
TSINGHUA SCIENCE AND TECHNOLOGY

I SS N l l1 0 0 7 -0 2 1 4 l l0 3 /1 2 l lpp2 9 -3 9

Volume 17, Number 1, February 2012

Strategies of Collaboration in Multi-Swarm

Peer-to-Peer Content Distribution*

Zhi Wang
**

, Chuan Wu
†
, Lifeng Sun, Shiqiang Yang

Tsinghua National Laboratory for Information Science and Technology,

Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China;

† Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong, China

Abstract: In modern Peer-to-Peer (P2P) content distribution applications, multiple swarms typically exist,

each corresponding to the dissemination of one content among interested peers. A common design in the

existing P2P applications is to allow peers in one swarm to help each other, while different swarms are only

coupled when sharing the upload bandwidth at the dedicated content servers/publishers. In recent years, a

number of proposals have emerged which advocate inter-swarm collaboration and resource sharing, where

peers in one swarm may contribute their storage and bandwidth resources to help peers in the swarm of

another content. Such inter-swarm collaboration can improve content availability and optimize resource uti-

lization in the entire system, at the cost of additional overhead for content preloading and inter-swarm coor-

dination. This paper presents a survey of studies on effective inter-swarm collaboration mechanisms in the

existing literature. This paper first discusses strategies of collaboration in P2P file sharing applications, and

then presents multi-channel collaborative design for P2P live and Video-on-Demand (VoD) streaming. In

particular, this paper elaborates our recent design of collaboration strategies among multiple streaming

channels in a P2P VoD system, and shows that the server cost can be reduced by up to 25% while high

streaming qualities are guaranteed in the entire system, even during extreme scenarios such as unexpected

flash crowds. This paper also discusses representative approaches to implement inter-swarm collaborations

in various P2P content distribution systems.

Key words: Peer-to-Peer (P2P) networks, content distribution, inter-swarm collaboration, media streaming

Introduction

Large-scale Peer-to-Peer (P2P) content distribution

applications have proliferated in today’s Internet, e.g.,

BitTorrent
[1]

, PPLive
[2]

, Zattoo
[3]

, UUSee
[4]

. Hundreds

and thousands of contents are distributed in these ap-

plications, each with a varying number of downloaders

spanning from a single digit to tens of thousands. The

peers downloading the same content constitute a

swarm of this content. In classical design of a multi-

swarm P2P content distribution application, peers in

the same swarm contribute their bandwidth to upload

available chunks of the content to each other; different

swarms share upload bandwidth at the content serv-

ers/publishers, but typically do not share resources at

individual peers, except at those which are simultane-

ously interested in contents in multiple swarms.

An apparent drawback of this classical design lies

 Received: 2011-12-21; revised: 2011-12-30

** Supported by the National Basic Research and Development (973)

Program of China (No. 2011CB302206), the National Natural Sci-

ence Foundation of China (Nos. 60833009 and 60933013), and the

Research Grants Council of Hong Kong (RGC GRF Ref: HKU

718710E).

** To whom correspondence should be addressed.

E-mail: wangzhi04@mails.tsinghua.edu.cn

 Tsinghua Science and Technology, February 2012, 17(1): 29-39

30

at its sub-optimal utilization of resources in the entire

P2P system: there are swarms with redundant upload

capacities besides those used for distribution of their

own contents, while there are other swarms with insuf-

ficient bandwidth to achieve a targeted download per-

formance. In recent years, a number of studies have

proposed inter-swarm collaboration and resource

sharing, i.e., a peer in one swarm may contribute its

storage and bandwidth resources to download, store,

and serve contents in other swarms, even if the peer

itself is not interested in viewing those contents. This

collaborative design can bring two significant ad-

vantages, in terms of improved content availability and

resource utilization in the entire system.

(1) Content availability. Highly skewed distribu-

tion of content popularity is common in a P2P file

sharing or streaming system. Popular contents are

widely replicated, and abundant upload bandwidth is

typically available to serve those contents. On the other

hand, unpopular contents are rarely replicated, leading

to the difficulty for one peer to find enough neighbors

from which to download the unpopular content
[5]

. If

inter-swarm collaboration is enabled, a peer interested

in a popular content may also download and cache

some unpopular contents, and availability of unpopular

contents in the system will be improved.

(2) Resource utilization. At one time, there may

exist redundant upload bandwidth in some swarms

(excluding that used for its own content distribution)

— e.g., due to the existence of high-bandwidth peers

— while some other swarms are experiencing signifi-

cant deficiency of upload bandwidth. By allowing al-

locating redundant bandwidth from one swarm to an-

other at different times, capacities of peers can be

maximally utilized at all times, and the demand for

server capacities is minimized.

On the other hand, designing and implementing an

inter-swarm collaboration mechanism are challenging,

in order to maximize the performance gain while

minimizing the overhead of the more complicated

protocol. In many inter-swarm collaboration schemes,

peers need to preload a number of contents (or chunks

in a content) to enable bandwidth contribution in mul-

tiple swarms. Such a preloading procedure, if not well

designed, may negatively affect the download perfor-

mance in the peer’s original swarm. In addition, allo-

cation of upload bandwidth at a peer participating in

multiple swarms needs to be carefully carried out, in

order to maximize the global resource utilization.

