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Abstract—The multiple unicast network coding conjecture
states that for multiple unicast in an undirected network, network
coding is equivalent to routing. Simple and intuitive as it is,
the conjecture has remained open since its proposal in 2004
[1], [2], and is now a well-known unsolved problem in the
field of network coding. In this work, we provide a proof to
the conjecture in its space/geometric version. Space information
flow is a new paradigm being proposed [3], [4]. It studies
the transmission of information in a geometric space, where
information flows are free to propagate along any trajectories,
and may be encoded wherever they meet. The goal is to minimize
a natural bandwidth-distance sum-product (network volume),
while sustaining end-to-end unicast and multicast communication
demands among terminals at known coordinates. The conjecture
is true in networks only if it is true in space. Our main result is
that network coding is indeed equivalent to routing in the space
model. Besides its own merit, this partially verifies the original
conjecture, and further leads to a geometric framework [5] for
a hopeful proof to the conjecture.

I. BACKGROUND AND INTRODUCTION

A. The Multiple Unicast Network Coding Conjecture

Departing from the classic store-and-forward principle of

data networking, network coding encourages information flows

to be “mixed” in the middle of a network, via means of coding

[6], [7]. While network coding for a single communication

session (unicast, broadcast or multicast) is well understood by

now, the case of multiple independent sessions (multi-source,

multi-sink) is much harder, with less results known [8]. A

basic scenario in the latter is the multiple unicast setting, where

multiple independent one-to-one communication demands co-

exist in a network. With routing, the optimal solution can be

computed by solving a multicommodity flow (MCF) linear

program; with network coding, the structure and the computa-

tional complexity of the optimal solution are largely unknown.

In directed networks, network coding can augment the

capacity region of multiple unicast. For example, Fig. 1(A)

shows a network coding solution for two unicast sessions in

a directed network, where each session has a throughput of 1.
Without network coding, it is not hard to verify that achieving

a throughput of 1 and 1 for both sessions concurrently is
infeasible, given the pre-defined link directions. In general,

the coding advantage, the ratio of the maximum throughput

achievable with network coding over that with routing, may

grow linearly with the network size [9].

However, no >1 coding advantage has been observed

for multiple unicast in the undirected setting. For example,

Fig. 1(B) shows a MCF with end-to-end flow rate of 1 for
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Fig. 1. (Example from [1].) Two unicast sessions, from s1 to t1 and from
s2 to t2, each with target rate 1. All link capacities are 1. (A). Solution with
network coding. (B) Solution without network coding.

each of the two unicast sessions. Li and Li [1] and Harvey et

al. [2] conjectured that network coding is equivalent to routing

for multiple unicast in undirected networks.

Despite a series of research effort devoted [10]–[12], rather

limited progresses have been made towards settling this fun-

damental problem in network coding. Besides “easy” cases

where the cut set bounds can be achieved without network

coding [1], [2], the conjecture has been verified only in small,

fixed networks and their variations, such as the Okamura-

Seymour network [10], [11]. It is worth noting that such

verification already involves new tools in network informa-

tion theory such as information dominance [10], input-output

equality and crypto equality [11]. A growing agreement is

that new tools beyond a “simple blend” of graph theory and

information theory are required for eventually settling the

conjecture. In this work, we prove the geometric version of the

multiple unicast conjecture, by further incorporating mature

techniques in geometry into the picture.

In 2007, Mitzenmacher et al. compiled a list of seven open

problems in network coding [13], where the multiple unicast

conjecture appears as problem number 1. Chekuri commented
that claiming an equivalence between network coding and

routing for all undirected networks is a “bold conjecture”, and

that the problem of fully understanding network coding for

multiple unicast sessions is still “wild open” ( [14], p51-55).

B. Space Information Flow

Space information flow is a new subject of study being

proposed [3], [4]. It considers terminals at known locations

in a geometric space, with unicast, broadcast or multicast

communication demands among them. Information flows can

be transmitted along any trajectories in the space, and may be



replicated wherever desired, or encoded wherever they meet.

