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Abstract—Online microblogging has been very popular in today’s In-
ternet, where users follow other people they are interested in and
exchange information between themselves. Among these exchanges,
video links are a representative type on a microblogging site. The
impact is fundamental — not only are viewers in a video service directly
coming from the microblog sharing and recommendation, but also are
the users in the microblogging site representing a promising sample to
all the viewers. It is intriguing to study a proactive service deployment
for such videos, using the propagation patterns of microblogs. Based
on extensive traces from Youku and Tencent Weibo, a popular video
sharing site and a favored microblogging system, we explore how video
propagation patterns in the microblogging system are correlated with
video popularity on the video sharing site. Using influential factors
summarized from the measurement studies, we further design a neural
network-based learning framework to predict the number of potential
viewers and their geographic distribution. We then design proactive
video deployment algorithms based on the prediction framework, which
not only determines the upload capacities of servers in different regions,
but also strategically replicates videos to these regions to serve users.
Our PlanetLab-based experiments verify the effectiveness of our design.

Index Terms—Online microblogging, video streaming, video service
deployment

1 INTRODUCTION

Recent years have witnessed the blossom of microblog-
ging services in the Internet, e.g., Twitter, Google+, Plurk.
In a microblogging system, users can create and maintain
social connections among each other, as well as sub-
scribe to contents shared by others from external content
sharing system, as followers [1]. Among the variety of
contents to exchange, links to videos on video sharing
sites are a popular type — users from microblogging
exchanges are constituting a large portion of viewers in
YouTube-like video sharing sites [2]. Popularity patterns
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of such socialized videos have greatly changed as follows:
(1) video popularity is highly effected by the online
social networks; (2) the popularity becomes more instan-
taneous [3]. These changes make traditional popularity-
based approaches for video service deployment subop-
timal, if not completely ineffective [4].

Since a microblogging system is closely connected
to many content sharing sites, it ideally samples valu-
able information about how users produce and share
contents from those sites. Video propagation models in
a microblogging system can be exploited for a better
prediction of video popularity patterns, so as to improve
the service quality of a video sharing system In this pa-
per, we advocate to exploit the sampling and prediction
capabilities of a microblogging system to provide better
Internet video services.

In a typical video sharing site today, large volumes of
videos are uploaded by users, with viewers from all over
the world. In 2013, more than 100 hours’ worth of videos
were uploaded every minute in YouTube, serving up to
1 billion unique viewers every month [5]. A common
practice to provide these video services is to replicate
videos in servers at different geographic locations [6],
but it is impractical to replicate all the videos in every
location. An effective and adaptive replication strategy
to serve the dynamic demand for different videos in
different geographic regions, is in need.

In this paper, we propose to exploit video sharing
patterns from a microblogging system for this purpose.
The potential benefits are two-fold: (1) a video sharing
site typically has no information about how video views
propagate among its users, while a view propagation
model could enable more effective view prediction; (2)
the exchanges of video links in a microblogging system
typically happen earlier than the actually video views
on a video sharing site, and the time lag between both
events can allow more timely and proactive deployment
of videos. Based on our preliminary findings of the
connection between the popularity of a video and how
the video is shared in a microblogging system [7], in
this paper, we focus on employing video microblog
propagation patterns to improve the deployment of
video services. Our contributions can be summarized as



follows.
▷ In Sec. 3, we explore connections between mi-

croblogging exchanges of video links and popularity
of videos, based on extensive traces collected from
Tencent Weibo (hereafter, Weibo, a Twitter-like Chinese
microblogging system) and Youku (an Internet video
sharing site with immense popularity in China). We
identify important characteristics of Weibo, which influ-
ence video access patterns on Youku: (1) the number
of users that have imported a video to Weibo, (2) the
number of users which re-share links to the video to their
followers, (3) the number of followers that the video
link share can reach, and (4) the geographic distribution
of Weibo users.
▷ In Sec. 4, we exploit these influential factors in the

design of a neural network-based learning framework,
for predicting the number of potential viewers of differ-
ent videos and the geographic distribution of viewers.
The accuracy of our prediction models is verified by
trace-driven cross-validation experiments, as compared
to a classical approach of linear regression-based fore-
casting.
▷ In Sec. 5, we further design a proactive video

deployment algorithm based on the prediction frame-
works. The algorithm can significantly improve the
video download performance of users, according to our
trace-driven experiments.

2 RELATED WORK

Many architectures have been proposed to implement
a large-scale video service, which distributes videos
to users across the Internet as follows. (1) Server-based
strategies, e.g., the content distribution networks (CDNs)
[8], which have powered today’s dominating HTTP
streaming. (2) Client-based strategies, e.g., peer-to-peer
content distribution were widely used in live video
distribution and on-demand video distribution [9]. (3)
Hybrid strategies, e.g., a hybrid CDN and P2P distribution
framework [10]. Traditional video distributions generally
work in a passive way, in that video replication and
cache are scheduled according to the video access pat-
terns perceived by the servers or peers, e.g., using linear
regression approach to infer the future popularity of a
video [11].