This paper presents a survey of studies on in-

ter-swarm collaboration designs in the existing litera-

ture. We first introduce strategies of collaboration in

P2P file sharing applications in Section 1, and then

present multi-channel collaborative design for P2P live

streaming and Video-on-Demand (VoD) streaming in

Section 2 and Section 3, respectively. In particular, we

elaborate our recent design of collaboration strategies

among multiple streaming channels in a P2P VoD sys-

tem, and show that the server cost can be significantly

reduced while high streaming qualities are guaranteed

in the entire system, even during extreme scenarios

such as unexpected flash crowds. We also discuss rep-

resentative approaches of implementing inter-swarm

collaboration in different P2P systems in Section 4 and

conclude the paper in Section 5.

1 Inter-Swarm Collaboration in P2P

File Sharing

In a P2P file sharing system, each swarm corresponds

to the group of peers downloading one file. The exist-

ing studies on inter-swarm collaboration have been

focusing on improving the content availability of un-

popular files and reducing the file download times. We

discuss schemes targeting at each of the objectives in

the following.

1.1 Strategies to improve content availability

In a P2P file sharing network, a file is typically di-

vided into many chunks for distribution, and peers in a

swarm download chunks from each other until a com-

plete copy of the file is obtained. In a popular swarm

where many online peers exist, availability of different

chunks is largely guaranteed. In an unpopular swarm,

it is very likely that some chunks are missing from the

online peers at one time, leading to prolonged time to

complete the file download. Collaboration among dif-

ferent swarms is proposed to boost chunk availability,

as illustrated in Fig. 1. Figures 1a shows a P2P file

sharing system consisting of isolated swarms, which

are joint to form a large collaborative swarm in Fig.

1b.

To improve the availability of unpopular files,

Menasche et al.
[6]

 propose bundling of contents for

download in BitTorrent systems. Instead of dissemi-

Zhi Wang et al.：Strategies of Collaboration in Multi-Swarm Peer-to-Peer …

31

nating individual files in separate swarms, several files

are bundled into a large file for distribution together.

The idea behind such bundling is that when an unpop-

ular file is bundled with some other popular or unpop-

ular files, peers interested in any one of the files will

download all the files in the bundled swarm; in this

way, more peers cache the unpopular files, and more

supplying neighbors can be found for downloading an

unpopular file.

Content unavailability has been analyzed in

Menasche et al.’s study
[6]

, in both cases of bundled and

non-bundled file distribution. Content unavailability is

modeled as the probability that a peer finds no pub-

lisher available when it joins a swarm of a file. When

no files are bundled in the BitTorrent system, the con-

tent unavailability probability is

1/

[] 1/

k

k

k k

r
P

E B r



 (1)

with

e 1
 []

k kr u

k

k

E B
r


 (2)

where rk is the arrival rate of publishers of the content

and uk is the mean resident time of a publisher in the

swarm. When K files are bundled for distribution, the

probability becomes

1/

[] 1/

R
P

E B R



 (3)

with

e 1
[]

RU

E B
R


 (4)

where R and U denote the arrival rate and mean resi-

dence time of publishers in this case, respectively.

Consider the special case that the arrival rates and

mean residence times of publishers are the same for all

K files, i.e., rk =

r and uk =

u. If R

=

Kr and U =

Ku, then

2

1/ ()

(e 1) / () 1/ ()K ru

Kr
P

Kr Kr


 
 (5)

Hence, the probability of content unavailability can be

reduced by a factor of
2()e ,K when K files are bun-

dled.

Given that bundling can improve the content availa-

bility in the system, the next question is how to choose

the files to be bundled together. Han et al.
[7]

 propose a

systematic method for file bundling in BitTorrent sys-

tems, by clustering similar files into groups based on a

few criteria, and bundling files according to the groups.

For example, they infer types and features of the mov-

ies from the titles of the movie files, and bundle mov-

ies of similar types/features for distribution. The ra-

tional is that a peer interested in one file has a high

probability of being interested in another similar file;

by downloading them together in a bundle, the over-

head of preloading files for collaborative distribution

in the entire system is reduced. Their experimental

observations confirm that such bundling can bring sig-

nificant download performance gain.

1.2 Strategies to reduce download time

In Menasche et al.’s study[6], they define the download

time TD that a peer spends to get a file in a P2P file

sharing system as the sum of two parts: (1) the wait

time TW that it spends in waiting for available publish-

ers or neighbors holding the chunks of the file, and (2)

the service time TS that it actually spends in receiving

the chunks, i.e., TD = TW +

TS. They conclude that when

the service time dominates the overall download time

(i.e.,
S WT T), bundling K files together for distribution

may increase the download time by up to a factor of K,

as a peer now downloads K times as much content.

Nevertheless, when the wait time dominates the

download time (i.e.,
W ST T), as is the case when the

publisher arrival rate r in an individual swarm is low,

bundling can significantly reduce the wait time by a

factor of
1

,
Kr

 
 
 

 when K files are bundled for

distribution.

