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Abstract—Nowadays large-scale distributed machine learning
systems have been deployed to support various analytics and
intelligence services in IT firms. To train a large dataset and
derive the prediction/inference model, e.g., a deep neural net-
work, multiple workers are run in parallel to train partitions
of the input dataset, and update shared model parameters. In a
shared cluster handling multiple training jobs, a fundamental
issue is how to efficiently schedule jobs and set the number
of concurrent workers to run for each job, such that server
resources are maximally utilized and model training can be
completed in time. Targeting a distributed machine learning
system using the parameter server framework, we design an
online algorithm for scheduling the arriving jobs and deciding the
adjusted numbers of concurrent workers and parameter servers
for each job over its course, to maximize overall utility of all jobs,
contingent on their completion times. Our online algorithm de-
sign utilizes a primal-dual framework coupled with efficient dual
subroutines, achieving good long-term performance guarantees
with polynomial time complexity. Practical effectiveness of the
online algorithm is evaluated using trace-driven simulation and
testbed experiments, which demonstrate its outperformance as
compared to commonly adopted scheduling algorithms in today’s
cloud systems.

I. INTRODUCTION

Most leading IT companies have deployed distributed ma-
chine learning (ML) systems, which train various machine
learning models over large datasets for providing AI-driven
services. For example, Google uses its scalable ML frame-
work, TensorFlow, to power products such as Google Photos
and Google Cloud Speech [1]. Microsoft employs its dis-
tributed cognitive toolkit, CNTK, for speech recognition and
image related learning tasks [2]. Baidu developed a PArallel
Distributed Deep LEarning (PaddlePaddle) system and exten-
sively uses large-scale ML for advertising, group shopping,
etc. [3]. In these scenarios, large ML clusters with hundreds
or thousands of (GPU) servers are deployed, where many
internal/external training jobs are run to derive various predic-
tion/inference models, e.g., Deep Neural Networks (DNNs),
Logistic Regression (LR), and Latent Dirichlet Allocation.

Training machine learning models is typically resource
intensive and time consuming. For example, it takes 23.4 hours
to train a GoogLeNet model using the ImageNet dataset on
a Titan supercomputer server with 32 NVIDIA K20 GPUs
[4][5]. A fundamental challenge faced by an ML cluster
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operator is how to efficiently schedule submitted training
jobs to maximally exploit available server resources (espe-
cially the expensive GPU cards), and to complete training
in an expedited fashion. In representative distributed ML
systems [1][2][3][6], training is done in parallel by multiple
concurrent workers. There are two parallelism models: data
parallelism, where the input dataset is partitioned among the
workers, and each worker has a local copy of the entire ML
model, computes model parameter changes using allocated
data chunks, and exchanges computation results with other
workers to come up with the right global parameter updates
[7][6]; model parallelism, where the ML model is partitioned
among workers and each worker updates part of the parameters
using the entire dataset [8]. Data parallelism has been more
widely adopted than model parallelism, given that most ML
models can be entirely stored in the memory of modern GPUs,
eliminating the need for model partition. For example, latest
NVIDIA GPU models (TITAN X and Tesla) have a memory
of 16GB or 24GB, sufficient for most state-of-the-art models
(e.g., [9][10]). We focus on data parallelism in this work.

A typical approach to exchange parameter changes among
workers is through a parameter server framework [7][8]: There
are one or multiple parameter servers (typically implemented
as virtualized instances using virtual machines or containers),
and model parameters are evenly divided and maintained by
the parameter servers. In each training iteration, a worker sends
its computed parameter changes to the parameter servers;
the parameter servers update their maintained parameters
respectively, and send updated parameters back to the worker.
The number of concurrent workers, as well as the number of
parameter servers to support parameter exchange, decide the
training speed and completion time of a job.

How are training jobs scheduled in the existing ML sys-
tems? Google uses Borg [11] as the ML cluster scheduler.
Microsoft, Tencent, and Baidu use customized versions of
YARN-like schedulers [12] for managing ML jobs, based on
our exchanges with their employees. The default scheduling
policies of these schedulers are typically FIFO (as in Spark
[13]), Dominant Resource Fairness Scheduling [14] (as in
YARN [12] and Mesos [15]), or priority-based greedy ap-
proaches (as in Borg [11]). To our knowledge, none of these
systems allow a varying number of concurrent workers in a
training job, which is specified by the job owner and remains
fixed throughout the training course. Such static resource
allocation to jobs may not fully utilize the (often expensive)



ML cluster resources, preventing the best training speeds.
We propose an online job scheduling algorithm, tailored

for operating a shared ML cluster running multiple training
jobs. The algorithm, referred to as OASiS, computes the best
job execution schedule upon the arrival of each job, based
on projected resource availability in the future course and
potential job utility to achieve (contingent on its completion
time). Judging whether the potential job utility outweighs
resource consumption, the algorithm decides admitting the
job or not, and runs the job according to the best schedule
if admitted. With the schedule, the numbers of workers and
parameter servers and their deployment on servers are dynam-
ically adjusted during the course of the job, for expedited
training adapting to resource availability at different times.
Over the long run, we seek overall job utility maximization.