Video services in the Web 2.0 era focus more on the
“social effects”, including user experience, user partici-
pation and interaction with rich media. The impact of
such social effects is fundamental, because of not only
the huge amount of videos generated by users, but also
the change of the video popularity distribution[12]. Li
et al. [13] have studied the video sharing in the online
social network, and observed the skewed popularity dis-
tribution of contents and the power-law activity of users.
Traditional video distribution strategies designed with-
out the consideration of such social influence, achieve
sub-optimal performance in distributing videos in the
context of online social network. Saxena et al. [14] have
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Fig. 1. Popularity of the sampled videos.

revealed that at some locations, the average service delay
of YouTube used to be as large as 6.5 seconds, due to the
inefficient replication and distribution strategies [6], e.g.,
the slow reaction to the popularity change.

Only by carefully considering the social network in-
formation can the video sharing systems effectively dis-
tribute social/socialized video contents. Krishnamurthy
et al. [15] have investigated an online microblogging
system, Twitter, and identified distinct classes of Twitter
users and their behaviors, as well as geographic growth
patterns of the social network. With increasing popular-
ity, a microblogging system resembles the real society. In-
terests, beliefs, and behavior of users in a microblogging
system are representative of those in the real world [16].
To exploit the similarities, Ritterman et al. [17] advocated
to forecast a swine flu pandemic based on a belief change
model summarized from Twitter. In context of content
popularity prediction based on a microblogging system,
different models have been used for prediction in a
variety of scenarios, including various linear regression
models [18] and machine learning models [19]. Yang et
al. [20] investigate the prediction of information diffusion
in Twitter, in terms of the speed, scale, and range. Szabo
et al. [21] study how to predict the popularity of con-
tents on Digg and YouTube, using their own historical
popularities. To the best of our knowledge, we are not
aware of any existing study exploiting characteristics of a
microblogging system to predict video access in another
external video sharing system.

3 MEASUREMENTS AND ANALYSIS

3.1 Collection of Traces

We have obtained traces from Youku and Weibo as
follows.

Youku. In our study, we collected 2, 291 representative
videos from 5 popular categories on Youku, including
“Music”, “News”, “Entertainment”, “Baby” and “Orig-
inal”. As video sharing systems usually do not share
detailed video popularity information, we crawled the
view numbers of the videos periodically, so as to study
their popularity change over time. The crawling was
carried out during June 20 to June 30, 2011, on an hourly
basis to avoid being blocked from frequent crawling.
Each trace log indicates the cumulative number of views
of each video since when the video was published until
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Fig. 2. The number of views vs. the
number of root users in the previous
time slot.
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Fig. 3. The number of views vs. the
number of re-share users in the previ-
ous time slot.
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Fig. 4. The number of views vs. the
number of influenced users in the pre-
vious time slot.

when the log was recorded, based on which we can
calculate the average number of views of a video in each
hour.

These 2, 291 videos cover a large variety of populari-
ties, in terms of the number of views and comments. As
illustrated in Fig. 1(a), each sample represents the total
number of views of a video since its publication until
the end of the ten days, versus the rank of the video.
In Fig. 1(b), each sample represents the total number of
comments posted by users (Youku allows users to post
comments to videos) starting from its publication to the
end of the ten days, versus the rank of the video. We
observe that our dataset contains representative videos
in a sense that they cover a large variety of popularities.

Tencent Weibo. We obtained Weibo traces from the
technical team of Tencent, containing valuable runtime
data of the system in the entire span of June 2011.
Each entry in the traces corresponds to one microblog
published, including ID, name, IP address of the pub-
lisher, time stamp when the microblog was posted, IDs
of the parent and root microbloggers if it is a re-post,
and contents of the microblog. We parsed the traces
and obtained 4, 468, 398 microblogs related to the videos
above, i.e., the microblogs that either contain the links
to the videos or are re-shares of the microblogs that
contain the links. In our study, we also used the social
relationship between users involved in these microblogs.

3.2 View Number Predictability

To investigate the correlation between video link prop-
agation on Weibo and the actual number of viewers in
Youku, we study the following measurements in Weibo
traces.

Number of Views and Number of Root Users. On
Weibo, different users may introduce links to the same
video on Youku from time to time, each of whom
becomes a root user in this video’s propagation. The more
root users a video has, the more likely the video can
attract more views in the future. With all the samples
we collected, a Pearson’s sample correlation coefficient
[22] of 0.31 is computed from the pairs of the numbers
of root users and the numbers of views at a lag of 1

time slot (in this paper, each time slot is 4 hours) for
these videos, showing positive correlation between the
two quantities, as illustrated in Fig. 2.

Number of Views and Number of Re-share Users.
Similarly, when more users are re-sharing (referred to
as re-share users) the links to their followers, the more
views can be expected on Youku. We have computed a
Pearson’s sample correlation coefficient of 0.29 between
the pairs of the numbers of re-share users and the
numbers of views at a lag of 1 time slot. Again, positive
correlation is observed between the two quantities, as
illustrated in Fig. 3.

Number of Views and Number of Influenced Users.
The influenced users on Weibo (followers of root and re-
share users of a video link, who can see the microblogs of
the video) may likely become actual viewers on Youku
themselves. Specifically, a Pearson’s sample correlation
coefficient of 0.15 is derived from the pairs the numbers
of influenced users and the numbers of views at a lag of
1 time slot, as illustrated in Fig. 4.