(a) Isolated swarms

(b) Collaboration among multiple swarms

Fig. 1 An illustration of inter-swarm collaboration in

a P2P file sharing system

 Tsinghua Science and Technology, February 2012, 17(1): 29-39

32

In many real-world P2P file distribution systems,

dedicated servers are utilized as backup content pub-

lishers. Therefore, content availability can be guaran-

teed, i.e., any chunk in a file can always be found at

the dedicated servers. As a result, in these systems, the

service time dominates the download time, and bun-

dling files in a static fashion that peers have to com-

pletely download all files in the bundle, increases the

total download time. To reduce the download time,

dynamic bundling strategies have been proposed. In

Lev-tov et al.’s design
[5]

, a peer does not need to

download a complete set B of chunks in the bundle;

instead, it only downloads a subset F B of chunks

in the bundle, which include the ones itself wants to

download and some others for inter-swarm collabora-

tion. The number of extra chunks to download may

vary over time: when their own performance is guar-

anteed (chunks of desired files are dense) but chunks

of the other files are rare, peers tend to be more “so-

cially active”, i.e., willing to download more chunks

from other swarms; when their own file becomes rare

or is likely to become rare in the near future, or when

there is no rarity problem with the other files, peers

turn to “selfish behavior”, and ask only for chunks of

the file they are interested in.

Carlsson et al.
[8]

 design a torrent inflation strategy to

utilize peer resource in some torrents to supplement

insufficient upload capacity in other unpopular torrents.

According to peers’ download reports, the server de-

tects some inflation files — the files whose download

requests cannot be all served by peers themselves.

Then the server assigns such inflation files to active

peers which have extra upload capacities to share in

other swarms. These active peers download some

chunks in the inflation files in parallel with download

of their requested files, and then upload chunks of the

inflation files to the requesting peers. When many

peers are requesting different chunks from the same

peer, the tracker server in the BitTorrent system deter-

mines to which neighbors a peer should upload.

Finally, inter-swarm collaboration can not only help

the P2P system by improving content availability and

reducing download time, but also potentially benefit

Internet Service Providers (ISPs). Wang and Liu
[9]

have investigated benefits of file bundling in Bit-

Torrent on reducing inter-ISP traffic, by using a large

collection of PlanetLab nodes
[10]

 to interact with re-

al-world BitTorrent trackers and peers in a three-month

span. They observe that BitTorrent peers exhibit strong

geographical locality, while the effectiveness of a lo-

cality mechanism, that a peer chooses the majority of

its neighbors from peers within the same ISP, can be

quite limited, when it is only employed in individual

swarms of torrents. The reason is that in individual

swarms, the number of peers in one ISP is typically

small, and thus inter-ISP traffic is still unavoidable to

download needed chunks. They also observe that it is

prevalent in a BitTorrent system that after a peer has

finished downloading and left the swarm of a torrent, it

may participate in the swarm of another torrent. In this

case, if upload capacity of this peer is utilized to serve

peers in the previous torrent, the number of suppliers

in a torrent is increased, and the possibility for peers to

discover local neighbors is increased, leading to re-

duced inter-ISP traffic.

2 Inter-Swarm Collaboration In P2P

Live Streaming

In a P2P live streaming system, each swarm corre-

sponds to the group of peers streaming the same live

video channel. In the traditional design of a multi-

channel P2P streaming system, peers in the same

swarm allocate hard/soft caches to store chunks of the

video stream, and retrieve available chunks from each

other
[2,11]

. Timely chunk download is required to meet

the playback deadline of chunks, according to the

streaming playback rate in the channel. In a typical

multi-channel P2P streaming system, popularity of

different streaming channels may vary significantly. In

an unpopular channel, due to the small number of

concurrently online peers, it could be difficult for a

peer to find enough neighboring peers to download the

desired chunks from, and then the peer has to resort to

the dedicated streaming server. Therefore, peers’ con-

tribution ratio (the fraction of media chunks served by

peers in all the chunks retrieved) in unpopular channels

could be much lower than that in popular channels
[12]

.

In case of insufficient peer resource contribution,

most existing P2P streaming systems resort to dedi-

cated servers, which not only serve the original copy of

each video stream, but also provide indispensable sup-

plement of upload bandwidth in P2P streaming

swarms
[2-4,11]

. Yin et al.
[13]

 design a hybrid CDN+P2P

Zhi Wang et al.：Strategies of Collaboration in Multi-Swarm Peer-to-Peer …

33

architecture for large-scale live streaming, where

channels with excessive streaming requests are sched-

uled to be partially served by content servers close to

the peers. Their design is implemented in the system

Livesky, in which traditional and enhanced peers co-

exist — the former peers download only from neigh-

boring peers while the latter can stream from both

peers and edge CDN servers. Based on an extensive

trace study of UUSee
[4]

, another real-world P2P

streaming system in China, Wu et al.
[14]

 discovered

that sometimes when no inter-swarm collaboration is

in place, server upload bandwidth is essential to sustain

a good streaming quality in both popular and less pop-

ular channels.

