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Abstract: In modern Peer-to-Peer (P2P) content distribution applications, multiple swarms typically exist, 

each corresponding to the dissemination of one content among interested peers. A common design in the 

existing P2P applications is to allow peers in one swarm to help each other, while different swarms are only 

coupled when sharing the upload bandwidth at the dedicated content servers/publishers. In recent years, a 

number of proposals have emerged which advocate inter-swarm collaboration and resource sharing, where 

peers in one swarm may contribute their storage and bandwidth resources to help peers in the swarm of 

another content. Such inter-swarm collaboration can improve content availability and optimize resource uti-

lization in the entire system, at the cost of additional overhead for content preloading and inter-swarm coor-

dination. This paper presents a survey of studies on effective inter-swarm collaboration mechanisms in the 

existing literature. This paper first discusses strategies of collaboration in P2P file sharing applications, and 

then presents multi-channel collaborative design for P2P live and Video-on-Demand (VoD) streaming. In 

particular, this paper elaborates our recent design of collaboration strategies among multiple streaming 

channels in a P2P VoD system, and shows that the server cost can be reduced by up to 25% while high 

streaming qualities are guaranteed in the entire system, even during extreme scenarios such as unexpected 

flash crowds. This paper also discusses representative approaches to implement inter-swarm collaborations 

in various P2P content distribution systems.  
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Introduction  

Large-scale Peer-to-Peer (P2P) content distribution 

applications have proliferated in today’s Internet, e.g., 

BitTorrent
[1]

, PPLive
[2]

, Zattoo
[3]

, UUSee
[4]

. Hundreds 

and thousands of contents are distributed in these ap-

plications, each with a varying number of downloaders 

spanning from a single digit to tens of thousands. The 

peers downloading the same content constitute a 

swarm of this content. In classical design of a multi-   

swarm P2P content distribution application, peers in 

the same swarm contribute their bandwidth to upload 

available chunks of the content to each other; different 

swarms share upload bandwidth at the content serv-

ers/publishers, but typically do not share resources at 

individual peers, except at those which are simultane-

ously interested in contents in multiple swarms.  

An apparent drawback of this classical design lies    
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at its sub-optimal utilization of resources in the entire 

P2P system: there are swarms with redundant upload 

capacities besides those used for distribution of their 

own contents, while there are other swarms with insuf-

ficient bandwidth to achieve a targeted download per-

formance. In recent years, a number of studies have 

proposed inter-swarm collaboration and resource 

sharing, i.e., a peer in one swarm may contribute its 

storage and bandwidth resources to download, store, 

and serve contents in other swarms, even if the peer 

itself is not interested in viewing those contents. This 

collaborative design can bring two significant ad-

vantages, in terms of improved content availability and 

resource utilization in the entire system. 

(1) Content availability. Highly skewed distribu-

tion of content popularity is common in a P2P file 

sharing or streaming system. Popular contents are 

widely replicated, and abundant upload bandwidth is 

typically available to serve those contents. On the other 

hand, unpopular contents are rarely replicated, leading 

to the difficulty for one peer to find enough neighbors 

from which to download the unpopular content
[5]

. If 

inter-swarm collaboration is enabled, a peer interested 

in a popular content may also download and cache 

some unpopular contents, and availability of unpopular 

contents in the system will be improved.  

(2) Resource utilization. At one time, there may 

exist redundant upload bandwidth in some swarms 

(excluding that used for its own content distribution) 

— e.g., due to the existence of high-bandwidth peers 

— while some other swarms are experiencing signifi-

cant deficiency of upload bandwidth. By allowing al-

locating redundant bandwidth from one swarm to an-

other at different times, capacities of peers can be 

maximally utilized at all times, and the demand for 

server capacities is minimized.  

On the other hand, designing and implementing an 

inter-swarm collaboration mechanism are challenging, 

in order to maximize the performance gain while 

minimizing the overhead of the more complicated 

protocol. In many inter-swarm collaboration schemes, 

peers need to preload a number of contents (or chunks 

in a content) to enable bandwidth contribution in mul-

tiple swarms. Such a preloading procedure, if not well 

designed, may negatively affect the download perfor-

mance in the peer’s original swarm. In addition, allo-

cation of upload bandwidth at a peer participating in 

multiple swarms needs to be carefully carried out, in 

order to maximize the global resource utilization.  