3.3 Geographic Distribution Predictability

For video service deployment, we also need information
about geographic distribution of viewers of different
videos. Since Weibo users sharing a video link are
“samples” of all viewers of that video on Youku, we
investigate the geographic distribution of Weibo users
who have published a microblog containing a link to
the video, and use it to estimate the distribution of all
viewers in Youku. The rationale is that such microblogs
are published by root and re-share users of the video,
who may well have just viewed the video before posting
the microblogs. Our design in this paper, however, is
not limited to the Weibo sample of viewers’ geographic
distribution.

Given that the majority of viewers of Youku videos are
in China, we consider 5 representative regions in China,
namely BJ (Beijing), SH (Shanghai), SZ (Shenzhen), CD
(Chengdu) and XA (Xi’an), where large CDNs in China
commonly deploy data centers [23], and an overseas re-
gion, referred to as OS (overseas). We useR to denote the
set of these regions, i.e.,R = {BJ, SH, SZ,CD,XA,OS}.
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We map the IP addresses of users in our Weibo traces to
the six regions using an IP-to-location mapping database,
and estimate the geographic distribution of viewers of
video v at time T by a 6-dimensional vector

GT
v = {rBJ

v (T ), rSH
v (T ), rSZ

v (T ), rCD
v (T ), rXA

v (T ), rOS
v (T )},

where rXv (T ) is the normalized fraction of Weibo mi-
croblogs containing links to video v, posted by users in
region X in time slot T , and rBJ

v (T )+rSH
v (T )+rSZ

v (T )+
rCD
v (T ) + rXA

v (T ) + rOS
v (T ) = 1.

Skewed Geographic Distribution. Fig. 5 plots the
average fraction of microblogs posted in each region
containing links to each of the videos, among all the
microblogs posted for all videos in the ten-day trace
span. We observe that the distribution over different
regions is highly skewed: as large as 40% of viewers of
over 50% of the videos reside in Beijing and Shanghai
regions, while very small fractions of viewers are from
the overseas. This observation indicates that heteroge-
neous video service deployment is needed for different
regions.

Predictability of Future Geographic Distribution. To
investigate whether future geographic distribution can
be predicted by historical distributions, we plot in Fig. 6
the fraction of microblogs posted in a region in time
slot T (i.e., rXv (T ), X ∈ R), versus that in the previous
time slot T − 1 (i.e., rXv (T − 1)) , for each of the regions
(X ∈ R) and each of the videos (v ∈ V). Positive
correlation between the two can be observed, with a
correlation coefficient of 0.29. This observation suggests
that historical geographic distribution can potentially
predict the future distribution.

3.4 Impact of Measures at Different Time Lags

Besides observing correlations between numbers of
root/re-share/influenced users (resp. fraction of Weibo
users of a video) in time T −1 and Youku view numbers
(resp. fraction of Weibo users of a video) at T , we further
investigate the correlation at different time lags between
the two. To avoid the impact of videos that are only
viewed in a very short time span, we have selected 100
videos that have a relatively long popularity span, i.e.,
they were regularly viewed by users in 10 days.
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Fig. 7. Influence of the numbers of root/re-
share/influenced users on the view number and
geographic distribution at different time lags.

First, for each of the 100 selected videos, we calcu-
late the Pearson correlation coefficient between a 10-
day series of the number of views of the video on
Youku and a 10-day series of the number of root/re-
share/influenced users of the video, at different time
lags between the two series, respectively. In Fig. 7(a),
each sample represents the average correlation coeffi-
cient over those of all videos, calculated at a specific time
lag between the involved time series. We see that the
correlation weakens as the time lag becomes larger, and
the correlation coefficients are quite small when the lag
is larger than 7 days. Hence, we will use measurements
collected in the previous 7 days for the prediction of
view numbers only.

Second, we plot in Fig. 7(b) the Pearson correlation
coefficients between the fractions of a video’s microblog-
gers in the six regions at T and those at different time
lags, where each sample is the average over those of all
100 videos with data extracted from a 10-day interval.
Similarly, recent geographic distributions have more in-
fluence on the future geographic distribution, which will
be weighted more in our prediction model in Sec. 4.

4 NEURAL NETWORK FOR VIEW PREDICTION

When making video service deployment decisions, the
video service provider is interested to know two things
about a video in the near future: (1) Will the video attract
more or fewer viewers, so that more or fewer servers
should be allocated to serve the video? (2) Servers in
which regions should be used, so as to best satisfy these
users from different locations?

4.1 Using Neural Network as Prediction Model

In our design, we predict the number of views of a video,
and the geographic distribution of the viewers, based on
historical information from the microblogging system,
using neural networks.

Merits of using neural networks. (1) Neural networks
have been proven effective for time series prediction [24],
as what we are pursuing. (2) According to our mea-
surement study, the relationship between the number
of root/re- share/influenced users and the number of



Youku views can be non-linear. Neural networks are
effective for learning such non-linear relationship [25].