Our online algorithm design utilizes an online primal-dual
framework coupled with dual subroutines, to efficiently tackle
the combinatorial online optimization problem. Based on the
primal-dual framework, we maintain meticulously computed
(dual) resource prices according to time-varying resource
consumption levels (less resources when new jobs are admitted
and more when jobs are completed), and decide job admission
and resource allocation accordingly. Given the resource prices,
the dual subroutines include efficient, optimal algorithms to
compute the best schedule of worker and parameter server
deployment for each job, exploiting a dynamic programming
structure of the underlying multi-timeslot multi-dimensional
resource packing problem.

We rigorously prove polynomial running time of our online
algorithm, and its long-term performance guarantee in terms of
a good competitive ratio in total job utility. We evaluate prac-
tical effectiveness of OASiS using trace-driven simulation and
testbed experiments, by implementing it as a new scheduler
module in Kubernetes [16] for MXNet – a popular distributed
machine learning platform [6]. The results show that OASiS
outperforms commonly adopted scheduling policies.

II. RELATED WORK

A. Distributed Machine Learning Systems

A number of distributed ML frameworks have been de-
signed and deployed, e.g., TensorFlow [1], CNTK [2], Pad-
dlePaddle [3], MXNet [6]. The parameter server framework,
mainly due to Li et al. [7], has been incorporated in some of
them (e.g., [6][8]). In these systems, a static set of workers
are employed; new workers are deployed only upon failure of
existing ones. Most adopt Borg or YARN-like schedulers for
ML cluster management [11][12].

Recently in the literature, Dorm [17] advocates partitioning
an ML cluster, runs one ML application per partition, and
dynamically resizes the partitions for resource efficiency and
fairness, by solving a mixed integer linear program (MILP)
using a standard solver. In comparison, we design an online
algorithm to guide resource allocation over time with proven
performance. Dolphin [18] solves a cost-minimizing problem
to find an optimal number of nodes to use for an ML job, and
reconfigures the system dynamically. It focuses on runtime

Fig. 1: The distributed machine learning system

optimization of one ML job, instead of optimal resource
allocation among multiple concurrent jobs. Similarly, Yan et
al. [19] develop performance models to quantify the impact
of model and data partitioning and system provisioning on
training performance of a DNN, where online job scheduling
and resource sharing are not considered.

B. Job Scheduling and Resource Allocation in Cloud Systems

In the offline setting, Huang et al. [20] and Chen et
al. [21] study cloud job scheduling problems, targeting max-
min fairness among jobs. For online scheduling, Azar et
al. [22] propose an online preemptive job scheduling algorithm
achieving a constant competitive ratio, for jobs running on a
single machine with constant job utility. Lucier et al. [23]
propose an efficient heuristic for online job scheduling with
preemption, aiming to maximize total value of all jobs. The
resources allocated to each job are fixed over time and the
job value is not influenced by completion time. Zhou et
al. [24] and Zhang et al. [25] design mechanisms for online
cloud resource allocation and pricing, where no adjustment of
allocated resources in a job is considered.

Xiao et al. [26] design a scheduler for automatic scaling
of Internet applications in a cloud, targeting high demand
satisfaction ratio and short request-response time. TetriSched
[27] enables resource scaling by periodically solving a sched-
ule optimization problem among all pending jobs to compute
their amounts of resources in need. These work do not provide
theoretical guarantee for long-term performance.

III. PROBLEM MODEL

A. Distributed Machine Learning System

Fig. 1 illustrates an ML cluster, where a set of I training jobs
are submitted in an online fashion during timespan 1, 2, . . . , T .
The training jobs come with large input datasets, and derive
potentially different ML models using data parallel training
and the parameter server framework [7]. A job i arrives at time
ai ∈ [T ],1 using a number of workers and parameter servers
for model training.