The goal is to minimize the total bandwidth-distance sum-

product, while sustaining given end-to-end communication

rates. Besides being a conceivable theoretical problem of

“network coding in space”, space information flow models the

min-cost design of a blueprint of a communication network,

which deserves renewed research attention given network

coding [3]. As we will discuss later, space information flow

also opens the door to geometric approaches for studying

network information flow problems, including in particular the

multiple unicast network coding conjecture in graphs.
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Fig. 2. A 2-D example of space information flow: meeting communication
demands among nodes in space. A min-cost solution is to be computed, for
three unit-demand unicast sessions from s1 to t1, from s2 to t2 and from
s3 to t3, respectively (left). Given network coding, is there a solution better
than MCF (right)?

For a quick feel of space information flow, consider three

unicast sessions each with unit demand, from s1 to t1, from s2
to t2 and from s3 to t3, respectively, in a 2-D Euclidean space
as shown in Fig.1. We can route an information flow along

any path in space, insert relay nodes wherever desired, and

replicate or encode information flows wherever desired. We

aim to minimize the volume of the solution network induced,∑
e ||e||f(e). Here e is a link employed for flow transmission,

||e|| is the length of e in space, and f(e) is the rate of
information flow routed across e. What is the optimal solution
for satisfying the three unicast demands? Can network coding

lead to better solutions than routing (MCF)? Recent examples

show that network coding can outperform routing when the

demand in space is multicast [3], [4]. What about multiple

unicast?

C. Summary of Results

Our main result in this work is that network coding is

equivalent to routing, for multiple unicast in the new space

information flow model. We restrict our attention to Eu-

clidean spaces; the case of non-Euclidean spaces, such as n-
dimensional spaces under Chebyshev distance, is still being

investigated [5].

We first analyze the simple case of a 1-D space, where a

single point constitutes a cut. A natural requirement on a valid

multiple unicast solution here is that, at any given point A, the
total amount of flows at A, aggregated from both directions,

should be at least the total demand of unicast sessions whose

terminals reside on different sides of A. We take integration
on both sides of this inequality along all points in the 1-D

space, and prove that network coding can not improve upon

an optimal solution based on routing (MCF).

For the general case of a h-D space, h ≥ 2, our approach is
to reduce the problem into 1-D, by applying the mature tool of
projection in geometry. We prove that, if network coding can

outperform MCF in h-D, then it can do so in 1-D, thereby
leading to a contradiction. More specifically, we show that

in a given case where a network coding based solution has a

smaller cost than that of MCF, there must exist a 1-D subspace,
onto which the projection of the network coding solution is

still cheaper than the projection of the MCF solution. The

challenge here is that such a “good” candidate subspace for

projection is hard to find. It is problem dependent and no

fixed subspace always works. We prove the existence of such

an elusive subspace without explicitly identifying it, through

an argument of integrating the projected network coding and

MCF solutions over all possible 1-D rays from origin.

D. Relevance and Discussions

In Sec. II-C, we prove that the cost advantage, the potential

advantage of network coding over routing in terms of reducing

data transmission cost, is always at least as high in networks

than in space. Therefore, our result in this paper partially

verifies the original multiple unicast network coding conjecture

in networks.

Perhaps more interesting is that the new space information

flow perspective provides a promising direction for attacking

the original conjecture itself. In a sibling work [5], we describe

a geometric framework that is hopeful for eventually resolving

the original conjecture. We briefly preview this geometric

framework, as well its connection to this work, in Sec. III-D.

Given that network coding is equivalent to routing for

multiple unicast in a Euclidean space, it is interesting to ask

whether the same holds for multicast. In two sibling work [3],

[4], we study the multicast problem in space, with network

coding explicitly considered. There we present examples that

show network coding and routing are indeed different in

space, prove upper-bounds on the cost advantage, analyze the

achievability of optimality with finite solutions, and discuss

the complexity of optimal multicast in a geometric space.

II. PROBLEM MODELS

A. Network Information Flow

We represent an existing network, directed or undirected,

using a graphG = (V,E). The vector c ∈ ZE
+ stores capacities

of links in E. Here Z+ is the set of positive integers. Another

vector w ∈ QE
+ represents the distance or cost of links in

E, and we can be interpreted as the cost of routing a unit

flow through that link. Here Q+ represents the set of positive

rational numbers.

For the min-cost multiple unicast problem, we consider k
unicast sessions co-existing in network G, and let si and ti be
the sender and receiver of session i ∈ {1, . . . , k}. We use r to
denote the target throughput vector of the k sessions, and r i is

the required throughput of session i. Without network coding,
a solution to the multiple unicast problem is a multicommodity



flow (MCF), which can be represented using a link flow vector

f ∈ QE
+. The min-cost MCF can be computed by solving a

linear program [1], [2].