The structure of the neural networks. In our study,
we train two neural network models, (A) one for the
prediction of the total number of views of a video, and
(B) the other for forecasting the geographic distribu-
tion of viewers. We use a 3-layer feed-forward neural
network for both predictions, since it has been proven
that multilayer neural networks with only one hidden
layer are universal approximators [26]. In predicting
video views, the structure of the neural network may
remain for a relatively long time, but the training of
the networks may take place frequently, using the new
training dataset in the most recent time slots, as long
as the video service provider has enough computation
resource.

4.2 Constructing Input Features

To use the social measurements in Sec. 3 as input fea-
tures, we need to decide a time window, a frequency for
feature exaction in the time window (i.e., the number of
time slots sampled in the time window), and the weight
of each feature in the learning framework.

Time Window. We use a proper time window to avoid
noisy features to be selected for the training. According
to Sec. 3.4, the correlation between the number of Youku
views and its influential Weibo measurements (i.e., the
numbers of root/re-share/influenced users), as well as
the correlation between the geographic distribution of
viewers and its influential measurements (i.e., the histor-
ical fraction of users residing in different regions), are
weaker when the time lags are larger. Hence, we only
extract features within the recent 7 days to train neural
networks (A) and (B). For a newly published video with
a lifetime shorter than 7 days, we use measurements
throughout its past lifetime.

Frequency. The features are extracted from the follow-
ing time slots: T − 1, T − 7, T − 13, . . ., i.e., consecutive
features are collected with a time interval of 24 hours
(recall that each time slot is 4 hours), to capture the daily
patterns. Let M denote the number of days the features
are extracted.

Weight. Existing studies have shown that the learning
performance of a neural network model can be im-
proved by properly weighting the input features [27]. We
weight the features from different time slots according
to their levels of correlation with the prediction targets.
In Fig. 7(a) and (b), the curves of Pearson correlation co-
efficients can be fitted well by generalized bell functions
f(x) = e

1+| x−c
a |2b

+ d (in Fig. 7, for simplicity, we denote

a particular bell function by “e(a, b, c) + d”). Hence, we
weight the number of root/re-share/influenced users, to
be used as features in neural network (A), by α(x) =

0.6
1+|x/3|4 + 0.1, and the past geographic distributions of
viewers, which are used as features in neural network
(B), by β(x) = 0.85

1+|x/3|4 , where x is the time lag between

the time slots when the prediction target and the corre-
sponding features happen, respectively.

In our design, we use RT
v (i), ST

v (i), and ITv (i) to denote
the number of root, re-share, and influenced users of
video v in the ith time slot in the time window before
T , respectively. We use GT

v,r(i) to denote the fraction of
microblogs of video v posted by users in region r in the
ith time slot in the time window before T .

Let XT
v and Y T

v be the features of the sam-
ples for training neural network (A) and neu-
ral network (B), respectively. We have XT

v =
{α(i)RT

v (i), α(i)S
T
v (i), α(i)I

T
v (i)|i = 1, 2, . . . ,M} in neu-

ral network (A), and features Y T
v = {β(i)GT

v,r(i)|∀r ∈
R, i = 1, 2, . . . ,M} in neural network (B).

4.3 Samples for Training and Evaluation

To train and evaluate the neural networks, we first
pre-labeled samples from the traces, and each sample
consists of the input features and the prediction target(s).
In neural network (A), a sample is {XT

v , V̄
T
v }, where

V̄ T
v is the vector denoting the level of view number of

video v in time slot T . Using the level of view number
is sufficient for bandwidth allocation, and can provide
much better prediction accuracy than using the exact
view number. According to the popularity distribution of
the videos illustrated in Fig. 1(a), we classify the number
of views N for a video into 5 levels: (1) N < 500,
(2) 500 ≤ N < 5000, (3) 5000 ≤ N < 10000, (4)
10000 ≤ N < 100000, and (5) N ≥ 100000. V̄ T

v is
a 5-dimensional binary vector with V̄ T

v [i] = 1 and
V̄ T
v [j] = 0, ∀j ̸= i, denoting that the number of views

belongs to the ith level. The rationale of classifying the
view numbers into different levels is that in video service
deployment, the level of view numbers determines the
bandwidth resource needed.

On the other hand, in neural network (B), a sample is
{Y T

v , GT
v }, where GT

v is a 6-dimensional vector in which
each element represents the fraction of microblogs of the
video posted in one of the six regions in R in time slot
T , respectively.

In summary, we totally have 35, 000 samples for the
neural network training and evaluation, corresponding
to 1000 videos, covering both old videos and newly
published ones. We randomly use 6, 000 of them for the
evaluation, and the other 29, 000 for the training process.

4.4 Training Neural Networks

Training Neural Network (A). The output layer in the
neural network for predicting the number of views,
consists of 5 neurons, corresponding to the elements in
vector V̄ T

v , respectively. The input layer has 3M nodes,
corresponding to the feature set XT

v , i.e., M = 7 for old
videos, and M = 1, 2, . . . , 6 for new videos published
M days ago. In the hidden layer, the number of neurons
is decided as follows: we vary the number of hidden
neurons from 15 to 25, and measure the number of



samples whose view numbers can be classified into the
correct levels, using a validation set containing 25% of all
samples from the training set (i.e., 7, 250 samples out of
29, 000). We observe that 15 hidden neurons can achieve
the best results in cases of old videos with a lifetime
longer than 7 days, and 18 hidden neurons are needed
for most of the new videos.