Workers and parameter servers are implemented on virtual
machines (VMs) or containers in the physical servers. The ML
cluster hosts H physical servers for worker deployment. Each
machine h ∈ [H] has a capacity crh of type-r resource. There
are K other physical servers for running parameter servers, and
each server k ∈ [K] has a capacity crk of type-r resource. Let R

1We define [X] = {1, 2, . . . , X} throughout the paper, where X can be
different quantities.



be the total number of resource types, including GPU, CPU,
memory, disk storage and bandwidth capacity of the server
NIC. We practically assume two types of physical machines
for running workers and parameter servers separately, given
that parameter servers are typically placed on machines with
high bandwidth but without GPU, while workers run on GPU
servers. Such a separation between workers and parameter
servers has been witnessed in existing ML systems [7][8].

Workers and parameter servers are customized for each job,
and not shared among different jobs. Each worker (parameter
server) of job i occupies a wri (sri ) amount of type-r resource,
∀r ∈ [R]. An amount of bandwidth bi (Bi) is reserved for
each worker (parameter server) of job i, i.e., bi = wbandwidth

i

(Bi = sbandwidth
i ). We do not distinguish upload and down-

load bandwidth, but assume they are symmetric. Bandwidth
reservation for a VM or container is common for accelerated
computing in cloud platforms, to guarantee data transfer
performance of each instance, e.g., the reserved bandwidth of
EC2 GPU instance P2 on AWS is 10Gbps or 20Gbps [28].

B. Asynchronous Training Workflow

The input dataset to a training job is stored in a distributed
storage system (e.g., HDFS [29]). The dataset is divided into
equal-sized data chunks trained by different workers. Each
data chunk is further divided into equal-sized mini-batches.

Upon start, a worker fetches a data chunk.2 Then the worker
processes the first mini-batch in the data chunk, i.e., computes
what changes to be made to the parameters (to approach their
optimal values) in the ML model, using data in the mini-
batch. Parameter changes are typically expressed as gradients
(directions of changes), and a distributed stochastic gradient
descent method is typically used by workers to jointly improve
the parameters [7]. For example, when training an LR model
for ad click-through-rate prediction, parameters are the weights
of features (e.g., text, image used in an ad) in the prediction
model, and gradients are the changes of weights [30].

After processing a mini-batch, the worker sends gradients
to the parameter servers for parameter updates. The parameter
servers in a job are usually responsible for an evenly divided
share of the parameters. In the above example, if there are
two parameter servers, each will be responsible for half of
the weights, and gradients computed by a worker are divided
and sent to parameter servers maintaining respective weights.
Upon receiving updated parameters from all parameter servers,
the worker continues computing gradients using the next mini-
batch, and so on. After an entire data chunk is processed, the
worker continues training the next data chunk assigned to it.

Fig. 2 illustrates the asynchronous training workflow
in our system, i.e., the training progress at different
workers in a job is not synchronized and each parameter
server updates its parameters each time upon receiving
gradients from a worker. In the above example, a parameter
server updates its weights using a formula like new weight =
old weight− stepsize× gradient computed by the worker,

2The ML framework, e.g., PaddlePaddle, assigns data chunks to workers.

Fig. 2: Workflow in a training job

and then sends updated weights back to the worker. Another
representative training mode in today’s ML systems is
synchronous training, where training progress at all workers
is synchronized and each parameter server updates its
parameters after it has collected gradients from all workers
in each training iteration (i.e., training of one mini-batch).
Asynchronous training achieves better bandwidth utilization,
as gradients and updated parameters are sent from/to workers
at different times, and hence potentially faster convergence.
Further, model accuracy achieved with asynchronous training
is not affected by changes of worker population through
the course [7][8] (as what we advocate), while it varies
with synchronous training if different numbers of concurrent
workers are used [5][19].

Let Ni be the number of input data chunks in job i, each
divided into Mi mini-batches. Let τi denote the training time
(gradient computation) for each mini-batch in job i, which is
assumed to be equal for all mini-batches on all workers in
the same job, given the same resource allocation per worker.
Let ei be the size of gradients produced by each worker of
job i after processing a mini-batch, which is the same as the
size of updated parameters that the worker will receive from
all parameter servers, since the total numbers of gradients and
parameters are always the same and both use the same float
point representation [5]. The time for sending gradients to
or receiving updated parameters from all parameter servers
can be computed as ei

bi
(bandwidth at a parameter server is

typically large enough to receive gradients /send parameters
from/to multiple workers). When training ResNet-152 model
on ImageNet dataset [9][4], each data chunk is 128MB in size,
a mini-batch is about 6MB in size, and training one mini-batch
takes about one second, while training a data chunk takes less
than one minute; the size of gradients/parameters exchanged
between a worker and parameter servers is about 241MB.

