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Abstract—Network function virtualization (NFV) represents
the latest technology advancement in network service provision-
ing. Traditional hardware middleboxes are replaced by software
programs running on industry standard servers and virtual
machines, for service agility, flexibility, and cost reduction. NFV
users are provisioned with service chains composed of virtual
network functions (VNFs). A fundamental problem in NFV ser-
vice chain provisioning is to satisfy user demands with minimum
system-wide cost. We jointly consider two types of cost in this
work: nodal resource cost and link delay cost, and formulate the
service chain provisioning problem using nonlinear optimization.
Through the method of auxiliary variables, we transform the
optimization problem into its separable form, and then apply the
alternating direction method of multipliers (ADMM) to design
scalable and fully distributed solutions. Through simulation
studies, we verify the convergence and efficacy of our distributed
algorithm design.

I. INTRODUCTION

Traditionally, building a service chain for a new network
application requires purchasing and configuring specialized
hardware devices, and physically cabling them into a specific
sequence. The cost of building and maintaining such a system
can be high. Furthermore, such a hardware solution is often
over-provisioned, to meet the highest possible application
load that occurs rather rarely in practice [1]. However, over-
provisioning leads to waste of hardware resources in non-peak
periods.

Network function virtualization (NFV), a paradigm shift
promoted by industry players exemplified by AT&T, China
Mobile and Vodafone, aims to address the above challenges
by simplifying and accelerating the deployment of network
services [2]. Since 2012, the European Telecommunications
Standards Institute (ETSI) has published a series of white
papers on NFV, covering the opportunities and challenges
[2], use cases [3], architectural framework [4], and indus-
try progresses [5]. The virtual network functions (VNFs)
are instantiated on demand without the installation of new
equipments [6], which enables network operators to flexibly
create, upgrade and destroy service chains in a flexible and
inexpensive way.

Apart from dynamic provisioning of elastic services, NFV
transforms the deployment of service chains from a centralized
fashion to a distributed fashion [7, 8], i.e., VNFs can be
instantiated on geo-distributed network points of presence (N-
PoP) [9] connected by the network infrastructure. Examples
of N-PoP locations include central offices, customer premises,

mobile devices, and data centres. Distributed NFV enables
service providers to take full advantage of existing hardware
resources in different locations, enhancing service availability
and reliability.

In this work, we address one of the main use cases of
NFV, i.e., virtual network function as a service (VNFaaS)
(e.g., in white paper [3]). To cater for complex demand from
consumers in practice, multiple types of VNFs are combined to
form a service chain, through which customer packets traverse.
Since different VNF instances can run on multiple server
nodes at geo-disperse locations, a fundamental question in
NFV service provisioning is where to instantiate the VNFs
of a service chain, in order to achieve the minimum cost of
resources, while keeping the overall latency of the service
chain low.

To tackle such a service chain cost minimization problem,
we first construct a general optimization model for service
chain delivery, VNF placement, and resource allocation, which
captures diversity in location, resource cost, and latency tol-
erance. Second, we formulate the cost minimization problem
into a convex optimization problem with linear constraints,
together with a linear or nonlinear objective function. As
we will see in Sec. III, the number of decision variables
scales quadratically with the number of server nodes, and a
centralized sequential solution to this problem does not scale
well. Moreover, the cost and the available amount of resources
can be private information of each server node, while a
centralized approach requires gathering all such information. A
centralized approach is further prone to connection failures. In
comparison, a distributed approach naturally provides greater
scalability and reliability.

Towards scalability, confidentiality and robustness in al-
gorithm design, we first aim at splitting the service chain
cost minimization problem into multiple subproblems, each of
which corresponds to a server node or a source node, and can
be solved in parallel. However, the formulated optimization
problem is not separable as is. We reformulate a separable
version using the method of auxiliary variables, and then
develop a distributed algorithm for this problem based on the
alternating direction method of multipliers (ADMM). ADMM
is a simple yet powerful type of optimization algorithm dated
back to the 1970s [10]. It witnessed a recent renaissance in
the context of distributed convex optimization over big data,
and in particular in large-scale problems arising from statistics,
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machine learning [11], and cloud computing [12].
The rest of the paper is organized as follows. We review

related literature in Sec. II, and define our NFV system model
in Sec. III. Sec. IV presents the ADMM based distributed
algorithm. Sec. V contains simulation studies. Finally, Sec. VI
concludes the paper.