Training Neural Network (B). The output layer in the
neural network for predicting the geographic distribu-
tion of viewers corresponds to the 6-dimensional vector
GT

v . The input layer corresponds to a 6M -dimensional
vector, containing M vectors of viewer geographic dis-
tributions (each element is the fraction of microbloggers
of video v in each of the six regions) in the previous
M days. To determine the number of neurons in the
hidden layer, we measure the MSE (mean squared er-
ror) between the output geographic distribution vector
and the actual geographic distribution vector. A smaller
MSE indicates that the predicted geographic distribution
vectors are more accurate, i.e., the differences between
the actual geographic distribution vectors and them are
smaller. Neural network (B) for geographic distribution
prediction is trained using the same traces as used in
training Neural network (A), and our training results
give that 20 hidden neurons provide the best accuracy
for old videos, and 35 hidden neurons for new videos.
Next, we will evaluate the accuracy of both the neural
network models.

4.5 Evaluating the Predication Accuracy

We evaluate the accuracy of our neural network models
using the 6000 samples. We compare the accuracy of
our neural networks with that of a linear regression
approach [11], in which the parameters (i.e., γ, ϵ) in the
linear model (i.e., y = γx + ϵ), are calculated based on
minimizing the squared error of the M samples — the
view numbers or user geographic fractions (i.e., y), and
time points (i.e., x) as used for training samples in our
neural network models.

Fig. 8 shows the evaluation results. We observe that
our neural network models achieve much better pre-
diction accuracy than that achieved by the linear re-
gression approach. In addition, the number of views
and geographic distribution of old videos can be better
forecasted, than those of the new videos, due to the
fewer number of features in the learning framework
for new videos. These results indicate that in today’s
social video sharing, using social information which
reflects how videos are shared among users through
social connections, for predicting video popularity is
promising.

5 ENHANCED VIDEO SERVICE DEPLOYMENT

5.1 Deployment Scheme and Objective

A distributed video service platform involves data cen-
ters in different geographic regions. In each data center,
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Fig. 8. Prediction accuracy: a comparison.

there is a shared storage backbone that stores the de-
ployed videos, and streaming servers that upload the
videos to the requesting viewers. Better Internet connec-
tivity and upload bandwidth can be achieved when a
user downloads the video from a server located at a
region that is close to the user [28].

The objective of our deployment algorithms is to
proactively decide the total amount of upload band-
width to reserve in each data center for this video
service, which videos to be replicated in each data center
at each time, and how to schedule the upload to viewers
of different videos from different regions, so that little
video download delay is experienced by the viewers in
the entire system.

Let binary vector FT
v = {fT

v,r|∀r ∈ R} denote the
replication plan for video v in time slot T , where fT

v,r = 1
indicates that video v is stored in region r in T and
fT
v,r = 0 otherwise. We use ci,r to denote the gain for

a user in region i to download a video from servers
in region r, which is calculated as the inverse propor-
tion of the average delay between regions i and r, i.e.,
ci,r = 1

RTT (i,r) , where RTT (i, r) is the average round-trip
time (RTT) between the two regions (other gain function
can also apply in our design, e.g., end-to-end bandwidth,
etc.). When downloading a video, a viewer in region i
first tries to request it from servers with the smallest RTT,
so as to achieve the largest gain. If servers in that region
are not able to serve this request, the viewer’s request
is redirected to the next best region, until the request
is eventually served. On the other hand, a streaming
server serves all the requests when it has enough upload
bandwidth; otherwise, it selects the requests to serve, by
prioritizing those from regions with small RTTs to the
region where the server is located.

5.2 Regional Upload Bandwidth Reservation

Video upload bandwidth in each region is purchased
from the respective Internet service providers. Let W
denote the total budget that the video service provider is
willing to spend on the upload capacity. We decide the
amount of upload bandwidth to reserve in each region
according to the average number of concurrent requests
Vr,∀r ∈ R, and the unit prices Pr, ∀r ∈ R, for upload
bandwidth in different regions. Suppose that every video
request is served by one unit upload bandwidth.



The upload bandwidth reservation in each region is
carried out every L time slots, considering the practice
that bandwidth reservations are made for long periods
in the real world. We compute Vr as the average number
of concurrent requests from region r in the previous L
time slots. We determine the bandwidth reservation by
solving the following optimization problem:

max
U

∑
r∈R

zr(Ur) (1)

subject to:∑
r∈R

PrUr ≤W, and Ur ≥ 0, ∀r ∈ R,

where U = {Ur, ∀r ∈ R}, and Ur is the upload capacity
reserved in region r. zr(Ur) is the gain for reserving
upload capacity Ur in region r. Suppose cr0,r ≥ cr1,r ≥
cr2,r . . . ≥ crR−1,r, where r0 = r and ri ∈ R \ {r}, i =
1, . . . , R − 1 (Recall ci,r = 1

RTT (i,r) ). zr(Ur) is defined as
follows:

zr(Ur) =



cr0,rUr, if 0 ≤ Ur ≤ Vr0 ;

zr(Vr0) + cr1,r(Ur − Vr0), if Vr0 < Ur ≤ Vr0 + Vr1 ;

. . .

zr(
∑R−2

i=0 Vri) + crR−1,r(Ur −
∑R−2

i=0 Vri),

if
∑R−2

i=0 Vri < Ur ≤
∑R−1

i=0 Vri ;

zr(
∑R−1

i=0 Vri), if
∑R−1

i=0 Vri < Ur.