This paper presents a survey of studies on in-

ter-swarm collaboration designs in the existing litera-

ture. We first introduce strategies of collaboration in 

P2P file sharing applications in Section 1, and then 

present multi-channel collaborative design for P2P live 

streaming and Video-on-Demand (VoD) streaming in 

Section 2 and Section 3, respectively. In particular, we 

elaborate our recent design of collaboration strategies 

among multiple streaming channels in a P2P VoD sys-

tem, and show that the server cost can be significantly 

reduced while high streaming qualities are guaranteed 

in the entire system, even during extreme scenarios 

such as unexpected flash crowds. We also discuss rep-

resentative approaches of implementing inter-swarm 

collaboration in different P2P systems in Section 4 and 

conclude the paper in Section 5.  

1  Inter-Swarm Collaboration in P2P 

File Sharing 

In a P2P file sharing system, each swarm corresponds 

to the group of peers downloading one file. The exist-

ing studies on inter-swarm collaboration have been 

focusing on improving the content availability of un-

popular files and reducing the file download times. We 

discuss schemes targeting at each of the objectives in 

the following. 

1.1  Strategies to improve content availability  

In a P2P file sharing network, a file is typically di-

vided into many chunks for distribution, and peers in a 

swarm download chunks from each other until a com-

plete copy of the file is obtained. In a popular swarm 

where many online peers exist, availability of different 

chunks is largely guaranteed. In an unpopular swarm, 

it is very likely that some chunks are missing from the 

online peers at one time, leading to prolonged time to 

complete the file download. Collaboration among dif-

ferent swarms is proposed to boost chunk availability, 

as illustrated in Fig. 1. Figures 1a shows a P2P file 

sharing system consisting of isolated swarms, which 

are joint to form a large collaborative swarm in Fig. 

1b.  

To improve the availability of unpopular files, 

Menasche et al.
[6]

 propose bundling of contents for 

download in BitTorrent systems. Instead of dissemi-
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nating individual files in separate swarms, several files 

are bundled into a large file for distribution together. 

The idea behind such bundling is that when an unpop-

ular file is bundled with some other popular or unpop-

ular files, peers interested in any one of the files will 

download all the files in the bundled swarm; in this 

way, more peers cache the unpopular files, and more 

supplying neighbors can be found for downloading an 

unpopular file.  

Content unavailability has been analyzed in 

Menasche et al.’s study
[6]

, in both cases of bundled and 

non-bundled file distribution. Content unavailability is 

modeled as the probability that a peer finds no pub-

lisher available when it joins a swarm of a file. When 

no files are bundled in the BitTorrent system, the con-

tent unavailability probability is  

1/
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where rk is the arrival rate of publishers of the content 

and uk is the mean resident time of a publisher in the 

swarm. When K files are bundled for distribution, the 

probability becomes  
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where R and U denote the arrival rate and mean resi-

dence time of publishers in this case, respectively. 

Consider the special case that the arrival rates and 

mean residence times of publishers are the same for all 

K files, i.e., rk =
 
r and uk =

 
u. If R

 
=

 
Kr and U =

 
Ku, then  

2

1/ ( )

(e 1) / ( ) 1/ ( )K ru

Kr
P

Kr Kr


 
       (5) 

Hence, the probability of content unavailability can be 

reduced by a factor of 
2( )e ,K when K files are bun-

dled.  

Given that bundling can improve the content availa-

bility in the system, the next question is how to choose 

the files to be bundled together. Han et al.
[7]

 propose a 

systematic method for file bundling in BitTorrent sys-

tems, by clustering similar files into groups based on a 

few criteria, and bundling files according to the groups. 

For example, they infer types and features of the mov-

ies from the titles of the movie files, and bundle mov-

ies of similar types/features for distribution. The ra-

tional is that a peer interested in one file has a high 

probability of being interested in another similar file; 

by downloading them together in a bundle, the over-

head of preloading files for collaborative distribution 

in the entire system is reduced. Their experimental 

observations confirm that such bundling can bring sig-

nificant download performance gain.  

1.2  Strategies to reduce download time   

In Menasche et al.’s study[6], they define the download 

time TD that a peer spends to get a file in a P2P file 

sharing system as the sum of two parts: (1) the wait 

time TW that it spends in waiting for available publish-

ers or neighbors holding the chunks of the file, and (2) 

the service time TS that it actually spends in receiving 

the chunks, i.e., TD = TW +
 
TS. They conclude that when 

the service time dominates the overall download time 

(i.e.,
S WT T ), bundling K files together for distribution 

may increase the download time by up to a factor of K, 

as a peer now downloads K times as much content. 