II. RELATED WORK

A growing community is working intensively on developing
standards for NFV, as well as the required implementation and
management techniques. Han et al. [6] explain the require-
ments and architectural framework of NFV, present several use
cases and discuss the challenges and future directions. Hawilo
et al. [13] discuss the use of NFV in mobile networks. John
et al. [8] summarize research directions in network service
chaining, including service chain description, programming,
deployment, debugging and security.

Moens and De Turck [14] focus on VNF placement in
a hybrid scenario, where some of the services are provided
through dedicated physical hardware, and some through vir-
tualized service instances. They do not address the delay or
resource cost. A similar VNF placement problem is discussed
in [7], which aims to minimize the distance cost between
customers and the VNF instances by which they are served,
as well as the setup cost of these instances. However, service
chaining, as an important application scenario, is not modelled
in [7]. The above studies do not take into account the diversity
in resource cost, or latency tolerance. Furthermore, to the
authors’ knowledge, no distributed algorithm for service chain
provisioning or VNF placement has been proposed in the NFV
literature.

ADMM made its debut as a simple yet powerful optimiza-
tion method a few decades ago [10], and was recently revisited
by Boyd et al. [11]. It has been widely used in statistics
and machine learning, such as in [15] and [16]. ADMM was
first applied to the field of cloud computing by [12], which
considers the problem of joint request mapping and response
routing in geo-distributed datacenters. In this work, to fit our
NFV optimization problem to the standard form of ADMM,
and to decompose the problem for parallel solutions, we relax
the coupling caused by data flows by introducing a set of
auxiliary variables. Our technique is effective on a variety of
convex optimization problems that involve data flow routing.

III. SYSTEM MODELS

A. Service Chain Modelling
We consider a NFV service provider who owns multiple

types of resources (CPU, RAM, disk storage and network
bandwidth) denoted by R, on a set of server nodes I dis-
tributed in distinct geographical locations. Let Cr

i be the
capacity of resource r on server node i. The server nodes
are connected to the network infrastructure, and each pair of
them can communicate with inbound (outbound) bandwidth
capacity Crin

i (Crout
i ), where i ∈ I, rin, rout ∈ R. The server

nodes are assumed to be fully connected in order to cover
the most general case. However, there are some circumstances

where the server nodes are only locally connected, which we
can model by simply clamping the flows between any pair of
disconnected server nodes to zero.

VNF users in a set U each demand a customized ser-
vice chain of connected VNFs. The set of available types
of VNFs is N . For simplicity, let u ∈ U also denote
the source of the corresponding service chain of user u,
and u′ ∈ U ′ the sink of the chain. Each source injects a
data flow at rate fu into its service chain. Let L (u) =
{(u, n1) , (n1, n2) , . . . , (nk−1, nk) , (nk, u′)} be the links of
service chain u, where S (u) = {n1, n2, . . . , nk}, are VNFs
required by user u, and S (u) ⊆ N , ∀u ∈ U . To model flow
rate changes as a flow is processed by a VNF, we denote the
ratio of the output and input flow rates by λn, ∀n ∈ N . The
communication latency between two nodes i, j ∈ I ′ is denoted
by lij , where I ′ = I∪U ∪U ′. We assume lij = 0 when i = j,
and lij = lji > 0 when i ̸= j. In practice, latency is often
dominated by distance-related propagation delay, and the delay
introduced by reliability and congestion control protocols.

The data flow going through each service chain can be
split and processed by different VNF instances of the same
type, residing on possibly geo-dispersed nodes. Some VNF
instances, such as DNS, can also be shared by multiple service
chains, which can potentially reduce the overhead of creating
and maintaining new VNF instances. Other functions, such
as security-sensitive ones, do not permit sharing [17]. Each
server node can host a large number of VNF instances in
practice. We can assign the average overhead to each service
chain proportional to its flow rate, so that the shareable and
non-shareable VNFs can be unified in a single optimization
model. Specifically, for a unit-rate flow processed by VNF
n, we define ϕr

n as the average consumption of resource r,
such that it consists of both the average resource consumed by
processing the data flow and that for creating and maintaining
VNF instances.