We ignore worker/parameter server setup time, since the
image containing the training program can be pre-stored in
a physical machine or fetched in a very short time (e.g., a
container image of hundreds of MBs can be fetched within
seconds in a 10Gbps network). We also ignore the time for a
worker to fetch data chunks from distributed storage, since
a worker only needs to explicitly retrieve the first chunk,
and fetching time of later chunks can be hidden behind
training through pipelining. Fetching one data chunk takes
much shorter time than training, e.g., less than 1s in a 10Gbps
network for a 128MB chunk. With asynchronous training,
the computation time at a parameter server for updating



parameters using gradients from only one worker is very
small (around tens of milliseconds in ResNet-152) and hence
negligible too.

In an ML job, input data chunks can be repeatedly trained
for multiple rounds. An epoch [8] is the duration when all
data chunks are trained once. A training job i stops after Ei
epochs in our system.

C. Offline Optimization Problem

Upon arrival of an ML job i at ai, the following decisions
are made: (i) Whether the job should be admitted, denoted
by a binary variable xi: xi = 1 if job i is admitted, and
xi = 0, otherwise. Admission control is common in cloud
management systems [11][12], and jobs that are not admitted
can be queued or resubmitted at a later time beyond T . (ii)
The number of workers of job i to deploy on physical server
h ∈ [H] in each time slot at and after ai, indicated by integer
variable yih(t). (iii) The number of parameter servers of job i
to deploy on physical server k ∈ [K] in each time slot at and
after ai, denoted by integer variable zik(t).

Given that it is not practical to adjust worker and parameter
server deployment frequently, the length of each time slot is
potentially much larger than the duration of an epoch. For
example, one time slot can be 1 hour or longer.

Let t̂i be the completion time slot of job i. Each job i has
a non-negative utility fi(t̂i − ai), non-increasing with t̂i − ai,
specifying the job’s value in terms of different completion
times [20]. The offline optimization problem to maximize
overall utility is formulated as follows. Important notation is
summarized in Table I.

max
∑
i∈[I]

xifi(t̂i − ai) (1)

subject to:∑
t∈[T ]

∑
h∈[H]

yih(t) ≥ EiNiMi(τi + 2ei/bi)xi,∀i ∈ [I] (2)

∑
h∈[H]

yih(t) ≤ Nixi,∀i ∈ [I], t ∈ [T ] : t ≥ ai (3)

∑
i∈[I]

wr
i yih(t) ≤ crh, ∀t ∈ [T ], r ∈ [R], h ∈ [H] (4)

∑
i∈[I]

sri zik(t) ≤ crk, ∀t ∈ [T ], r ∈ [R], k ∈ [K] (5)

∑
h∈[H]

yih(t)bi ≤
∑

k∈[K]

zik(t)Bi, ∀i ∈ [I], t ∈ [T ] (6)

∑
k∈[K]

zik(t) ≤
∑

h∈[H]

yih(t), ∀i ∈ [I], t ∈ [T ] (7)

t̂i = argmax
t∈[T ]
{
∑

h∈[H]

yih(t) > 0},∀i ∈ [I] (8)

yih(t) = 0, ∀i ∈ [I], h ∈ [H], t < ai (9)
zik(t) = 0, ∀i ∈ [I], k ∈ [K], t < ai (10)
xi ∈ {0, 1}, ∀i ∈ [I] (11)
yih(t) ∈ {0, 1, . . .}, ∀i ∈ [I], t ∈ [T ], h ∈ [H] (12)
zik(t) ∈ {0, 1, . . .},∀i ∈ [I], t ∈ [T ], k ∈ [K] (13)

Constraint (2) ensures that for each admitted job i, a
sufficient number of workers are deployed to accomplish

TABLE I: Notation

I # of jobs T system timespan
t̂i completion time of job i ai arrival time of job i
R # of resource types Ni # of data chunks in i
xi accept job i or not fi(·) job i’s utility
Ei # of training epochs for job i
Mi # of mini-batches in a data chunk of job i
H(K) # of servers to deploy workers (parameter servers)
crh(c

r
k) capacity of type-r resource on server h (k) to deploy

workers (parameter servers)
wr

i (s
r
i ) type-r resource of a worker (parameter server) in i

yih(t) # of workers of job i deployed on server h in t
zik(t) # of parameter servers of i deployed on server k in t
bi(Bi) bandwidth of a worker (parameter server) of job i
τi time to train a mini-batch in job i
ei size of gradients/parameters exchanged between a

worker and parameter servers in job i

training of its dataset for Ei epochs. Here, τi + 2ei/bi is the
time for training a mini-batch, sending gradients to parameter
servers, and receiving updated parameters from parameter
servers. EiNiMi is the total count of mini-batches trained
in the job.