To further reduce the server cost, an effective ap-

proach is to exploit inter-swarm sharing of peer re-

sources. Figure 2 gives an illustration. Figure 2a shows

a streaming system without inter-swarm collaboration,

where peers in channel A and channel B exchange me-

dia chunks in their own channels, respectively. In Fig.

2b, inter-swarm collaboration is introduced, and a peer

watching channel A (or B) can help upload to peers in

a different channel by preloading a sub-stream Bs (or

As) for the other channel. In this way, the utilization of

peer resources can be improved, as peers with extra

upload capacities can be exploited by more neighbors.

Targeting at a multi-channel P2P live streaming

system, Wu and Li
[15]

 advocate peer upload bandwidth

contribution in multiple channels and design an opti-

mal bandwidth allocation scheme to share peer re-

sources across multiple swarms. Since peers in differ-

ent streaming channels are competing for upload

bandwidth in the system, strategies for resolving the

conflicts are game theoretic in nature. The authors

model dynamic bandwidth allocation in the mul-

ti-channel streaming system as dynamic auction games,

and the outcome of peer strategies in the auction games

provides an optimal streaming topology for all the

channels, that minimizes the overall streaming cost.

Wang et al.
[16]

 formulate linear programs to system-

atically model inter-swarm collaboration strategies in

multi-channel P2P live streaming. The collaboration

strategies are divided into three categories: (1) Naive

Bandwidth allocation Approach (NBA), where a peer

only contributes in its viewing channels and allocates

its upload bandwidth to these channels proportional to

their streaming rates; (2) Passive Channel-aware

bandwidth allocation Approach (PCA), where a peer

only contributes in its viewing channels and optimally

allocates upload bandwidth to these channels, e.g., ac-

cording to the relationship between demand and supply

in these channels; and (3) Active Channel-aware

bandwidth allocation Approach (ACA), where a peer

contributes in not only its viewing channels, but also

some other channels as a helper, and it optimally allo-

cates upload bandwidth to these channels, according to

similar criteria used in PCA. In each category, a linear

program is modeled, which provides a numerical ap-

proach to explore the design space of collaboration in

multi-channel streaming systems.

Wu et al.
[17]

 propose a view-upload decoupling

(VUD) mechanism in P2P live streaming, where the

channels a peer is viewing and the channels it is up-

loading are decoupled. The servers are responsible to

allocate peers to help in different channels. With such

decoupled collaborations, stability of the supply of

peer upload bandwidth in unpopular channels is guar-

anteed, since peer churns now have little impact on

(a) Isolated swarms

(b) Collaboration among multiple swarms

Fig. 2 An illustration of inter-swarm collaboration in

a P2P streaming system

 Tsinghua Science and Technology, February 2012, 17(1): 29-39

34

bandwidth supply. On the other hand, what a peer

downloads for viewing can be totally useless for up-

load. This may potentially lead to inefficient utilization

of peer resources. To analyze the performance of the

VUD mechanism, they develop infinite-server queue-

ing network models
[18,19]

, and apply them in two P2P

streaming designs: the isolated channel design (ISO)

and VUD. For both of these designs, they calculate

critical performance measures, and show that VUD can

provide significantly better performance than ISO in

heterogeneous P2P streaming systems.

3 Inter-Swarm Collaboration In P2P

VoD Streaming

Inspired by its success in file distribution and live

streaming applications, and in order to alleviate the

server cost the peer-to-peer paradigm has been applied

to support large-scale VoD streaming in recent years
[20]

.

Nevertheless, as compared to the P2P live streaming,

the alleviation of server load is less significant in P2P

VoD streaming, mainly due to the lower level of play-

back synchrony among VoD peers. In modern P2P

VoD systems
[2,4]

, peers’ download bandwidths are

commonly abundant (e.g., 1-3 Mbps ADSL connec-

tions) as compared to the representative streaming bit

rates (500-800 Kbps); caches allocated at individual

peers are typically as large as 2-3 Gbytes
[21]

. It has

been a common observation that a VoD peer’s upload

capacity idles as few neighbors request the chunks it

currently caches, rendering a waste of peer re-

sources
[12]

.

The situation is further exacerbated when we con-

sider the large number of video channels a P2P VoD

system provides: The popularity of the channels is

largely skewed, typically following the Zipf distribu-

tions, where the majority are unpopular channels with

a few tens of concurrent viewers or less
[22]

. Peers

watching the unpopular videos often need to download

video chunks from the streaming servers, as few con-

current peers are caching the chunks in need; on the

other hand, the upload bandwidths at peers in those

unpopular channels are largely idle and wasted due to

the low chance of serving the chunks they cache. Ex-

isting measurements have shown that up to 70% of

video chunks may still need to be supplied from the

servers in modern P2P VoD systems
[20]

.

To utilize peers’ surplus upload and download

bandwidths to assist in the streaming of the whole sys-

tem, a few recent proposals advocate cross-channel

help among the peers. The critical questions to answer

in the design of an inter-swarm collaboration scheme

include: how would a peer actively and dynamically

decide when it has spare capacities to assist in the

streaming of other chunks/channels (that it is not

watching)? Which chunks or channels should it help?