Nevertheless, when the wait time dominates the 

download time (i.e.,
W ST T ), as is the case when the 

publisher arrival rate r in an individual swarm is low, 

bundling can significantly reduce the wait time by a  

factor of 
1

,
Kr

 
 
 

 when K files are bundled for   

distribution.  

 
(a) Isolated swarms 

 

(b) Collaboration among multiple swarms 

Fig. 1  An illustration of inter-swarm collaboration in 

a P2P file sharing system 
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In many real-world P2P file distribution systems, 

dedicated servers are utilized as backup content pub-

lishers. Therefore, content availability can be guaran-

teed, i.e., any chunk in a file can always be found at 

the dedicated servers. As a result, in these systems, the 

service time dominates the download time, and bun-

dling files in a static fashion that peers have to com-

pletely download all files in the bundle, increases the 

total download time. To reduce the download time, 

dynamic bundling strategies have been proposed. In 

Lev-tov et al.’s design
[5]

, a peer does not need to 

download a complete set B of chunks in the bundle; 

instead, it only downloads a subset F B  of chunks 

in the bundle, which include the ones itself wants to 

download and some others for inter-swarm collabora-

tion. The number of extra chunks to download may 

vary over time: when their own performance is guar-

anteed (chunks of desired files are dense) but chunks 

of the other files are rare, peers tend to be more “so-

cially active”, i.e., willing to download more chunks 

from other swarms; when their own file becomes rare 

or is likely to become rare in the near future, or when 

there is no rarity problem with the other files, peers 

turn to “selfish behavior”, and ask only for chunks of 

the file they are interested in.  

Carlsson et al.
[8]

 design a torrent inflation strategy to 

utilize peer resource in some torrents to supplement 

insufficient upload capacity in other unpopular torrents. 

According to peers’ download reports, the server de-

tects some inflation files — the files whose download 

requests cannot be all served by peers themselves. 

Then the server assigns such inflation files to active 

peers which have extra upload capacities to share in 

other swarms. These active peers download some 

chunks in the inflation files in parallel with download 

of their requested files, and then upload chunks of the 

inflation files to the requesting peers. When many 

peers are requesting different chunks from the same 

peer, the tracker server in the BitTorrent system deter-

mines to which neighbors a peer should upload.  

Finally, inter-swarm collaboration can not only help 

the P2P system by improving content availability and 

reducing download time, but also potentially benefit 

Internet Service Providers (ISPs). Wang and Liu
[9]

 

have investigated benefits of file bundling in Bit-

Torrent on reducing inter-ISP traffic, by using a large 

collection of PlanetLab nodes
[10]

 to interact with re-

al-world BitTorrent trackers and peers in a three-month 

span. They observe that BitTorrent peers exhibit strong 

geographical locality, while the effectiveness of a lo-

cality mechanism, that a peer chooses the majority of 

its neighbors from peers within the same ISP, can be 

quite limited, when it is only employed in individual 

swarms of torrents. The reason is that in individual 

swarms, the number of peers in one ISP is typically 

small, and thus inter-ISP traffic is still unavoidable to 

download needed chunks. They also observe that it is 

prevalent in a BitTorrent system that after a peer has 

finished downloading and left the swarm of a torrent, it 

may participate in the swarm of another torrent. In this 

case, if upload capacity of this peer is utilized to serve 

peers in the previous torrent, the number of suppliers 

in a torrent is increased, and the possibility for peers to 

discover local neighbors is increased, leading to re-

duced inter-ISP traffic. 

2  Inter-Swarm Collaboration In P2P 

Live Streaming 

In a P2P live streaming system, each swarm corre-

sponds to the group of peers streaming the same live 

video channel. In the traditional design of a multi-

channel P2P streaming system, peers in the same 

swarm allocate hard/soft caches to store chunks of the 

video stream, and retrieve available chunks from each 

other
[2,11]

. Timely chunk download is required to meet 

the playback deadline of chunks, according to the 

streaming playback rate in the channel. In a typical 

multi-channel P2P streaming system, popularity of 

different streaming channels may vary significantly. In 

an unpopular channel, due to the small number of 

concurrently online peers, it could be difficult for a 

peer to find enough neighboring peers to download the 

desired chunks from, and then the peer has to resort to 

the dedicated streaming server. Therefore, peers’ con-

tribution ratio (the fraction of media chunks served by 

peers in all the chunks retrieved) in unpopular channels 

could be much lower than that in popular channels
[12]

.  