B. Service Chain Cost Minimization
A natural goal of a service provider is to minimize the

overall cost of deploying a required set of service chains. We
first consider the case of nonlinear resource cost function and
linear latency cost function (the nonlinear case discussed in
Sec. IV-B). Let C r

j (·) be a convex cost function of resource
r on server node i, which is usually monotonically increasing
in practice and may vary across servers. It is reasonable to
assume that each type of VNF appears in a service chain at
most once. The total resource cost at server nodes is:

JR =
∑

j∈I

[
C rout
j

( ∑

u∈U

∑

(m,n)∈L(u)

∑

i∈Iu′\{j}

fumn
ji

)

+
∑

r∈R\{rout}

C r
j

( ∑

u∈U

∑

(m,n)∈L(u)

ϕr
n

∑

i∈Iu

δ (i− j; r) fumn
ij

)]
,

(1)
where fumn

ij is the flow of service chain u from VNF m on
server node i to VNF n on server node j, and Iu = I ∪ {u},
Iu′

= I ∪ {u′}. The function

δ (i− j; r) =

{
0, i = j, r = rin
1, otherwise
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is defined to indicate whether a flow consumes inbound
bandwidth, since a flow from a node to itself requires no
bandwidth resources.

In (1), the second term in the summation represents the cost
of all types of resources except outbound bandwidth, which is
in the first term. Interestingly, the first term is a function of
only outgoing flows of server node j, while the second term
is a function of incoming flows. This key observation is later
exploited in our design of the distributed algorithm. For the
second term, the cost of inbound bandwidth consumption can
be included by setting ϕr

n = 1 for r = rin.
Besides resource cost, the overall latency of a service chain

is another QoS parameter for NFV users. The total latency
cost is

JL =
∑

u∈U

cu
∑

(m,n)∈L(u)

∑

i∈Iu

∑

j∈Iu′

lijf
umn
ij

λ̂u
mfu

, (2)

where λ̂u
m = λn1λn2 · · ·λm is the cumulative change ratio of

flow rate along service chain L (u), and cu is the unit cost of
latency for user u. With slight abuse of notation, we use the
same symbols for fumn

ij and fu, but note that only fumn
ij is

a decision variable. As shown in (2), the latency of each hop
in a service chain is a weighted average of the latency along
different paths.

The latency cost JL is defined so to take the latencies of
multiple concurrent paths of a service chain into consideration.
For a single-path service chain, the overall latency degrades
into the sum of per-hop latencies along the path, i.e., the end-
to-end latency of the path. Although it would be simpler to
upper bound the latency of each user by some fixed value
in the form of a linear inequality constraint, we formulate it
into a cost function to be minimized in order to cover more
realistic scenarios, where high latency is undesirable but no
hard constraint is set. Eq. (2) can be seen as both a real cost
and a penalty term to avoid high latency.

The service chain cost minimization problem can now be
formulated as:

minimize JR + JL (3a)

subject to:
∑

u∈U

∑

(m,n)∈L(u)

ϕr
n

∑

i∈Iu

δ (i− j; r) fumn
ij ≤ Cr

j ,

∀j ∈ I, r ∈ R\{rout}
(3b)

∑

u∈U

∑

(m,n)∈L(u)

∑

k∈Iu′\{j}

fumn
jk ≤ Crout

j , ∀j ∈ I (3c)

∑

k∈Iu′

fumn
jk = λm

∑

i∈Iu

fulm
ij ,

∀ (l,m) , (m,n) ∈ L (u) , u ∈ U , j ∈ I
(3d)

∑

j∈I

fuun
uk = fu, ∀u ∈ U , (u, n) ∈ L (u) (3e)

fumn
ij ≥ 0, ∀i ∈ Iu, j ∈ Iu′

, (m,n) ∈ L (u) , u ∈ U (3f)

Constraints (3b) and (3c) capture resource capacity limits.
Examples of resources include computational power, band-
width, storage, and function-specific resources such as special
devices (e.g., GPGPU) and private data. For instance, if some
function-specific resource required by a network function

resides only on a few of the server nodes, we can simply
set Cr

j = 0 for the others. Flow conservation is modeled
by constraint (3d) and (3e). Assuming the server nodes are
fully connected, the total number of decision variables is
O
(
|U| |I|2 |S|max

)
, where |S|max = maxu∈U |S (u)|.