∑
t∈[T ]

∑
h∈[H] yih(t) indicates the total amount

of work time that all deployed workers in job i provide. (3)
specifies the concurrent number of workers of job i should be
no more than the number of data chunks Ni, to ensure that one
data chunk is processed by at most one worker in each time
slot (such that data chunks are trained evenly over time). (4)
and (5) are resource capacity constraints on physical machines
for worker and parameter server deployment, respectively.
(6) guarantees that the total bandwidth of parameter servers
is no smaller than total bandwidth of all workers in each
job, i.e., parameter servers will not be bottlenecks during
gradient/parameter exchange. (7) upper bounds the number of
parameter servers by the number of workers at any time in
each job, which is common in practical ML systems [7][8]. (8)
gives the completion time slot of job i. (9) and (10) set worker
and parameter server numbers to 0 before a job’s arrival.

The optimization problem involves integer variables and
non-conventional constraints in (8). We design an efficient
online algorithm to solve it in an online fashion, without
assuming knowledge of any future job arrivals.

IV. ONLINE ALGORITHM

A. Problem Reformulation

To circumvent the non-conventional constraint (8), we refor-
mulate problem (1) into the following integer linear program
(ILP). Here Li is the set of feasible schedules for jobs i,
each corresponding to the set of decisions (yih(t), zik(t),∀h ∈
[H], k ∈ [K], t ∈ [T ]) satisfying constraints (2)(3)(6)(7)(9)-
(13). There is potentially an exponential number of feasible
schedules for each job, due to combinatorial nature of those
constraints. Decision variables in the ILP are binary variables
xil, indicating whether job i is admitted and scheduled ac-
cording to schedule l ∈ Li or not, ∀i ∈ [I], l ∈ Li. Job i’s



completion time according to schedule l is til. ylih(t) (zlik(t))
is the given number of workers (parameter servers) on server
h (k) in t in job i’s schedule l (not decision variables in (14)).

max
x

∑
i∈[I]

∑
l∈Li

xilfi(til − ai) (14)

s.t.∑
i∈[I]

∑
l:t∈l,h∈(t,l)

wr
i y

l
ih(t)xil ≤ crh,∀t ∈ [T ], r ∈ [R], h ∈ [H] (15)

∑
i∈[I]

∑
l:t∈l,k∈(t,l)

sri z
l
ik(t)xil ≤ crk,∀t ∈ [T ], r ∈ [R], k ∈ [K] (16)

∑
l∈Li

xil ≤ 1, ∀i ∈ [I] (17)

xil ∈ {0, 1}, ∀i ∈ [I], l ∈ Li (18)

We use t ∈ l, h ∈ (t, l), k ∈ (t, l) to indicate that schedule
l uses server h to deploy worker(s) and server k to deploy
parameter server(s) for job i in t. (14), (15) and (16) are
equivalent to (1), (4) and (5), respectively. (17) and (18) corre-
spond to (2)(3)(6)-(13). Problems (1) and (14) are equivalent
since a feasible solution to (1) has a corresponding feasible
solution to (14), and vice versa, with the same objective values.
Though the number of variables in (14), xil’s, is potentially ex-
ponential, we will design an efficient online algorithm to solve
(14) in polynomial time, exploiting the primal-dual framework
[31]. We formulate the dual of (14) by relaxing integrality
constraints (18) and associating dual variables prh(t), q

r
k(t) and

µi with (15), (16) and (17), respectively.

min
∑
i∈[I]

µi +
∑
t∈[T ]

∑
h∈[H]

∑
r∈[R]

prh(t)c
r
h +

∑
t∈[T ]

∑
k∈[K]

∑
r∈[R]

qrk(t)c
r
k

(19)
s.t. µi ≥ fi(til − ai)−

∑
t∈l

∑
h∈(t,l)

∑
r∈[R]

prh(t)w
r
i y

l
ih(t)

−
∑
t∈l

∑
k∈(t,l)

∑
r∈[R]

qrk(t)s
r
i z

l
ik(t),∀i ∈ [I], l ∈ Li (20)

prh(t) ≥ 0, qrk(t) ≥ 0,∀t ∈ [T ], h ∈ [H], k ∈ [K], r ∈ [R]

µi ≥ 0,∀i ∈ [I]

The dual variable prh(t) (qrk(t)), associated with the
primal capacity constraint on server h (k), can be
interpreted as the unit cost for type-r resource on
the server in t. Then

∑
t∈l
∑

h∈(t,l)
∑

r∈[R] p
r
h(t)w

r
i y

l
ih(t)