The rationale is as follows: When the reserved upload
capacity in region r is no larger than the amount needed
for serving all requests in the region, all the reserved
bandwidth in r is to be used to serve only the requests
from r, achieving a gain of cr,rUr. When the reserved
upload capacity in region r is more than that needed
for serving this region, the extra bandwidth is first to
serve requests from region r1 with the largest cr1,r (i.e.,
smallest delay to r), achieving an additional gain of
cr1,r(Ur − Vr); if there is further bandwidth left, it can
be used to serve requests from region r2, and so on.

We design Algorithm 1 to solve the optimal band-
width reservation problem in (1): We always allocate
a certain amount of upload bandwidth (∆) to region
r′ with the current largest positive marginal gain per
unit price z′r(Ur)/Pr, where the marginal gain z′r(Ur) is
derived as follows:

z′r(Ur) =



cr0,r, if 0 ≤ Ur ≤ Vr0 ,

cr1,r, if Vr0 < Ur ≤ Vr0 + Vr1 ,

. . .

crR−1,r, if
∑R−2

i=0 Vri < Ur ≤
∑R−1

i=0 Vri ,

0, if
∑R−1

i=0 Vri < Ur.

The amount of upload bandwidth to allocate to region
r′ is computed by ∆ = min(

∑k
i=0 Vr′i − Ur′ ,W

′/Pr′),
where

∑k−1
i=0 Vr′i ≤ Ur′ <

∑k
i=0 Vr′i , and W ′ denotes

the remaining budget. r′i, i = 0, 1, . . ., are the series of
regions such that cr′0,r′ ≥ cr′1,r′ ≥ cr′2,r′ ≥ . . .. Region
k is the one selected from the ranked regions whose

Algorithm 1 Upload bandwidth reservation for different
regions (executed every L time slots)

1: procedure UPLOADALLOCATION(W,Pr, cri,r, i =
1, . . . , R− 1, ∀r ∈ R)

2: Update Vr∀r ∈ R as the average number of
concurrent video requests

3: Ur ← 0,∀r ∈ R
4: W ′ ←W
5: while W ′ > 0 and ∃r ∈ R, z′r(Ur) > 0 do
6: Choose the region r′ with the largest

z′r(Ur)/Pr among all the regions
7: if ∃k,

∑k−1
i=0 Vr′i ≤ Ur′ <

∑k
i=0 Vr′i then

8: ∆← min(
∑k

i=0 Vr′i − Ur′ ,W
′/Pr′)

9: Ur′ ← Ur′ +∆
10: W ′ ←W ′ − Pr′∆
11: end if
12: end while
13: end procedure

viewing requests are to be served by servers in region
r′, to achieve the largest gain. Then we deduct Pr′∆
from the budget W ′ and repeat the allocation until all
the budget is used up or the upload capacities allocated
can serve all the requests already.

The complexity of Algorithm 1 depends on the num-
ber of regions to allocate the upload bandwidth resource
to. In particular, the algorithm iteratively allocates the
upload bandwidth to the “slots” in each region, where
a slot represents the amount of bandwidth allocated
in each iteration. Thus, the time complexity of this
algorithm is O(|R|2 log |R|), where log |R| is a result of
maintaining a heap structure for the ranking. Since there
are only tens of regions deployed by a large video service
provider, this algorithm can be carried out effectively
even in a centralized manner.

5.3 Video Replication
Next, we use the following heuristic algorithm to repli-
cate videos to these regions, as summarized in Algorithm
2.

(i) Predicting views using neural network models.
The video service provider collects statistics from the
online microblogging system, i.e., the number of root/re-
share/influenced users and the geographic distribution
of video microblogs in the previous M days, and esti-
mates the level of views, V̄ T

v , and the geographic distri-
bution of views, GT

v,r, of each video from each region in
the next time slot, using our proposed neural networks.
Note that the neural network models are calibrated at
the end of each time slot, based on the newly collected
view numbers and distribution.

Let V T
v,r denote the predicted number of concurrent

video requests from region r for video v in time slot
T , which is derived by V T

v,r = avg(V̄ T
v )GT

v,r
tv
tt

, where
avg(V̄ T

v ) is the average number of views in output level
V̄ T
v . We assume that the video popularity is uniformly



distributed in the popularity groups (1–4), and the aver-
age number is then calculated as follows, avg(1) = 250,
avg(2) = 2750, avg(3) = 7500, avg(4) = 55000, and for
the last popularity group 5, we let avg(5) = 150000,
where avg(5) corresponds to videos with the number
of views larger than 100000 – there are very few videos
with view number larger than 100000 and the average
number is closer to 150000, as illustrated in Fig. 1(a). tv
is the average service time for a request of video v and
tt is the time slot length (tv << tt, since tv is generally at
minutes for short videos and tt is 4 hours). In doing so,
we seek to use the number of concurrent video requests
for bandwidth allocation (recall that each video request
is served by one unit upload bandwidth).