How should it best utilize its capacities to achieve most

effective cross-channel and intra- channel chunk

upload?

Zhang et al.
[23]

 propose to utilize the idle capacities

of helpers to assist in a P2P VoD channel, where help-

ers are idle Internet hosts with spare storage and up-

load resources (which may not be peers in the stream-

ing system). Strategies are designed to maximize the

net contribution of the helpers to other peers in the

system, by choosing the best number of chunks to

download onto each helper and the number of helpers

to use in the system.

To exploit inter-swarm collaboration inside the P2P

streaming system, in our recent study
[24]

, we propose

effective strategies to maximize the utilization of

peers’ resources, in order to maximize the streaming

qualities in all the P2P VoD channels. In our design,

each peer actively and strategically determines the

supply-and-demand imbalance in different channels, as

well as that among different chunks within each video;

then it makes use of its surplus download capacity to

fetch chunks with the most need, and serves those

chunks using its idle upload bandwidth, all without

impairing its own streaming quality. We next elaborate

our proposed strategies of selecting the channel/chunk

to help at each peer, as well as strategies for dynamic

helping over time.

3.1 Strategies of helping channel/chunk selection

A peer first decides which channel it will assist in and

then the chunks it will fetch to serve as a supplier.

3.1.1 Selection of the helping channel

We use a channel resource vector to indicate the up-

load resource shortage within each channel. Let chan-

nel resource index uc(t) denote the upload capacity

needed from the dedicated server to support the

streaming (i.e., downloading chunks for playback) in

channel c in time slot t, which is defined as:

() | () | ()c c c cu t b X t r t  (6)

Zhi Wang et al.：Strategies of Collaboration in Multi-Swarm Peer-to-Peer …

35

where bc is the bitrate of channel c, Xc(t) is the set of

viewing peers in the channel at t, and rc(t) represents

the overall amount of upload bandwidth provided by

peers to support the viewing peers in Xc(t). We note

that rc(t) includes the upload bandwidth from viewing

peers, as well as the net contribution (upload band-

width to serve chunks minus bandwidth needed to

download those chunks) from the helper peers.

We further normalize the vector {u1(t); u2(t),…,

uM(t)} with M, the number of channels in the system

using

1

()
() , 1, , ,

()

c
c M

ii

u t
u t c M

u t


 


and derive the

channel resource vector

V (t) ={u

1
(t),u

2
(t), ,u

M
(t)} .

We use each element in V(t) as the probability in our

helping channel selection: channels with larger ()cu t ,

i.e., relatively more bandwidth insufficiency from peer

contributions, are more likely to be selected by a help-

er peer. The helping channel selected by a peer can be

a different channel from its own viewing channel (the

cross-channel assistance scenario) or can be the same

as its viewing channel as well (the intra-channel help

scenario).

3.1.2 Selection of chunks in the helping channel

After the helping channel is selected, a peer chooses

the chunks to fetch in the channel. In our design, the

peer will select a starting chunk, and then download F

consecutive chunks in the stream from the starting

chunk on, where F is an implementation parameter in

our experiments.

We use a chunk resource vector to decide the start-

ing position. Let ()s

cg t be the ratio of chunk s in

channel c downloaded directly from the server, over

the total number of chunk s downloaded in time t:

()
()

() ()

s
s c
c s s

c c

K t
g t

Q t K t



where ()s

cQ t is the number of

copies of chunk s supplied by peers in time t and

()s

cK t is the number served by the dedicated server.

We consider the average ratio of chunks served by the

server over all the F consecutive chunks starting from

chunk s, ()s

c t , defined as follows:

1
() , 1 ;

() ;
1, otherwise

s F k

c cs k s
c

c

g t F s F L
t F

L sF


 


 

   
  

 „

(7)

Here Lc is the total number of chunks in channel c.

We normalize the vector 1 2{ (), (), , ()}cL

c c ct t t   and

derive the chunk resource vector 1() { (),c cS t t

:2 () , , () } ,cL

c ct t  where

1

()
() , 1,

()
c

s
s c
c L i

ci

t
t s

t







 



, .cL We use each element in Sc(t) as the probability

in our chunk selection within helping channel c: the

chunks starting from s with larger (),s

c t i.e., with

relatively more bandwidth demand from the server, are

more likely to be selected. If the selected F chunks are

already cached by the peer, it will run the chan-

nel/chunk selection again.

3.2 Strategies of dynamic helping

Peers dynamically decide when to assist in the helping

channel and when to focus on the streaming of its own

viewing channel, as well as how to schedule its upload

of chunks to viewing and helper peers, respectively.

We divide peers’ requests for chunks into two types: a

streaming request refers to the request for a chunk to

be played by the requesting peer, and a helping request

corresponds to the request for a chunk from a helper

peer.