(
∑

t∈l
∑

k∈(t,l)
∑

r∈[R] q
r
k(t)s

r
i z

l
ik(t)) is the total resource cost

of all workers (parameter servers) of job i with schedule l. The
RHS of (20) is job utility minus overall resource cost for job
i with schedule l. The following should hold to minimize the
dual objective: µi = max{0,maxl∈Li RHS of (20)}. Hence,
µi can be nicely interpreted as the payoff of admitting job i
according to the best schedule l∗:

l∗ = argmax
l∈Li

RHS of (20) (21)

B. Online Algorithm

These observations inspire the design of an online algo-
rithm: Upon arrival of job i, we compute the best schedule l∗

of job i (assuming job admitted). Then we check if the RHS of
(20) achieved by l∗ is positive. If so (µi > 0, positive payoff),
we accept job i and run it according to l∗ (xil∗ = 1); otherwise

Algorithm 1 OASiS: Online Algorithm for Scheduling ML
Jobs
Input: T, crh, crk, ∀h ∈ [H], k ∈ [K], r ∈ [R]
Output: xi, yih(t), zik(t),∀i ∈ [I], t ∈ [T ], h ∈ [H], k ∈ [K]
1: Initialize yih(t) = 0, zik(t) = 0, grh(t) = 0, vrk(t) = 0, prh(t) =
P r
h (0), q

r
k(t) = Qr

k(0), ∀i ∈ [I], t ∈ [T ], h ∈ [H], k ∈ [K], r ∈
[R]

2: Upon arrival of job i do
3: Compute the best schedule l∗ and payoff µi for job i using

Alg. 2
4: if µi > 0 then
5: Set xi = 1
6: Set yih(t), zik(t) according to schedule l∗, ∀t ∈ l∗, h ∈

(t, l∗), k ∈ (t, l∗)
7: Update grh(t) = grh(t) + wr

i yih(t),∀t ∈ l∗, h ∈
(t, l∗), r ∈ [R]

8: Update prh(t) = P r
h (g

r
h(t)), ∀t ∈ l∗, h ∈ (t, l∗), r ∈ [R]

9: Update vrk(t) = vrk(t)+s
r
i zik(t),∀t ∈ l∗, k ∈ (t, l∗), r ∈

[R]
10: Update qrk(t) = Qr

k(v
r
k(t)), ∀t ∈ l∗, k ∈ (t, l∗), r ∈ [R]

11: Accept and launch job i according to schedule l∗

12: else
13: Set xi = 0 and reject job i
14: end if
15: end upon

(zero payoff), job i is rejected (xil = 0,∀l ∈ Li). The rationale
is that, as resources are limited, we wish to accept jobs with
larger utility and lower resource consumption, to maximize
(14). A positive payoff indicates that the job utility is high
enough to justify resource consumption, and we schedule the
job in a way that maximizes its payoff.

To implement this idea, we need to resolve the following:
(i) Solve (21) to find the best schedule l∗ for job i. Simply
enumerating all feasible schedules is not practical, given
the exponential size of set Li. We will design an efficient
subroutine to produce l∗ in polynomial time in Sec. IV-C. (ii)
Compute dual resource prices prh(t)’s and qrk(t)’s, to ensure
a positive payoff for job schedules achieving high utilities (if
there are enough resources to accommodate them), and non-
positive payoff for job schedules resulting in low utilities or
without available resources.

The sketch of our online algorithm, OASiS, is in Alg. 1. In
line 3, Alg. 2 is the subroutine to compute l∗. In line 7 (9),
grh(t) (vrk(t)) records the amount of allocated type-r resource
on server h (k) for (future) time slot t. In lines 8 and 10,
we update dual resource prices using carefully designed price
functions P rh(·) and Qrk(·), respectively:

P r
h (g

r
h(t)) = L1

(Ur
1

L1

) grh(t)

cr
h , Qr

k(v
r
k(t)) = L2

(Ur
2

L2

) vrk(t)

cr
k (22)

where Ur
1 = max

i∈[I]

fi(dEiMi(τi + 2ei/bi)e − ai)
wr

i

,∀r ∈ [R] (23)

Ur
2 = max

i∈[I]

fi(dEiMi(τi + 2ei/bi)e − ai)
sri

, ∀r ∈ [R] (24)

L1 =
1

4η1
min
i∈[I]

fi(T − ai)∑
r∈[R]dEiNiMi(τi + 2ei/bi)ewr

i

(25)

L2 =
1

4η2
min
i∈[I]

fi(dT − ai)∑
r∈[R]dEiNiMi(τi + 2ei/bi)esri

(26)



Ur1 (Ur2 ) is the maximum per-unit-resource job utility for type-
r resource on physical servers to deploy workers (parameter
servers), among all jobs. Here, fi(dEiMi(τi + 2ei/bi)e − ai)
is the largest utility that job i can achieve, by using the
maximum number of workers (i.e., Ni) at all times in Ei
training epochs to achieve the shortest job completion time
dEiNiMi(τi+2ei/bi)