In case of insufficient peer resource contribution, 

most existing P2P streaming systems resort to dedi-

cated servers, which not only serve the original copy of 

each video stream, but also provide indispensable sup-

plement of upload bandwidth in P2P streaming 

swarms
[2-4,11]

. Yin et al.
[13]

 design a hybrid CDN+P2P 
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architecture for large-scale live streaming, where 

channels with excessive streaming requests are sched-

uled to be partially served by content servers close to 

the peers. Their design is implemented in the system 

Livesky, in which traditional and enhanced peers co-

exist — the former peers download only from neigh-

boring peers while the latter can stream from both 

peers and edge CDN servers. Based on an extensive 

trace study of UUSee
[4]

, another real-world P2P 

streaming system in China, Wu et al.
[14]

 discovered 

that sometimes when no inter-swarm collaboration is 

in place, server upload bandwidth is essential to sustain 

a good streaming quality in both popular and less pop-

ular channels.  

To further reduce the server cost, an effective ap-

proach is to exploit inter-swarm sharing of peer re-

sources. Figure 2 gives an illustration. Figure 2a shows 

a streaming system without inter-swarm collaboration, 

where peers in channel A and channel B exchange me-

dia chunks in their own channels, respectively. In Fig. 

2b, inter-swarm collaboration is introduced, and a peer 

watching channel A (or B) can help upload to peers in 

a different channel by preloading a sub-stream Bs (or 

As) for the other channel. In this way, the utilization of 

peer resources can be improved, as peers with extra 

upload capacities can be exploited by more neighbors.  

Targeting at a multi-channel P2P live streaming 

system, Wu and Li
[15]

 advocate peer upload bandwidth 

contribution in multiple channels and design an opti-

mal bandwidth allocation scheme to share peer re-

sources across multiple swarms. Since peers in differ-

ent streaming channels are competing for upload 

bandwidth in the system, strategies for resolving the 

conflicts are game theoretic in nature. The authors 

model dynamic bandwidth allocation in the mul-

ti-channel streaming system as dynamic auction games, 

and the outcome of peer strategies in the auction games 

provides an optimal streaming topology for all the 

channels, that minimizes the overall streaming cost.  

Wang et al.
[16]

 formulate linear programs to system-

atically model inter-swarm collaboration strategies in 

multi-channel P2P live streaming. The collaboration 

strategies are divided into three categories: (1) Naive 

Bandwidth allocation Approach (NBA), where a peer 

only contributes in its viewing channels and allocates 

its upload bandwidth to these channels proportional to 

their streaming rates; (2) Passive Channel-aware 

bandwidth allocation Approach (PCA), where a peer 

only contributes in its viewing channels and optimally 

allocates upload bandwidth to these channels, e.g., ac-

cording to the relationship between demand and supply 

in these channels; and (3) Active Channel-aware 

bandwidth allocation Approach (ACA), where a peer 

contributes in not only its viewing channels, but also 

some other channels as a helper, and it optimally allo-

cates upload bandwidth to these channels, according to 

similar criteria used in PCA. In each category, a linear 

program is modeled, which provides a numerical ap-

proach to explore the design space of collaboration in 

multi-channel streaming systems.  

Wu et al.
[17]

 propose a view-upload decoupling 

(VUD) mechanism in P2P live streaming, where the 

channels a peer is viewing and the channels it is up-

loading are decoupled. The servers are responsible to 

allocate peers to help in different channels. With such 

decoupled collaborations, stability of the supply of 

peer upload bandwidth in unpopular channels is guar-

anteed, since peer churns now have little impact on 

 

(a) Isolated swarms  

 

(b) Collaboration among multiple swarms 

Fig. 2  An illustration of inter-swarm collaboration in 

a P2P streaming system 
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bandwidth supply. On the other hand, what a peer 

downloads for viewing can be totally useless for up-

load. This may potentially lead to inefficient utilization 

of peer resources. To analyze the performance of the 

VUD mechanism, they develop infinite-server queue-

ing network models
[18,19]

, and apply them in two P2P 

streaming designs: the isolated channel design (ISO) 

and VUD. For both of these designs, they calculate 

critical performance measures, and show that VUD can 

provide significantly better performance than ISO in 

heterogeneous P2P streaming systems. 