IV. DISTRIBUTED ALGORITHMS FOR SERVICE CHAIN
COST MINIMIZATION

A. Distributed Algorithm for Service Chain Provisioning
We now start to design a distributed ADMM-based algo-

rithm for solving (3). We aim at parallelizing the optimization
problem into |I| or |I|+ |U| subproblems, each corresponding
to a server or source node. We first reformulate the overall
resource cost function into:

JR =
∑

j∈I

JR,j =
∑

j∈I

[
J in
R,j

(
f in

j

)
+ Jout

R,j

(
fout

j

)]
, (4a)

where J in
R,j

(
f in

j

)
=

∑

r∈R\{rout}

C r
j

( ∑

u∈U

∑

(m,n)∈L(u)

ϕr
n

∑

i∈Iu

δ (i− j; r) fumn
ij

)
,

(4b)

Jout
R,j

(
fout

j

)
= C rout

j

( ∑

u∈U

∑

(m,n)∈L(u)

∑

k∈Iu′\{j}

fumn
jk

)
. (4c)

Then we reformulate the total latency cost as

JL =
∑

j∈I

JL,j =
∑

j∈I

[
J in
L,j

(
f in

j

)
+ Jout

L,j

(
fout

j

)]
, (5a)

where J in
L,j

(
f in

j

)
=

∑

u∈U

cu
∑

(m,n)∈L(u)

∑

i∈Iu

lijf
umn
ij

λ̂u
mfu

, (5b)

Jout
L,j

(
fout

j

)
=

∑

u∈U

cu
∑

(m,u′)∈L(u)

lju′fumu′
ju′

λ̂u
mfu

. (5c)

For a specific server node j, J in
R,j and J in

L,j are determined
by only the incoming flows, f in

j , whereas Jout
R,j and Jout

L,j are
determined by only the outgoing flows, fout

j .
As shown in (4a) and (5a), JR and JL can be respectively

decomposed into the sums of JR,j and JL,j over all server
nodes. However, they cannot be optimized separately since
each fumn

ij is shared by two nodes. Similarly, constraint (3d)
couples all server nodes.

We address these challenges using the method of auxiliary
variables. First, observe that both JR,j and JL,j can be further
decomposed into a function of incoming flows and a function
of outgoing flows, as shown in (4a)-(5c). Second, it is apparent
that the LHS of (3d) is the sum of outgoing flows of a node,
whereas the RHS is the sum of incoming flows multiplied by
a constant. We introduce a set of auxiliary variables gout

j =
fout
j , ∀j ∈ I ∪ U , such that the incoming and outgoing flows

of a node are not shared by other nodes. We then derive an
equivalent version of (3):

minimize F (f) +G (g) (6a)

subject to: constraints (3b), and∑

u∈U

∑

(m,n)∈L(u)

∑

k∈Iu′\{j}

gumn
jk ≤ Crout

j , ∀j ∈ I (6b)

∑

k∈Iu′

gumn
jk = λm

∑

i∈Iu

fulm
ij ,

∀ (l,m) , (m,n) ∈ L (u) , u ∈ U , j ∈ I
(6c)

∑

j∈I

guunuj = fu, ∀u ∈ U , (u, n) ∈ L (u) (6d)
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gumn
ij = fumn

ij , ∀i ∈ Iu, j ∈ I, (m,n) ∈ L (u) , u ∈ U (6e)

fumn
ij ≥ 0, ∀i ∈ Iu, j ∈ I, (m,n) ∈ L (u) , u ∈ U (6f)

gumn
ij ≥ 0, ∀i ∈ Iu, j ∈ Iu′

, (m,n) ∈ L (u) , u ∈ U (6g)

where f and g are vectors of all fumn
ij ’s and gumn

ij ’s, and

F (f) =
∑

j∈I

[
J in
R,j

(
f in

j

)
+ J in

L,j

(
f in

j

)]
, (7)

G (g) =
∑

j∈I

[
Jout
R,j

(
gout
j

)
+ Jout

L,j

(
gout
j

)]
. (8)

With the auxiliary variables, we not only reformulate (3a)
into (6a) for separability over server nodes, but also decouple
incoming and outgoing flows by replacing (3d) with (6c).
Furthermore, the two sets of variables, f and g, are coupled
only by equality constraints (6c) and (6e), and problem (6)
now fits the standard form of ADMM.