(ii) Replicating videos to different regions. Let
qv(i, j, F

T
v ) denote the estimated number of concurrent

viewing requests for video v from region i that will
be sent to region j under replication plan FT

v in T .
According to the request service scheme discussed at the
beginning of this section, qv(i, j, FT

v ) can be derived as
follows:

qv(i, j, F
T
v ) =


0, if fT

v,j = 0
0 fT

v,i = 1, i ̸= j

V T
v,i i = j

V T
v,i∑

k∈R fT
v,k

fT
v,i = 0

, if fT
v,j = 1

.

The rationale lies in the following: (1) if v is not deployed
in j or v is deployed in i itself, where i ̸= j, no request
for video v from region i is to be sent to region j, i.e.,
qv(i, j, F

T
v ) = 0; (2) if i = j and the video is deployed in

region i (j), all requests are potentially served locally,
i.e., qv(i, j, F

T
v ) = V T

v,i; and (3) if v is not deployed
in i but deployed in j, each region caching the video
receives an equal share of the requests from i, assuming
users’ region preference is uniformly distributed, i.e.,
qv(i, j, F

T
v ) =

V T
v,i∑

k∈R fT
v,k

. We calculate the gain of video v

under a particular deployment plan FT
v as follows:

Bv(F
T
v ) =

∑
r∈R

∑
i∈R

ci,rqv(i, r, F
T
v ).

To find out whether a video should be replicated to
a particular region, we evaluate a marginal gain bv,r,
which represents the potential improvement in video v’s
gain if v is to be deployed in region r, than not deployed:

bv,r = Bv(F
′T
v )−Bv(F

T
v ), (2)

where F ′T
v = {f ′T

v,i|∀i ∈ R}, and f ′T
v,i =

{
fT
v,i, i ̸= r

1, i = r.

We first initialize FT
v ← {0, 0, . . .}, ∀v ∈ V , so that

videos will be deployed according to their requests in
the current time slot. Let B = {bv,r|∀v ∈ V, ∀r ∈ R}, and
sort B in descending order. To best utilize the reserved
bandwidth Ur in each region r, each time we select a
video-region pair with the largest bv,r, deploy video v in
region r in T (or retain video v in region r in T if it is
already deployed) if r still has enough upload capacity to

Algorithm 2 Video Deployment based on Prediction.

1: procedure VIDEODEPLOYMENT(V̄ T
v , GT

v , ∀v ∈ V)
2: Initialize FT

v ← {0, 0, . . .}, ∀v ∈ V
3: Calculate bv,r, ∀v ∈ V, ∀r ∈ R, according to Eq. (2)
4: B ← {bv,r|∀v ∈ V,∀r ∈ R}
5: Sort B in descending order
6: Q(v, r, FT

v )←
∑

i∈R qv(i, r, F
T
v ), ∀v ∈ V, ∀r ∈ R

7: while ∃r, Ur >
∑

v∈V Q(v, r, FT
v ) and B ̸= Φ do

8: Pick the largest bv,r in the sorted order of B
9: f ′T

v,r ← 1

10: if Ur −
∑

k∈V Q(k, r, FT
v ) ≥ Q(v, r, F ′T

v ) then
11: FT

v ← F ′T
v

12: Update bv,l, ∀l ∈ R
13: Re-sort B in descending order
14: end if
15: Remove bv,r from B
16: end while
17: end procedure

serve all the requests for the video that will be sent to r,
and remove bv,r from B. If v is deployed in r, bv,l, ∀l ∈ R
should be updated and B is resorted. The steps repeat
until none of the regions has upload capacity left or there
is no video-region candidate in set B.

The complexity of Algorithm 2 depends on ranking
B and maintaining the rank in lines 7–16. The time
complexity is thus O(|V||R| log |V||R|) ∼ O(|V| log |V|),
since |R| ≪ |V|. The algorithm is efficient enough
when the candidate video set is small (e.g., the most
recently published videos are to be deployed) and the
deployment is not adjusted very frequently – we will
evaluate the performance of the deployment by varying
the execution interval in Sec. 5.4.

5.4 Evaluating the Video Service Performance

5.4.1 Setup of Trace-driven PlanetLab Experiments
▷ Geo-distributed servers. We implement our algorithms
in C++ and deploy them on PlanetLab [29]. We use
5 PlanetLab nodes in China and 1 node in the US,
corresponding to the regions studied. Each PlanetLab
node acts as a video streaming server. This setting is
only limited by the traces, and our design can scale when
more regions are used in the prediction.

▷ Video deployment and user requests. We use the 1000
videos as described in the measurement studies in Sec. 3.
The length of each video is 10 minutes and the streaming
rate is 600 Kbps. Each server is assigned a number of
videos in each time slot to serve according to the deploy-
ment algorithms. A PlanetLab node also generates the
requests from viewers in that region, which are sent to
different regions according to the video service scheme
discussed in Sec. 5.