3  Inter-Swarm Collaboration In P2P 

VoD Streaming 

Inspired by its success in file distribution and live 

streaming applications, and in order to alleviate the 

server cost the peer-to-peer paradigm has been applied 

to support large-scale VoD streaming in recent years
[20]

. 

Nevertheless, as compared to the P2P live streaming, 

the alleviation of server load is less significant in P2P 

VoD streaming, mainly due to the lower level of play-

back synchrony among VoD peers. In modern P2P 

VoD systems
[2,4]

, peers’ download bandwidths are 

commonly abundant (e.g., 1-3 Mbps ADSL connec-

tions) as compared to the representative streaming bit 

rates (500-800 Kbps); caches allocated at individual 

peers are typically as large as 2-3 Gbytes
[21]

. It has 

been a common observation that a VoD peer’s upload 

capacity idles as few neighbors request the chunks it 

currently caches, rendering a waste of peer re-

sources
[12]

.  

The situation is further exacerbated when we con-

sider the large number of video channels a P2P VoD 

system provides: The popularity of the channels is 

largely skewed, typically following the Zipf distribu-

tions, where the majority are unpopular channels with 

a few tens of concurrent viewers or less
[22]

. Peers 

watching the unpopular videos often need to download 

video chunks from the streaming servers, as few con-

current peers are caching the chunks in need; on the 

other hand, the upload bandwidths at peers in those 

unpopular channels are largely idle and wasted due to 

the low chance of serving the chunks they cache. Ex-

isting measurements have shown that up to 70% of 

video chunks may still need to be supplied from the 

servers in modern P2P VoD systems
[20]

.  

To utilize peers’ surplus upload and download 

bandwidths to assist in the streaming of the whole sys-

tem, a few recent proposals advocate cross-channel 

help among the peers. The critical questions to answer 

in the design of an inter-swarm collaboration scheme 

include: how would a peer actively and dynamically 

decide when it has spare capacities to assist in the 

streaming of other chunks/channels (that it is not 

watching)? Which chunks or channels should it help? 

How should it best utilize its capacities to achieve most 

effective cross-channel and intra-    channel chunk 

upload?  

Zhang et al.
[23]

 propose to utilize the idle capacities 

of helpers to assist in a P2P VoD channel, where help-

ers are idle Internet hosts with spare storage and up-

load resources (which may not be peers in the stream-

ing system). Strategies are designed to maximize the 

net contribution of the helpers to other peers in the 

system, by choosing the best number of chunks to 

download onto each helper and the number of helpers 

to use in the system.  

To exploit inter-swarm collaboration inside the P2P 

streaming system, in our recent study
[24]

, we propose 

effective strategies to maximize the utilization of 

peers’ resources, in order to maximize the streaming 

qualities in all the P2P VoD channels. In our design, 

each peer actively and strategically determines the 

supply-and-demand imbalance in different channels, as 

well as that among different chunks within each video; 

then it makes use of its surplus download capacity to 

fetch chunks with the most need, and serves those 

chunks using its idle upload bandwidth, all without 

impairing its own streaming quality. We next elaborate 

our proposed strategies of selecting the channel/chunk 

to help at each peer, as well as strategies for dynamic 

helping over time.  

3.1  Strategies of helping channel/chunk selection  

A peer first decides which channel it will assist in and 

then the chunks it will fetch to serve as a supplier.  

3.1.1  Selection of the helping channel  

We use a channel resource vector to indicate the up-

load resource shortage within each channel. Let chan-

nel resource index uc(t) denote the upload capacity 

needed from the dedicated server to support the 

streaming (i.e., downloading chunks for playback) in 

channel c in time slot t, which is defined as:  

( ) | ( ) | ( )c c c cu t b X t r t             (6) 
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where bc is the bitrate of channel c, Xc(t) is the set of 

viewing peers in the channel at t, and rc(t) represents 

the overall amount of upload bandwidth provided by 

peers to support the viewing peers in Xc(t). We note 

that rc(t) includes the upload bandwidth from viewing 

peers, as well as the net contribution (upload band-

width to serve chunks minus bandwidth needed to 

download those chunks) from the helper peers.  