Ni
e = dEiMi(τi + 2ei/bi)e. L1 (L2) rep-

resents the minimum unit-time-unit-resource job utility on
physical servers to deploy workers (parameter servers), among
all jobs. Here, fi(T − ai) is the smallest utility that job i
may achieve, when it ends at T . η1 and η2 are scaling factors
satisfying 1

η1
≤ dEiNiMi(τi+2ei/bi)e

∑
r∈[R] w

r
i

T
∑
h∈[H]

∑
r∈[R] c

r
h

,∀i ∈ [I], and
1
η2
≤ dEiNiMi(τi+2ei/bi)e

∑
r∈[R] s

r
i

T
∑
k∈[K]

∑
r∈[R] c

r
k

,∀i ∈ [I], to ensure the
initial value of dual objective is bounded.

The rationales behind our price functions are as follows. (i)
The prices should be low enough at the beginning to accept
many incoming jobs. When grh(t) = 0, vrk(t) = 0, we have
prh(t) = L1, q

r
k(t) = L2,∀h ∈ [H], k ∈ [K], r ∈ [R], and then

any job can be admitted at this point since L1 and L2 represent
the lowest unit job utility (a formal proof is given in our
technical report [32]). (ii) The prices increase exponentially
when the allocated amounts of resources increase, to filter
out jobs with low utilities which arrive early, and to reserve
resources for jobs with higher utilities that may arrive later.
(iii) The respective price should be high enough when a
resource on a server is exhausted, such that no more jobs
requiring this resource are admitted. When grh(t) = crh or
vrk(t) = crk, we have prh(t) = Ur1 or qrk(t) = Ur2 , and no
more jobs requiring these resources would be admitted since
Ur1 and Ur2 are the largest unit job utilities (proof in [32]). The
price functions are important to guarantee a good competitive
ratio for our online algorithm.
Ur1 , Ur2 , L1 and L2 are required to compute price functions

in Alg. 1, whose exact values are not known before all jobs
have arrived. Instead, we adopt their estimated values (based
on past experience) in our online algorithm, and will evaluate
impact of inaccurate estimates in Sec. V.

C. Subroutine for Finding Best Job Schedule

The optimization problem in (21) to compute the best
schedule l∗ for job i is equivalent to the following:

max
t̂i,y,z

fi(t̂i − ai)−
∑
t∈[T ]

∑
h∈[H]

∑
r∈[R]

prh(t)w
r
i yih(t)

−
∑
t∈[T ]

∑
k∈[K]

∑
r∈[R]

qrk(t)s
r
i zik(t) (27)

s.t. grh(t) + wr
i yih(t) ≤ crh, ∀t ∈ [T ], r ∈ [R], h ∈ [H]

vrk(t) + sri zik(t) ≤ crk, ∀t ∈ [T ], r ∈ [R], k ∈ [K]

Constraints (2)(3)(6)-(10)(12)(13), where xi = 1

We next show that (27) can be efficiently and optimally
solved using dynamic programming and a greedy algorithm.
When we fix t̂i, (27) is simplified to the following ILP, where
Ti = t̂i,Di = EiNi:

min
y,z

cost(Ti,Di) =
∑

t∈[ai,Ti]

∑
h∈[H]

∑
r∈[R]

prh(t)w
r
i yih(t)

+
∑

t∈[ai,Ti]

∑
k∈[K]

∑
r∈[R]

qrk(t)s
r
i zik(t) (28)

s.t.
∑

t∈[ai,Ti]

∑
h∈[H]

yih(t) ≥ DiMi(τi + 2ei/bi) (29)

yih(t) ≤ min
r∈[R]
bc

r
h − grh(t)
wr

i

c, ∀h ∈ [H], t ∈ [ai, Ti] (30)

zik(t) ≤ min
r∈[R]
bc

r
k − vrk(t)
sri

c,∀k ∈ [K], t ∈ [ai, Ti] (31)

(3)(6)(7)(12)(13), where t ∈ [ai, Ti]

In problem (28), deployment decisions in different time slots
are coupled only in constraint (29), which requires sufficient
workers and parameter servers to be deployed such that all Ni
data chunks are trained for Ei epochs during [ai, Ti]. We refer
to Di in the RHS of (29) as training workload, indicating the
total count of data chunks trained (a data chunk is counted
Ei times if trained for Ei times). Since the time for training a
data chunk is much smaller than the duration of a time slot, we
may safely assume a worker trains an integer number of data
chunks in each time slot. The training workload is distributed
over different time slots in [ai, Ti]. If we know how much
training workload (denoted by Di(t)) is to be fulfilled in a
time slot t, we are left with a further simplified problem:

min cost t(t,Di(t)) =
∑

h∈[H]