A network coding solution to the multiple unicast problem

has two components: (A) a flow component, for how much

flow to transmit over each link, and (B) a coding component,

for where and how to encode and decode the information

flows. We denote the underlying link flow vector in (A) using

f ∈ QE
+ too. In undirected networks, a network coding scheme

may be dynamic in that the transmission scheme is a time-

slotted one (a convolutional code), and a different flow routing

and coding scheme is adopted in each different time slot [6],

[10]. In this case, we simply let fe be the time-average flow
rate at link e. There is no known linear program of polynomial
size that computes the min-cost network coding solution.

B. Space Information Flow

In the space information flow problem, we are given a

set of terminal nodes, with (multiple) unicast or multicast

communication demand. The space we consider in this work

is a h-D Euclidean space, h ≥ 1. A node u has coordinate
(x1,u, x2,u, . . . , xh,u). The Euclidean distance between two
nodes u and v is

||uv||h =

(
h∑

i=1

(xi,u − xi,v)
2

)1/2

Given a space information flow vector f , a network can be
induced, over the same nodes and links as in f , by viewing
fe as the capacity of e. The distance of e is denoted as ||e||h.
The cost of f is then

∑
e ||e||hfe. This reflects the general rule

that the longer and the wider a communication cable, the more

expensive it is. For the sake of cost minimization, apparently,

only straight line segments need to be considered in f .
Given two vectors

→
p and

→
q ,

→
p · →

q= ||p||||q||| cos θ| is the
absolute value of the inner product of

→
p and

→
q , where θ is

the angle between
→
p and

→
q .

C. Paradigm Comparison

We can establish a connection between the cost advantage

in space and that in graphs. Given a problem instance, in the

form of either multiple unicast or multicast, let βd, βu and

βs be the max cost advantage possible in directed networks,

undirected networks, and space, respectively. Then we have

the following relation among the three:

Theorem 2.1. βd ≥ βu ≥ βs.

Proof: We first show that βd ≥ βu. Given the max cost

advantage βu in undirected networks, let ∆u be a problem

instance where this cost advantage is achieved, and let f be
the underlying flow of the optimal network coding solution.

We can create a corresponding problem instance ∆d for the

directed setting, by viewing f as the directed network, while
keeping the terminal nodes, link costs and target throughput

intact. With network coding, the cost of the optimal solution

is the same in ∆d and in ∆u. Without network coding, the

cost of the optimal solution can only increase from ∆u to ∆d,

since the latter is more restrictive. Therefore βd ≥ βu.

The proof to βu ≥ βs is similar, by viewing the underlying

flow f of the optimal network coding solution for ∆ s as an

undirected network. The directions in f are ignored. The cost
of a link e is taken as ||e||h. $%
Given Theorem 2.1, we know that all upper-bounds on the

cost advantage proven for the undirected model are still valid

in the space model. Conversely, all lower-bounds that we can

prove for the space model will also be valid for the undirected

model. For example, an upper-bound of 2 is known for cost
advantage in undirected multicast networks [15]–[17]. This

bound automatically holds for multicast in a space of any

dimension. In Sec. III, we prove that the cost advantage for

multiple unicast is always 1 in space. Unfortunately, this does
not directly imply the multiple unicast conjecture in undirected

networks. We discuss how this bound is connected to the

conjecture in Sec. III-D.

III. SPACE INFORMATION FLOW: MULTIPLE UNICAST

A. The Multiple Unicast Conjecture for Network Information

Flow

In their original work where the multiple unicast conjecture

was proposed [1], Li and Li first formulated the conjecture in

the throughput domain, and then applied linear programming

duality to translate it into an equivalent version in the cost

domain.

The Multiple Unicast Conjecture [1], [2]

Throughput domain: For k independent unicast sessions

in a capacitated undirected network (G, c), a throughput

vector r is feasible with network coding if and only if it is
feasible with routing.

Cost domain: Let f be the underlying flow vector of a

network coding solution for k independent unicast sessions
with throughput vector r, in a cost-weighted undirected

network (G,w). Then
∑

e wefe ≥
∑

i diri, where di is

the shortest path distance between the sender and receiver

of session i under metric w.