We further normalize the vector {u1(t); u2(t),…, 

uM(t)} with M, the number of channels in the system 

using 

1

( )
( ) , 1, , ,

( )

c
c M

ii

u t
u t c M

u t


 


and derive the 

channel resource vector
   
V (t) ={u

1
(t),u

2
(t), ,u

M
(t)} . 

We use each element in V(t) as the probability in our 

helping channel selection: channels with larger ( )cu t , 

i.e., relatively more bandwidth insufficiency from peer 

contributions, are more likely to be selected by a help-

er peer. The helping channel selected by a peer can be 

a different channel from its own viewing channel (the 

cross-channel assistance scenario) or can be the same 

as its viewing channel as well (the intra-channel help 

scenario).  

3.1.2  Selection of chunks in the helping channel 

After the helping channel is selected, a peer chooses 

the chunks to fetch in the channel. In our design, the 

peer will select a starting chunk, and then download F 

consecutive chunks in the stream from the starting 

chunk on, where F is an implementation parameter in 

our experiments.  

We use a chunk resource vector to decide the start-

ing position. Let ( )s

cg t  be the ratio of chunk s in 

channel c downloaded directly from the server, over 

the total number of chunk s downloaded in time t: 

( )
( )

( ) ( )

s
s c
c s s

c c

K t
g t

Q t K t



where ( )s

cQ t  is the number of 

copies of chunk s supplied by peers in time t and 

( )s

cK t  is the number served by the dedicated server. 

We consider the average ratio of chunks served by the 

server over all the F consecutive chunks starting from 

chunk s, ( )s

c t , defined as follows: 

1
( ) , 1 ;

( ) ;  
1, otherwise

s F k

c cs k s
c

c

g t F s F L
t F

L sF


 


 

   
  

 „
 

(7) 

Here Lc is the total number of chunks in channel c. 

We normalize the vector 1 2{ ( ), ( ), , ( )}cL

c c ct t t    and 

derive the chunk resource vector 1( ) { ( ),c cS t t   

:2 ( ) , , ( ) } ,cL

c ct t   where 

1

( )
( ) , 1,

( )
c

s
s c
c L i

ci

t
t s

t







 


    

, .cL  We use each element in Sc(t) as the probability 

in our chunk selection within helping channel c: the 

chunks starting from s with larger ( ),s

c t  i.e., with 

relatively more bandwidth demand from the server, are 

more likely to be selected. If the selected F chunks are 

already cached by the peer, it will run the chan-

nel/chunk selection again. 

3.2  Strategies of dynamic helping  

Peers dynamically decide when to assist in the helping 

channel and when to focus on the streaming of its own 

viewing channel, as well as how to schedule its upload 

of chunks to viewing and helper peers, respectively. 

We divide peers’ requests for chunks into two types: a 

streaming request refers to the request for a chunk to 

be played by the requesting peer, and a helping request 

corresponds to the request for a chunk from a helper 

peer.  

3.2.1  Switching among helping states  

A peer’s dynamic behavior is described using 3 help-

ing states, which are decided by the amount of stream-

ing and helping requests it has served in the previous 

time: (1) Non-active Helping (NH): the state when the 

utilization level of a peer’s upload capacity is relative-

ly low, given that the total number of chunks it has 

uploaded to others in the previous time slot is less than 

Up, where (0,1)  is a threshold parameter and Up 

is the upload capacity of the peer. (2) Streaming Help-

ing (SH): the state when a peer is serving more 

streaming requests than helping requests, such that the 

total number of chunks it has uploaded in the time slot 

is no smaller than Up, and the fraction of chunks up-

loaded for streaming requests is no lower than 

(0,1]  . (3) Fetching Helping (FH): the state when a 

peer serves more helping requests than streaming re-

quests, such that the total number of chunks it has up-

loaded in the time slot is no smaller than Up, and the 

fraction of chunks uploaded for helping requests is no 

lower than 1 (i.e., the fraction of upload to address 

streaming requests is lower than ).  

Figure 3a illustrates the definition of the three states. 

Let N(t) denote the total number of chunks the peer 

uploads in t, and w(t) be the fraction of the streaming 

chunks uploaded. Figure 3b further gives the transition 
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among the three states, that occurs at the end of each 

time.  

