ρ3 − ρ4 ≤ 1 (34)

The additional resource k consumption is:

cj1,k (1 − ρ1) + cj2,k (1 − ρ2) − cj3,k ρ3 − cj4,k ρ4

= cj1,k + cj2,k − (cj1,k ρ1 + cj2,k ρ2 + cj3,k ρ3 + cj4,k ρ4)
≤ 2 max

n∈[N ]
cn,k − min

n∈[N ]
cn,k (ρ1 + ρ2 + ρ3 + ρ4)

≤ 2 max
n∈[N ]

cn,k − min
n∈[N ]

cn,k

The last inequality is due to (34).
. Case 4: Only one fractional part is rounded up while three
fractional parts are rounded down.

Since only one fractional part is rounded up, we can easily
observe that the additional resource k consumption is at most
maxn∈[N ] cn,k .

Therefore, additional resource k consumption for floating
server with four floating edges is at most (2 maxn∈[N ] cn,k −
minn∈[N ] cn,k ). Floating servers with less than four float-
ing edges can be analysed in the same way. In conclu-
sion, we ensure that the additional resource k consumption
for each floating server due to rounding steps is less than
(2 maxn∈[N ] cn,k −minn∈[N ] cn,k ). �
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