3.2.1 Switching among helping states

A peer’s dynamic behavior is described using 3 help-

ing states, which are decided by the amount of stream-

ing and helping requests it has served in the previous

time: (1) Non-active Helping (NH): the state when the

utilization level of a peer’s upload capacity is relative-

ly low, given that the total number of chunks it has

uploaded to others in the previous time slot is less than

Up, where (0,1) is a threshold parameter and Up

is the upload capacity of the peer. (2) Streaming Help-

ing (SH): the state when a peer is serving more

streaming requests than helping requests, such that the

total number of chunks it has uploaded in the time slot

is no smaller than Up, and the fraction of chunks up-

loaded for streaming requests is no lower than

(0,1]  . (3) Fetching Helping (FH): the state when a

peer serves more helping requests than streaming re-

quests, such that the total number of chunks it has up-

loaded in the time slot is no smaller than Up, and the

fraction of chunks uploaded for helping requests is no

lower than 1 (i.e., the fraction of upload to address

streaming requests is lower than ).

Figure 3a illustrates the definition of the three states.

Let N(t) denote the total number of chunks the peer

uploads in t, and w(t) be the fraction of the streaming

chunks uploaded. Figure 3b further gives the transition

 Tsinghua Science and Technology, February 2012, 17(1): 29-39

36

among the three states, that occurs at the end of each

time.

3.2.2 Chunk fetching from helping channels

At the beginning of a time slot, if a peer is in the SH

state, it downloads only the chunks for viewing but not

any chunks for helping. For a peer in the NH state,

excepting downloading chunks for playback, it carries

out a new helping channel and chunk selection proce-

dure, and fetches chunks that are chosen, as long as the

previous fetching process is done. For peers in the FH

state, they carry out new channel selection and chunk

fetching less frequently, i.e., every several time slots.

In our experiments, a peer selects a new helping chan-

nel and the corresponding chunks if it has remained in

the FH state for 5 time slots.

The design rationale lies in that we aim to guarantee

sufficient upload bandwidth to serve the streaming

requests, while maximally utilizing the surplus upload

capacity to distribute chunks to helper peers. A peer in

the SH state does not need to fetch more chunks from

any helping channel, since the chunks it caches are

already popular, as requested by many viewing peers;

in this way, the upload consumption to serve this

peer’s helping requests can also be saved. A peer in the

NH state or the FH state may still need to retrieve more

chunks from the helping channels, in order to improve

the utilization of its upload bandwidth. Peers in the FH

state perform channel selection and chunk fetching less

frequently than those in the NH state, as the upload

capacities of the former are already better utilized as

amplifiers for helping requests.

3.2.3 Upload schedule to serve different requests

A peer p may fetch and cache chunks from different

channels, as a result of the dynamic channel and chunk

selection strategies executed over time (a LRU (Least

Recently Using) cache replacement strategy is applied

when the peer cache becomes full). Therefore, it may

be assigned by the tracker server to serve viewing and

helper peers in multiple channels.

To schedule the upload of chunks at peer p, requests

from the neighbors are added into a priority queue up-

on reception, where the priority of a request is decided

as follows: (1) streaming requests have higher priori-

ties over helping requests for chunks in all channels; (2)

among the streaming requests, a request for a chunk in

peer p’s viewing channel is further prioritized; (3) the

streaming requests in p’s viewing channel and those in

its helping channels, are prioritized based on deadlines

of the chunk playback; (4) among the helping requests,

one is prioritized if it corresponds to a chunk or chan-

nel with larger values of chunk or channel resource

indices. The above priority rules are also applied to

upload scheduling at the server, excepted (2).

In addition, a peer serves the requests within its up-

load capacity: if the number of requests received in one

time is higher than its upload capacity, any un-

addressed request will remain in the queue, until (1) it

has stayed in the queue over 3 times (with respect to a

helping request), or (2) the playback deadline of the

requested chunk has been missed (for a streaming

request).

We have conducted extensive evaluations of our de-

sign using real-world traces, collected from the Orbit

Network
[25]

 over a 3-month span in 2009, which is a

commercial P2P VoD system in China with thousands

of concurrent online users. We use the following sta-

tistics from the traces in our experiments: (1) the

Zipf-like popularity distribution of 3000 channels in

the system; (2) the Poisson-like arrival patterns during

regular times and during a flash crowd scenario; (3)

(a) State division

(b) State transition

Fig. 3 Three helping states at each peer

Zhi Wang et al.：Strategies of Collaboration in Multi-Swarm Peer-to-Peer …

37

peer session lengths, that a peer on average stays in a

channel for 1=5 of the video length; (4) the number of

videos a peer watches before leaving the system, which

follows a Pareto distribution with range 1 to 70 and

shape parameter k = 2. The bitrates of videos in our

experiments are 800 Kbps and the video durations are

900 s each. Each segment in a video has a fixed size of

16 KB. The average number of concurrent peers in our

experiments is 600 during regular times, and 2500

during the flash crowd scenario. The average interval

between two VCR commands issued by each peer is

5 min. Peers have heterogeneous upload (download)

bandwidths which follow a Pareto distribution with

range 512 Kbps to 10 Mbps (2 Mbps to 10 Mbps) and

shape parameter k = 3. We set the length of each time

slot to 5 s. We compare in Fig. 4 the performance be-

tween our collaborative strategies and a native P2P

VoD streaming scheme without cross- and intra-

channel assistance. We observe a significant reduction

of server load using our multi-channel collaborative

strategies, as compared to the native one. On the other

hand, our design scales with the increase of viewer

numbers in the entire system, and it works well under

unexpected flash crowds, as shown in Fig. 5.