3.2.2  Chunk fetching from helping channels  

At the beginning of a time slot, if a peer is in the SH 

state, it downloads only the chunks for viewing but not 

any chunks for helping. For a peer in the NH state, 

excepting downloading chunks for playback, it carries 

out a new helping channel and chunk selection proce-

dure, and fetches chunks that are chosen, as long as the 

previous fetching process is done. For peers in the FH 

state, they carry out new channel selection and chunk 

fetching less frequently, i.e., every several time slots. 

In our experiments, a peer selects a new helping chan-

nel and the corresponding chunks if it has remained in 

the FH state for 5 time slots.  

The design rationale lies in that we aim to guarantee 

sufficient upload bandwidth to serve the streaming 

requests, while maximally utilizing the surplus upload 

capacity to distribute chunks to helper peers. A peer in 

the SH state does not need to fetch more chunks from 

any helping channel, since the chunks it caches are 

already popular, as requested by many viewing peers; 

in this way, the upload consumption to serve this 

peer’s helping requests can also be saved. A peer in the 

NH state or the FH state may still need to retrieve more 

chunks from the helping channels, in order to improve 

the utilization of its upload bandwidth. Peers in the FH 

state perform channel selection and chunk fetching less 

frequently than those in the NH state, as the upload 

capacities of the former are already better utilized as 

amplifiers for helping requests.  

3.2.3  Upload schedule to serve different requests  

A peer p may fetch and cache chunks from different 

channels, as a result of the dynamic channel and chunk 

selection strategies executed over time (a LRU (Least 

Recently Using) cache replacement strategy is applied 

when the peer cache becomes full). Therefore, it may 

be assigned by the tracker server to serve viewing and 

helper peers in multiple channels.  

To schedule the upload of chunks at peer p, requests 

from the neighbors are added into a priority queue up-

on reception, where the priority of a request is decided 

as follows: (1) streaming requests have higher priori-

ties over helping requests for chunks in all channels; (2) 

among the streaming requests, a request for a chunk in 

peer p’s viewing channel is further prioritized; (3) the 

streaming requests in p’s viewing channel and those in 

its helping channels, are prioritized based on deadlines 

of the chunk playback; (4) among the helping requests, 

one is prioritized if it corresponds to a chunk or chan-

nel with larger values of chunk or channel resource 

indices. The above priority rules are also applied to 

upload scheduling at the server, excepted (2).  

In addition, a peer serves the requests within its up-

load capacity: if the number of requests received in one 

time is higher than its upload capacity, any un-

addressed request will remain in the queue, until (1) it 

has stayed in the queue over 3 times (with respect to a 

helping request), or (2) the playback deadline of the 

requested chunk has been missed (for a streaming   

request).  

We have conducted extensive evaluations of our de-

sign using real-world traces, collected from the Orbit 

Network
[25]

 over a 3-month span in 2009, which is a 

commercial P2P VoD system in China with thousands 

of concurrent online users. We use the following sta-

tistics from the traces in our experiments: (1) the 

Zipf-like popularity distribution of 3000 channels in 

the system; (2) the Poisson-like arrival patterns during 

regular times and during a flash crowd scenario; (3) 

 

(a) State division 

 

(b) State transition 

Fig. 3  Three helping states at each peer 
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peer session lengths, that a peer on average stays in a 

channel for 1=5 of the video length; (4) the number of 

videos a peer watches before leaving the system, which 

follows a Pareto distribution with range 1 to 70 and 

shape parameter k = 2. The bitrates of videos in our 

experiments are 800 Kbps and the video durations are 

900 s each. Each segment in a video has a fixed size of 

16 KB. The average number of concurrent peers in our 

experiments is 600 during regular times, and 2500 

during the flash crowd scenario. The average interval 

between two VCR commands issued by each peer is 

5 min. Peers have heterogeneous upload (download) 

bandwidths which follow a Pareto distribution with 

range 512 Kbps to 10 Mbps (2 Mbps to 10 Mbps) and 

shape parameter k = 3. We set the length of each time 

slot to 5 s. We compare in Fig. 4 the performance be-

tween our collaborative strategies and a native P2P 

VoD streaming scheme without cross- and intra- 

channel assistance. We observe a significant reduction 

of server load using our multi-channel collaborative 

strategies, as compared to the native one. On the other 

hand, our design scales with the increase of viewer 

numbers in the entire system, and it works well under 

unexpected flash crowds, as shown in Fig. 5. 