Intuitively, the throughput version of the conjecture claims

that network coding cannot help improve throughput, while the

cost version claims that network coding cannot help reduce

transmission cost. In the rest of this section, we prove the

cost version of the multiple unicast conjecture for space

information flow, where the cost we becomes, naturally, the

Euclidean length ||e|| of link e.

B. Multiple Unicast in 1-D Space

In a 1-D space, each line segment (or edge) e between two
neighboring vertices forms a cut of the network. The amount

of flow f1e over e has to be at least the total throughput
requirement of terminal pairs separated by the removal of e.
We next prove that this implies the multiple unicast conjecture

in 1-D space.
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Fig. 3. Three unicast sessions in 1-D. Total flow crossing point x0, f1x0 ,
is lower-bounded by Demand((−∞, x0); (x0,∞)) = r1 + r2.

Theorem 3.1. Given k independent unicast sessions in 1-D
space, let f1 be the underlying flow vector of a network coding

solution achieving a rate vector r. Then
∑

e(||e||1f1e) ≥∑
i(||siti||1ri).

Proof: For a given point x in the 1-D space, let f 1x be the
total amount of flow crossing x, in both directions. Note that
the point x constitutes a cut of the 1-D space, and therefore

f1x is lower-bounded by the flow demand between the left

sub-space (−∞, x) and the right sub-space (x,∞), denoted
as Demand((−∞, x); (x,∞)). We integrate both sizes over
the entire 1-D space, and obtain:

∫ ∞

x=−∞
f1xdx ≥

∫ ∞

x=−∞
Demand((−∞, x); (x,∞))dx

=
∑

i

||siti||1ri

Furthermore, note that
∑

e(||e||1f1e) =
∫∞
x=−∞ f1xdx. We

conclude that
∑

e(||e||1f1e) ≥
∑

i(||siti||1ri). $%

C. Multiple Unicast in h-D Space

We now consider multiple unicast demands in a h-D space,
for h ≥ 2. While only the cases of h = 2 and h = 3 allow
intuitive interpretations, the problem is as well-defined for

higher dimensions, which is helpful in connecting to the orig-

inal multiple unicast conjecture in graphs, because embedding

a graph metric into a geometric space often requires a high

dimension space [5].

We prove the multiple unicast conjecture by projecting the

problem from h-D to 1-D, and then apply Theorem 3.1. The

requirement on the projection is: a coding solution has total

cost less than the specified bound in the conjecture, only if it

does so after the projection. The main difficulty of the proof is

that an optimal or “good” direction for projection is actually

hard to find. In particular, it is not sufficient to always project

onto one of the axes. We show indirect evidence instead, for

the existence of such a good direction, by taking an integration

over all possible rays at origin for projection.

Theorem 3.2. For k independent unicast sessions in a h-D
space, h ≥ 2, assume there is a network coding solution

with underlying flow vector fh, we have
∑

e(f
h
e||e||h) ≥∑

i(||siti||hri).
Proof:Assume, by way of contradiction, that

∑
e(f

h
e||e||h) <∑

i(||siti||hri). We construct the k pairs unicast instance and
its network coding solution in 1-D by projecting their counter
parts from h-D. Our goal is to show that there exists a 1-D sub-
space/direction in the h-D space, onto which the projection

satisfies
∑

e(f
1
e||e||1) <

∑
i(||siti||1ri), and therefore obtain

a contradiction to Theorem 3.1.

As shown in Fig. 4, let Φ be the surface of the h-D unit

hyper-sphere at the origin. We can enumerate all possible

directions in h-D by traversing all points on Φ, and connecting
to there from the origin. Let

→
p be the vector from origin

to the corresponding point on Φ, let
→
1 be the unit vector

(1, 0, 0, . . . , 0).

p

Fig. 4. Project and Integrate over all possible diretions
→
p .

The integration over the closed surface Φ for all the projec-
tions of fh is:

∫!"#$∫
Φ

∑

e

(fhe(e ·
→
p ))dΦ =1

∑

e

∫!"#$∫
Φ
fhe(e ·

→
p )dΦ

=2

∑

e

∫!"#$∫
Φ
fhe||e||h(

→
1 ·→p )dΦ

=3

∑

e

(fhe||e||h)
∫!"#$∫

Φ
(
→
1 ·→p )dΦ

The nice property of this integration is that it is separable,

in the sense that we can perform integration for each link flow

segment first, and then take the summation (=1). Furthermore,

we observe that when we integrate for each line segment, the

orientation of that line segment does not matter, since we vary

the projection direction to take all possible values (=2).