Fig. 4 Server load under different protocols

Fig. 5 Server load during flash crowd

4 Implementation Discussions of In-

ter-Swarm Collaboration

Since inter-swarm collaborations require peers to join

swarms that they are not originally supposed to, im-

plementation of addition protocols is needed at the

peer side and the server side. We survey and discuss

the implementation challenges of inter-swarm collabo-

ration strategies. Specifically, we divide the existing

implementation into three categories and discuss each.

4.1 Publisher/server-based implementation

In this case, changes in the system implementation —

as compared to the case without inter-swarm collabo-

ration — mainly take place at the publishers/servers,

while protocols at peer clients remain the same. In a

P2P file sharing system with bundled distribution of

multiple files
[6,26]

, clients use the original protocols to

discover neighbors and exchange file chunks with

neighbors. The publishers of files decide which files

are bundled and distributed together. To reduce the

overhead of peers downloading unnecessary files,

bundling is determined strategically
[7]

. In P2P stream-

ing systems where inter-swarm collaboration requires

global information, e.g., the Active Channel-aware

bandwidth Allocation (ACA) scheme in Ref. [16], the

global information (such as the bandwidth availability

in each of the channels) is maintained by a central

server, in order to carry out the collaboration.

4.2 Client-based implementation

In a publisher/server-based implementation, it is diffi-

cult for publishers/servers to schedule inter-swarm

collaboration at the chunk level, while typically entire

file/streams are scheduled to be served by peers from

other swarms. When collaboration mechanisms are

implemented at the peers, more flexible utilization of

peer resources can be achieved. Each peer can dynam-

ically decide which chunks in which files it should

assist in distribution at each given time. In Zhang et

al.’s work
[23]

, a helper locally decides how much por-

tion of a file it should preload to assist in the mul-

ti-channel P2P VoD streaming, to maximize the ratio

of the number of copies of chunks it can effectively

upload over the number of chunks it has preloaded. In

Lev-tov et al.’s design
[5]

, a peer locally decides its pol-

icies of chunk download and upload in a Bit-

Torrent-like system, and only contributes in other

swarms when its own download performance is guar-

 Tsinghua Science and Technology, February 2012, 17(1): 29-39

38

anteed.

4.3 Hybrid implementation

Pure client-based implementation may lead to subop-

timal resource utilization in the entire system, due to

the lack of global information. To take advantage of

both the global information at the publisher/server side

and the flexibility of download/upload scheduling at

the client side, hybrid implementation mechanisms

have been proposed. In Wu et al.’s view-upload de-

coupling design of a multi-channel P2P live streaming

system
[27]

, a streaming server determines how groups

of uploading peers are allocated to serve peers in each

swarm in the system; meanwhile, peers optimize their

upload bandwidth allocation to neighbors for stream-

ing different sub-streams. In our design of a multi-

channel P2P VoD streaming system
[24]

, the channel

resource vector, V(t), is derived by the server and sent

to peers for making helping channel selection decisions;

each peer communicates with neighboring peers to

locally calculate a chunk resource vector Sc (t), and

decides which chunks in this helping channel c to pre-

load, based on the chunk resource vector.

5 Concluding Remarks

Collaboration among multiple swarms in a P2P content

distribution system has been widely accepted as a

promising approach to improve the utilization of peer

resources. In this paper, we discuss important mile-

stones in the literature towards bringing inter-swarm

collaboration into real-world P2P systems. For P2P file

sharing systems, we point out that not only the content

availability but also the download time can benefit

from simple collaboration strategies such as file/chunk

bundling. In P2P live and on-demand streaming sys-

tems, inter-channel collaboration can also be effec-

tively employed for reducing the load on dedicated

streaming servers. In particular, we elaborate our re-

cent design of collaboration strategies for a mul-

ti-channel P2P VoD system, and show that the server

cost can be significantly reduced while high streaming

qualities are guaranteed in the entire system.

Collaboration is however not free, due to the over-

head of preloading/downloading chunks that a peer

itself does not need, and more coordination efforts at

the servers and peers. The existing research has widely

employed optimization and game-theoretic models,

and designed strategical algorithms to guarantee both

the system-wise performance gain and individual

peer’s utility. As long as a good tradeoff between the

performance gain and the protocol overhead can be

achieved, we will continue to observe more and more

real-world P2P systems to incorporate the collabora-

tive designs in the near future.

References

[1] BitTorrent. http://www.bittorrent.com, 2011.

[2] PPLive. http://www.pplive.com, 2011

[3] Zatto. http://www.zattoo.com, 2011.

[4] UUSee. http://www.uusee.com, 2011.