The augmented Lagrangian of problem (6) is
Lρ (f , g,y) = F (f) +G (g)

+
∑

u∈U

∑

m∈S(u)

∑

j∈I

[
yum
1,j

(
λm

∑

i∈Iu

fulm
ij −

∑

k∈Iu′

gumn
jk

)

+
ρ
2

(
λm

∑

i∈Iu

fulm
ij −

∑

k∈Iu′

gumn
jk

)2]

+
∑

u∈U

∑

(m,n)∈L(u)

∑

i∈Iu

∑

j∈I

[
yumn
2,ij

(
fumn
ij − gumn

ij

)

+
ρ
2

(
fumn
ij − gumn

ij

)2]
,

(9)

where vector y = (y1,y2) is the concatenation of dual
variables yum1,j ’s and yumn

2,ij ’s, and (l,m) , (m,n) ∈ L (u) is
abbreviated into m ∈ S (u). Here, ρ > 0 is the penalty
parameter [11], which will also serve as the step size of update
rules. We can now solve the cost minimization problem by
alternatively updating f and g, where each step is split into
O (|I|) or O (|I|+ |U|) sub-problems.

The f -update step requires solving:
min
f∈C1

F (f) +
∑

u∈U

∑

m∈S(u)

∑

j∈I

λm

∑

i∈Iu

fulm
ij

[
yum
1,j +

ρ
2

(
λm

∑

i∈Iu

fulm
ij − 2

∑

k∈Iu′

gumn
jk

)]

+
∑

u∈U

∑

(m,n)∈L(u)

∑

i∈Iu

∑

j∈I

fumn
ij

[
yumn
2,ij +

ρ
2

(
fumn
ij − 2gumn

ij

)]
,

(10)
where C1 is the convex polytope defined by constraints (3b)
and (6f). By decomposing (10) over the server nodes, we
derive the subproblem for each server node j ∈ I:

min
fin
j ∈C1,j

J in
R,j

(
f in

j

)
+ J in

L,j

(
f in

j

)
+

∑

u∈U

∑

m∈S(u)

λm

∑

i∈Iu

fulm
ij

[
yum
1,j +

ρ
2

(
λm

∑

i∈Iu

fulm
ij − 2

∑

k∈Iu′

gumn
jk

)]

+
∑

u∈U

∑

(m,n)∈L(u)

∑

i∈Iu

fumn
ij

[
yumn
2,ij +

ρ
2

(
fumn
ij − 2gumn

ij

)]
,

(11)
where C1,j is the convex polytope defined by part of (3b) and
(6f) relevant to f in

j , the incoming flows of server j.

The g-update step requires solving:
min
g∈C2

G (g) +
∑

u∈U

∑

m∈S(u)

∑

j∈I

∑

k∈Iu′

gumn
jk

[
− yum

1,j +
ρ
2

( ∑

k∈Iu′

gumn
jk − 2λm

∑

i∈Iu

fulm
ij

)]

+
∑

u∈U

∑

(m,n)∈L(u)

∑

j∈Iu

∑

k∈I

gumn
jk

[
−yumn

2,jk +
ρ
2

(
gumn
jk − 2fumn

jk

)]
,

(12)
where C2 is the convex polytope defined by (6b), (6d) and
(6g). We changed the subscript of the last additive term from
i, j in (9) to j, k for convenience. Decomposing (12) over the
servers, we derive the subproblem for each server j ∈ I,

min
gout
j ∈C2,j

Jout
R,j

(
gout
j

)
+ Jout

L,j

(
gout
j

)
+

∑

u∈U

∑

m∈S(u)

∑

k∈Iu′

gumn
jk

[
− yum

1,j +
ρ
2

( ∑

k∈Iu′

gumn
jk − 2λm

∑

i∈Iu

fulm
ij

)]

∑

u∈U

∑

(m,n)∈L(u)

∑

k∈I

gumn
jk

[
−yumn

2,jk +
ρ
2

(
gumn
jk − 2fumn

jk

)]
,

(13)
where C2,j is the convex polyhedron defined by part of
the constraints (6b) and (6g) that is relevant to gout

j , the
outgoing flows of server node j. However, different from the
f -update step, the combination of all subproblems (13) do not
completely cover the original problem (12). The remaining
problem to solve is:

min
g∈C′

2

∑

u∈U

∑

(u,n)∈L(u)