▷ Traces and parameters. We emulate the actual video
visits recorded in our Youku traces in each time slot and
the geographic distribution of viewers from our Weibo



traces. The video requests in each time slot are uniformly
distributed in a time slot. The upload bandwidth prices
in the regions are randomly assigned in the range of
[0.5, 1.5] per MB, and the default budget for the deploy-
ment is 20, 000. Parameter M is set as the same used in
the prediction model (i.e., 7 for old videos and n for new
videos published n days ago), and L is set to 6 so that
the allocation is performed everyday.
▷ Benchmark. For benchmarking the performance, we

measure the delay between the time a viewer issues a
request and the time it receives the first 1, 000 KB of
the video stream, which is the typical size of the video
data before a viewer starts the playback. This delay
consists mainly of the RTT between the request and
service regions, as well as the queueing and processing
delay at the server.

5.4.2 Experimental Results
An Overview of Performance Comparison. First, we
compare the performance of different upload bandwidth
reservation schemes: (1) our scheme given in Algorithm
1; (2) a random allocation scheme in which a small
amount of upload bandwidth is progressively allocated
to a randomly selected region, until the total expense
exceeds the budget; (3) a proportional allocation scheme
where each time a small amount of upload bandwidth
is allocated to a region selected randomly according to a
probability that is proportional to the number of views
in that region, i.e., more upload bandwidth is allocated
to a region with more viewing requests. Under each
upload bandwidth reservation scheme, the same video
deployment algorithm (Algorithm 2) is employed.

In Fig. 9, we observe that our bandwidth reservation
scheme can achieve much smaller delays for the viewers,
given that not only the number of viewing requests in
each region, but also the user preference of different
regions to receive videos from are incorporated in our
design.

We also study the request load of these service regions
under different upload reservation schemes. In Fig. 10,
each sample represents the fraction of requests served by
a region versus the region’s rank. We observe that in our
design, the request load is neither very uniformly dis-
tributed as achieved by the random scheme, nor highly
skewed as in the proportional approach. Instead, our
upload bandwidth allocation scheme supplies adequate
bandwidth in each region that matches the number of
requests in that region. The reason is that our reservation
is based on the microblogging prediction framework,
which provides a better estimation of future requests in
a region than the proportional scheme.

Impact of Deployment Interval. The video deploy-
ment algorithm is carried out periodically, but frequent
changes of deployment may face potential challenges:
(1) videos may need to be frequently replicated among
regions, incurring migration bandwidth consumption;
(2) input features to the learning frameworks need to be
collected frequently, incurring heavy load on the online
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microblogging system. We evaluate performance of the
video service system when the video deployment is
carried out in different intervals. Fig. 12 shows that for
both our video deployment algorithm and the linear
regression based scheme, the delay increases when the
interval for deployment becomes larger; while for both
the full replication and random deployment schemes, the
delays remain at the same level regardless of the interval
lengths. The results indicate that the deployment interval
affects the performance of our design, and frequent
adjustments of video deployment should be applied
as long as the features from the online microblogging
system can be collected timely.

Impact of Deployment Budget. We next compare
our video deployment algorithm in Algorithm 2 with
the following strategies: (1) a linear regression (LR)
based scheme, i.e., the same video service deployment
algorithm but using the linear regression approach to
predict the number and geographic distribution of video
views; (2) a random deployment scheme, where each
video is replicated in 1 randomly selected region in each
time slot; (3) a full deployment scheme, where each
video is replicated to all the 6 regions. As for upload
bandwidth reservation, we use the same scheme as in
Algorithm 1 but under different budgets. In Fig. 11, we
observe that our video deployment algorithm performs
much better than the other schemes, especially when the
budget is small. When the budget is larger than 25, 000,
which is about enough for purchasing bandwidths to
serve all requests locally, all the schemes achieve similar
delays. The observation indicates that compared to other
schemes, our algorithm works effectively for a larger
range of deployment budgets, since it more precisely de-
ploy videos to a region with enough bandwidth, where
they will be requested by many users in that region;
while in the other deployment schemes, many viewing
requests are redirected to regions without enough band-
width capacity, resulting in large delays.

Impact of Prediction Accuracy. We compare the de-
lays at viewers of old videos and new videos, respec-
tively, which are treated differently in the prediction
frameworks. Fig. 13 shows that viewers of old videos ex-
perience smaller delays than those of new videos. This is
consistent with our evaluation results for the prediction
accuracy in Sec. 4.5 — better deployment performance
can be achieved with videos having a larger feature
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window, where the prediction accuracy is higher. As the
prediction accuracy directly determines the video service
deployment performance in our design, exploring new
features from the microblogging services to improve the
prediction accuracy is an approach to enhancing the
streaming quality for video sharing sites.

6 CONCLUDING REMARKS

In this paper, we explore the connections between in-
formation propagation in a microblogging system and
the number and distribution of actual views in a video
sharing site, using extensive traces from two large-scale
real-world microblogging and video sharing systems.
Based on our discoveries of the connection between
Weibo and Youku, we develop two neural network
models for predicting the future number of video views
and geographic distribution of the viewers, respectively.
We further exploit the prediction frameworks to improve
global-scale video service deployment. Our PlanetLab-
based experiments illustrate the effectiveness of our de-
ployment algorithms in reducing video access delays ex-
perienced by users, as compared to classical approaches
without microblogging-assistant predictions.
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