 

Fig. 4  Server load under different protocols 

 

Fig. 5  Server load during flash crowd 

4  Implementation Discussions of In-

ter-Swarm Collaboration 

Since inter-swarm collaborations require peers to join 

swarms that they are not originally supposed to, im-

plementation of addition protocols is needed at the 

peer side and the server side. We survey and discuss 

the implementation challenges of inter-swarm collabo-

ration strategies. Specifically, we divide the existing 

implementation into three categories and discuss each.  

4.1  Publisher/server-based implementation  

In this case, changes in the system implementation — 

as compared to the case without inter-swarm collabo-

ration — mainly take place at the publishers/servers, 

while protocols at peer clients remain the same. In a 

P2P file sharing system with bundled distribution of 

multiple files
[6,26]

, clients use the original protocols to 

discover neighbors and exchange file chunks with 

neighbors. The publishers of files decide which files 

are bundled and distributed together. To reduce the 

overhead of peers downloading unnecessary files, 

bundling is determined strategically
[7]

. In P2P stream-

ing systems where inter-swarm collaboration requires 

global information, e.g., the Active Channel-aware 

bandwidth Allocation (ACA) scheme in Ref. [16], the 

global information (such as the bandwidth availability 

in each of the channels) is maintained by a central 

server, in order to carry out the collaboration. 

4.2  Client-based implementation  

In a publisher/server-based implementation, it is diffi-

cult for publishers/servers to schedule inter-swarm 

collaboration at the chunk level, while typically entire 

file/streams are scheduled to be served by peers from 

other swarms. When collaboration mechanisms are 

implemented at the peers, more flexible utilization of 

peer resources can be achieved. Each peer can dynam-

ically decide which chunks in which files it should 

assist in distribution at each given time. In Zhang et 

al.’s work
[23]

, a helper locally decides how much por-

tion of a file it should preload to assist in the mul-

ti-channel P2P VoD streaming, to maximize the ratio 

of the number of copies of chunks it can effectively 

upload over the number of chunks it has preloaded. In 

Lev-tov et al.’s design
[5]

, a peer locally decides its pol-

icies of chunk download and upload in a Bit-

Torrent-like system, and only contributes in other 

swarms when its own download performance is guar-
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anteed.  

4.3  Hybrid implementation  

Pure client-based implementation may lead to subop-

timal resource utilization in the entire system, due to 

the lack of global information. To take advantage of 

both the global information at the publisher/server side 

and the flexibility of download/upload scheduling at 

the client side, hybrid implementation mechanisms 

have been proposed. In Wu et al.’s view-upload de-

coupling design of a multi-channel P2P live streaming 

system
[27]

, a streaming server determines how groups 

of uploading peers are allocated to serve peers in each 

swarm in the system; meanwhile, peers optimize their 

upload bandwidth allocation to neighbors for stream-

ing different sub-streams. In our design of a multi-      

channel P2P VoD streaming system
[24]

, the channel 

resource vector, V(t), is derived by the server and sent 

to peers for making helping channel selection decisions; 

each peer communicates with neighboring peers to 

locally calculate a chunk resource vector Sc (t), and 

decides which chunks in this helping channel c to pre-

load, based on the chunk resource vector.  

5  Concluding Remarks 

Collaboration among multiple swarms in a P2P content 

distribution system has been widely accepted as a 

promising approach to improve the utilization of peer 

resources. In this paper, we discuss important mile-

stones in the literature towards bringing inter-swarm 

collaboration into real-world P2P systems. For P2P file 

sharing systems, we point out that not only the content 

availability but also the download time can benefit 

from simple collaboration strategies such as file/chunk 

bundling. In P2P live and on-demand streaming sys-

tems, inter-channel collaboration can also be effec-

tively employed for reducing the load on dedicated 

streaming servers. In particular, we elaborate our re-

cent design of collaboration strategies for a mul-

ti-channel P2P VoD system, and show that the server 

cost can be significantly reduced while high streaming 

qualities are guaranteed in the entire system.  

Collaboration is however not free, due to the over-

head of preloading/downloading chunks that a peer 

itself does not need, and more coordination efforts at 

the servers and peers. The existing research has widely 

employed optimization and game-theoretic models, 

and designed strategical algorithms to guarantee both 

the system-wise performance gain and individual 

peer’s utility. As long as a good tradeoff between the 

performance gain and the protocol overhead can be 

achieved, we will continue to observe more and more 

real-world P2P systems to incorporate the collabora-

tive designs in the near future.  
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