∑

k∈I

guunuk

[
−yuun

2,uk +
ρ
2
(guunuk − 2fuun

uk )
]

(14)

where C′2 is the convex polytope defined by constraints (6d)
and (6g). Fortunately, problem (14) is only relevant to the
outgoing flows of source nodes u ∈ U , and can be decomposed
over the source nodes or service chains as
min

gout
u ∈C′

2,u

∑

(u,n)∈L(u)

∑

k∈I

guunuk

[
−yuun

2,uk +
ρ
2
(guunuk − 2fuun

uk )
]

(15)

where C′2,u is the convex polytope defined by part of the
constraints (6d) and (6g) relevant to gout

u . Subproblem (15)
is simple enough to solve on each source node.

For the (t+ 1)-th iteration of the ADMM algorithm, we
obtain f t+1 and gt+1 from f t, gt and yt in a sequential
fashion, by solving subproblems (11), (13) and (15), and then
we update the dual variables in y as

yum
1,j := yum,k

1,j + ρ

(
λm

∑

i∈Iu

fulm
ij −

∑

k∈Iu′

gumn
jk

)
,

∀j ∈ I, (l,m) , (m,n) ∈ L (u) , u ∈ U ,
(16a)

and yumn
2,ij := yumn

2,ij + ρ
(
fumn
ij − gumn

ij

)
,

∀i ∈ Iu, j ∈ I, (m,n) ∈ L (u) , u ∈ U .
(16b)

Although the f -update and g-update steps are executed lo-
cally on each server or source node, they need to communicate
the updated variables. For instance, to solve (11) in the (t+ 1)-
th iteration, a server node j has to know the latest values of
gout
ij , ∀i ∈ I ∪ U , i ̸= j, the outgoing flows of i sent to j,

which are updated by other nodes. While as shown in (16),
each server node j ∈ I only has to maintain a small set of dual
variables related to j, so the y-update step can be carried out
locally, even without communicating about the dual variables
maintained by other nodes.
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B. Nonlinear Latency Cost Function
Our distributed algorithm design so far has assumed that the

latency cost is a linear function, which may not always be the
case in practice. For the more general nonlinear case, we can
replace each coefficient cu in (2) with a convex cost function
C u (·), which can be interpreted as the latency tolerance curve
of user u, such that

JL =
∑

u∈U

C u

( ∑

(m,n)∈L(u)

∑

i∈Iu

∑

j∈Iu′

lijf
umn
ij

λ̂u
mfu

)
. (17)

Since the cost function C u (·) couples together all the flows of
each service chain, JL is no longer separable over the server
nodes. Nevertheless, we can still decompose the problem over
the source nodes or service chains, by introducing another set
of auxiliary variables and the corresponding constraint,

hu
i =

∑

(m,n)∈L(u)

∑

j∈Iu′

lijg
umn
ij

λ̂u
mfu

, ∀i ∈ Iu, u ∈ U . (18)

We then reformulate JL as a function of hu
i :

JL =
∑

u∈U

C u

( ∑

i∈Iu

hu
i

)
, (19)

so that JL is separable over u ∈ U , and its parameters with
different u are not directly coupled by any constraint. We can
now update (f ,h) in one step, and update g in the other, in
a sequential fashion. Constraint (18) can be relaxed as we do
to constraints (6c) and (6e). The separability of JR and the
relevant constraints remain intact, since constraint (18) does
not couple gumn

ij of different i. The rest of the algorithm for
nonlinear JL is similar to that presented in Sec. IV-A.

For nonconvex cost functions, ADMM can converge to a
local minimum depending on the initial solution [11].

V. PERFORMANCE EVALUATION

In this section, we evaluate our NFV network model and the
distributed optimization algorithm through simulation studies.
We construct networks with the number of server nodes
ranging from 20 to 50, and the number of service chains
(hence the corresponding source and sink pairs) ranging from
5 to 15. These network nodes are uniformly deployed in a
square-shape geographical area. The latency between each pair
of nodes is assumed to be proportional to their distance. We
setup 5 different types of VNFs, from which each service chain
randomly choose 3 to 5. We further setup 5 different types of
resources, including inbound and out bound bandwidth, and a
possible type of function-specific resource. Other parameters,
including flow rates, the unit cost and the available amount of
resources are normally distributed.