The integration over the closed surface Φ for all the projec-

tions of {
→
siti |i = 1, . . . , k} is:
∫!"#$∫

Φ

∑

i

(
→
siti ·

→
p )dΦ =

∑

i

∫!"#$∫
Φ
(

→
siti ·

→
p )dΦ

=
∑

e

∫!"#$∫ (||siti||h(
→
1 ·→p ))dΦ =

∑

i

||siti||h
∫!"#$∫

Φ
(
→
1 ·→p ))dΦ

Since
∑

e(f
h
e||e||h) <

∑
i ||siti||h by assumption, we claim

that:
∫!"#$∫

Φ

∑

e

(fhe(e ·
→
p ))dΦ <

∫!"#$∫
Φ

∑

i

(
→
siti ·

→
p )dΦ

Since the terms being integrated on both sides are non-

negative, we claim that, there must exist a particular direction
→
p∗, for which

∑

e

(fhe(e ·
→
p∗)) <

∑

i

(
→
siti ·

→
p∗)

$%



D. Connection to the Multiple Unicast Conjecture

Comparing Theorem 3.2 with the original multiple unicast

conjecture in undirected networks, we note that the two

statements are rather similar. The only difference lies in the

fact that Theorem 3.2 is based on Euclidean distances, whereas

the conjecture is based on a cost metric induced from a graph.

A natural direction for settling the conjecture is then to embed

the graph metric into a geometric space, and then utilize

Theorem 3.2.

An isometric embedding of a graph G into a space is one

that preserves pairwise node distances in G. The distance
between two nodes u and v in G is the shortest path length

between u and v in G. By Theorem 3.2, we can see that, if

there exists a certain space to which an isometric embedding

of the network is feasible, and our projection based proof

technique for dimension reduction can be adapted to carry

through, then we can prove the multiple unicast conjecture.

While no Euclidean space always permits isometric embedding

of graphs, there do exist non-Euclidean spaces that satisfy this

property [5]. For embedding into Euclidean spaces, if we relax

the isometric requirement and allow a distance distortion ratio

up to α in the embedding, we can prove the cost advantage is
upper-bounded by α in the original graph.
Following this direction, we present a geometric framework

for studying the multiple unicast network coding conjecture

in a sibling work [5]. The framework consists of four major

steps: (i) translating the conjecture from throughput domain

to cost domain, (ii) embed the network into an Euclidean or

non-Euclidean space, in an isometric or low-distortion manner,

(iii) reduce the problem from high-dimension space to low

dimension space, and (iv) prove that there cannot be a counter

example to the conjecture in low dimension.

Based on this framework, we have been able to formulate

a unified proof to a number of results, including (1) the

conjecture holds for two unicast sessions, (2) the gap between

a network coding solution and a routing solutions is at

most O(log k), (3) the conjecture holds for uniform complete
graphs, (4) the gap between a network coding solution and

a routing solutions is at most
√
2 in uniform grid networks,

(5) the conjecture is true in star networks [18], and (6) the

conjecture is true in a class of infinitely many layered or

bipartite networks. Among these, (1) and (2) were known

before, but were proved using different techniques. Results (3)-

(6) are new and not previously known. The proofs to results

(2), (3) and (4) resort to embedding into a Euclidean space,

and directly build upon the main result in this work. The

proofs to results (1), (5) and (6) resort to embedding into a

non-Euclidean space instead, where isometric embedding of a

graph metric is feasible.

IV. CONCLUSION AND FUTURE DIRECTIONS

This work is among the first that studies the problem of

space information flow, with a focus on the case of multiple

unicast sessions. We proved that for multiple unicast in a

Euclidean space, network coding is equivalent to routing. This

partially verifies the well-known multiple unicast conjecture

in network coding. This result, together with the new space

information flow perspective, leads to a new geometric frame-

work for studying the original multiple unicast conjecture. For

the paradigm of space information flows, the multicast case

appears even more interesting, where basic problems such as

the computational complexity of the optimal multicast solution

in space are yet to be investigated.
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