[5] Lev-tov N, Carlsson N, Li Zongpeng, et al. Dynamic

file-selection policies for bundling in BitTorrent-like sys-

tems. In: Proceedings of IEEE International Workshop on

Quality of Service (IWQoS). Beijing, China, 2010: 1-9.

[6] Menasche D S, Rocha A A A, Li Bin, et al. Content avail-

ability and bundling in swarming systems. In: Proceedings

of ACM International Conference on Emerging Network-

ing Experiments and Technologies. Rome, Italy, 2009:

121-132.

[7] Han J, Chung T, Kim H, et al. Systematic support for con-

tent bundling in BitTorrent swarming. In: Proceedings of

IEEE INFOCOM Workshops. San Diego, CA, USA, 2010:

1-2.

[8] Carlsson N, Eager D, Mahanti A. Using torrent inflation to

efficiently serve the long tail in peer-assisted content de-

livery systems. In: Proceedings of IFIP NETWORKING.

Chennai, India, 2010: 1-14.

[9] Wang Haiyang, Liu Jiangchuan. Exploring peer-to-peer

locality in multiple torrent environment. IEEE Transactions

on Parallel and Distributed Systems, 2011, PP(99): 1.

[10] PlanetLab. http://www.planet-lab.org, 2011.

[11] PPS. http://www.pps.com, 2011.

[12] Huang Cheng, Li Jin, Ross K W. Can internet vid-

eo-on-demand be profitable? In: Proceedings of ACM

SIGCOMM. Kyoto, Japan, 2007: 133-144.

[13] Yin Hao, Liu Xuening, Zhan Tongyu, et al. Design and

deployment of a hybrid CDN-P2P system for live video

streaming: Experiences with livesky. In: Proceedings of

the 17th ACM International Conference on Multimedia.

Beijing, China, 2009.

[14] Wu Chuan, Li Baochun, Zhao Shuqiao. Multi-channel live

P2P streaming: Refocusing on servers. In: Proceedings of

the 27th IEEE INFOCOM. Phoenix, AZ, USA, 2008:

1355-1363.

[15] Wu Chuan, Li Baochun. Strategies of conflict in coexisting

Zhi Wang et al.：Strategies of Collaboration in Multi-Swarm Peer-to-Peer …

39

streaming overlays. In: Proceedings of the 26th IEEE

INFOCOM. Anchorage, USA, 2007: 481-489.

[16] Wang Miao, Xu Lisong, Ramamurthy B. Linear program-

ming models for multi-channel P2P streaming systems. In:

Proceedings of IEEE INFOCOM. San Diego, CA, USA,

2010: 1-5.

[17] Wu Di, Liang Chao, Liu Yong, et al. View-upload decou-

pling: A redesign of multi-channel P2P video systems. In:

Proceedings of IEEE INFOCOM. Rio de Janeiro, Brazil,

2009: 2726-2730.

[18] Wu Di, Liu Yong, Ross K W. Modeling and analysis of

multichannel P2P live video systems. IEEE/ACM Transac-

tions on Networking, 2010, 18(4): 1248-1260.

[19] Wu Di, Liu Yong, Ross K W. Queuing network models for

multi-channel P2P live streaming systems. In: Proceedings

of IEEE INFOCOM. Rio de Janeiro, Brazil, 2009: 73-81.

[20] Cheng Bin, Liu Xuezheng, Zhang Zhengyou, et al. A

measurement study of a peer-to-peer video-on-demand

system. In: Proceedings of International workshop on

Peer-to-Peer Systems (IPTPS). Bellevue, USA, 2007.

[21] Huang Yan, Fu T Z J, Chiu D M, et al. Challenges, design

and analysis of a large-scale P2P-VoD system. In: Pro-

ceedings of ACM SIGCOMM. Seattle, WA, USA, 2008:

375-388.

[22] Yu Hongliang, Zheng Dongdong, Zhao B Y, et al. Under-

standing user behavior in large-scale video-on-demand

systems. In: Proceedings of EuroSys. Leuven, Belgium,

2006: 333-344.

[23] Zhang Hao, Wang Jiajun, Chen Minghua, et al. Scaling

peer-to-peer video-on-demand systems using helpers. In:

Proceedings of the 16th IEEE International Conference on

Image Processing (ICIP). Cairo, Egypt, 2009: 3053-3056.

[24] Wang Zhi, Wu Chuan, Sun Lifeng, et al. Strategies of col-

laboration in multi-channel P2P VoD streaming. In: Pro-

ceedings of IEEE Global Telecommunications Conference

(GLOBECOM). Miami, FL, USA, 2010: 1-5.

[25] Anyplex. http://www.anyplex.com, 2011.

[26] Menasche D S, Neglia G, Towsley D, et al. Strategic rea-

soning about bundling in swarming systems. In: Proceed-

ings of International Conference on Game Theory for

Networks (GameNets). Istanbul, Turkey, 2009: 611-620.

[27] Wu Di, Liang Chao, Liu Yong, et al. Redesigning multi-

channel P2P live video systems with view-upload decou-

pling. Computer Networks, 2010, 54(12): 2007-2018.