We first investigate the convergence of the distributed al-
gorithm. To improve the convergence rate of ADMM, we use
the over-relaxation method proposed in [11], which introduces
a relaxation parameter, α ∈ (0, 2). The stopping criterion
we employ is based on measuring the residual errors in
primal and dual feasibilities [11]. When the residual errors are
smaller than pre-defined thresholds, the algorithm stops. We
set ρ = 0.4, α = 1.8, and track how the objective function
value evolves over iterations in Fig. 1. The objective function
rapidly reaches its optimum after about 100 iterations. After
that, the algorithm further eliminates the residual errors in the
primal and dual feasibilities before final termination.
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Fig. 1: ρ = 0.4, α = 1.8. The ADMM-based algorithm
terminates in 173 iterations.

To investigate the changes in JR, JL and J caused by larger
service chain population, we set up a network with 50 server
nodes. We then increase the number of service chains from 1
to 15, and minimize the total cost J respectively. As shown
in Fig. 2, the growth trends of JR and JL are rather similar
in this case; the total cost J increases super-linearly with the
number of service chains, since the available resources become
more and more scarce as demand escalates, and the algorithm
is forced to utilize resources with high price and high latency.

Another interesting question is how the scarcity of function-
specific resources affect the resource cost and the latency cost.
We adopt the same network from the previous set of testing,
and deploy 10 service chains. We then concentrate a specific
type of resource from the 50 server nodes to only a few special
server nodes and, at the same time, concentrate the demands of
this resource from all 5 types of VNFs to only one of them, so
that the available amount of the function-specific resource and
its expected demand remain the same. The resource cost and
the latency cost (when total cost is minimized) for different
number of special server nodes are shown in Fig. 3.

In Fig. 3, as the number of special server nodes increases,
the latency cost decreases faster than the resource cost when
there are very few special server nodes, while the resource
cost decreases slightly faster when the special server nodes
are not scarce. This is because when the special server nodes
are scarce, the service chains that require the function-specific
resource are rather likely to make a long detour for that
resource, which can be significantly alleviated by increasing
the number of special server nodes.

We conduct the next set of simulations on two different
networks, one with 20 server nodes and 5 service chains,
the other with 50 server nodes and 10 service chains. We
gradually increase the scale factor while keeping the total cost
minimized. Fig. 4a and Fig. 4b show the results of the small
network and the large network, respectively. The cost values
are normalized by their initial values. For both networks, the
total cost decreases monotonically and smoothly as resource
capacities increase, while the resource costs and the latency
costs fluctuate. The fluctuation is particularly evident in the
small network, as the paths of the data flows tend to change
dramatically when the number of server nodes is small.

It is also interesting to see what happens if we only
minimize the resource cost or the latency cost. The results
are presented in Fig. 5. When available resources are scarce,
minimizing resource cost leads to higher total cost than when
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Fig. 2: Increase in costs due to increasing
number of service chains.
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Fig. 3: Comparison of costs for different
number of special server nodes.
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(a) Change in the costs of a small network.
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(b) Change in the costs of a large network.

Fig. 4: Change in costs as the capacities
of resources increase.
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(a) When only the resource cost is minimized.
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(b) When only the latency cost is minimized.

Fig. 5: Change in costs as the capacities
of resources increase.

minimizing latency cost; while minimizing the latency cost
does not push the resource cost far from its minimum value.
The fluctuations shown in Fig. 5a indicate dramatic changes
in the paths of the data flows.

VI. CONCLUSION
In this work, we studied a fundamental problem arose

in NFV service chain provisioning, that is jointly minimiz-
ing the overall resource cost and the end-to-end latency of
service chains. We formulated the problem into nonlinear
optimization, which was then transformed into an equivalent
counterpart that fit the standard form of ADMM, and led to an
efficient distributed algorithm. Interestingly, the technique we
developed for the transformation can also be used to address
other problems involving data flow routing. We evaluated
the performance of the proposed model and the distributed
algorithm for service chain cost minimization by extensive
simulations.
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