∑
r∈[R]

prh(t)w
r
i yih(t)

+
∑

k∈[K]

∑
r∈[R]

qrk(t)s
r
i zik(t) (32)

s.t.
∑

h∈[H]

yih(t) ≥ Di(t)Mi(τi + 2ei/bi)

(30)(31)(3)(6)(7)(12)(13), for the specific t

Though (32) is an ILP, it can be optimally solved using
a greedy algorithm (to be discussed in Alg. 2 and analyzed
in Theorem 1). Therefore, we come up with the following
algorithm to find the best schedule for job i: enumerate end
times t̂i from ai to T ; given t̂i, design a dynamic programming
approach to compute how to best distribute the training work-
load over time slots in [ai, t̂i]; then use the greedy algorithm to
decide deployment of workers and parameter servers in each
time slot. Our algorithm is given in Alg. 2.

In Alg. 2, we enumerate job completion time slot t̂i (line 2)
and find the optimal schedule with each t̂i by calling function
DP COST (line 3). Then we compare the payoffs achieved
by schedules at different completion times and decide the best
schedule achieving the highest payoff (lines 4-7).

Lines 10-20 implement a dynamic programming function:
cost(t̂i, EiNi) = min

d∈[0,EiNi]
cost t(t̂i, d) + cost(t̂i − 1, EiNi − d)

We enumerate training workload d to be finished in time slot
t̂i from 0 to EiNi (lines 12-13), and let the rest workload
EiNi−d be carried out in [ai, t̂i−1] (line 14). We compare the
resulting costs (value of objective function (28)) and identify
the schedule achieving the smallest cost (lines 15-17). Finding
the best schedule for workload EiNi − d in [ai, t̂i − 1] is



Algorithm 2 Subroutine for Deriving Best Schedule of Job i

Input: T , prh(t), g
r
h(t), q

r
k(t), v

r
k(t), c

r
h, c

r
k, ∀h ∈ [H], k ∈ [K], r ∈

[R], t ∈ [T ]
Output: best schedule l∗ and payoff µi for job i
1: Initialize µi = 0, l∗ = ∅, yih(t) = 0, zik(t) = 0, ∀t ∈ [T ], h ∈

[H], k ∈ [K]
2: for t̂i = ai to T do
3: (cost, l) = DP COST (t̂i, EiNi)
4: µil = fi(t̂i − ai)− cost
5: if µil > µi then
6: l∗ ⇐ l, µi = µil

7: end if
8: end for
9: return l∗, µi

10: function DP COST(Ti,Di)
11: min cost =∞, l = ∅
12: for d = 0 to Di do
13: (cost t,y(Ti), z(Ti)) = COST t(Ti, d)
14: (cost, l′) = DP COST (Ti − 1,Di − d)
15: if min cost > cost t+ cost then
16: min cost = cost t+ cost, l⇐ l′ ∪ {y(Ti), z(Ti)}
17: end if
18: end for
19: Return min cost, l
20: end function

21: function COST t(t, d)
22: Initialize yih(t) = 0, zik(t) = 0, ∀h ∈ [H], k ∈ [K]
23: Sort servers in [H] according to

∑
r∈[R] p

r
h(t)w

r
i in non-

decreasing order into h1, h2, . . . , hH

24: D = ddMi(τi + 2ei/bi)e;
25: for j = 1, . . . , H do/*deploy workers*/
26: yihj (t) = min

{
minr∈[R]b

crh−grh(t)

wri
c,

27: Ni −
∑j−1

j′=1 yihj′ (t), D
}

28: D = D − yihj (t)
29: end for
30: if D > 0 then/*not all workload can be handled*/
31: Return cost t = +∞,y, z
32: end if
33: Sort servers in [K] according to

∑
r∈[R] q

r
k(t)s

r
i in non-

decreasing order into k1, k2, . . . , kK
34: for j = 1, . . . ,K do/*deploy parameter servers*/
35: zikj (t) = min

{
minr∈[R]b

crk−vrk(t)

sri
c,

36: d
∑

h∈[H] yih(t)
bi
Bi
e −

∑j−1
j′=1 zikj′ (t),

37:
∑

h∈[H] yih(t)−
∑j−1

j′=1 zikj′ (t)
}

38: end for
39: if

∑
k∈[K] zik(t) < bi

Bi

∑
h∈[H] yih(t) then/*not enough

parameter servers can be deployed*/
40: Return cost t = +∞,y, z
41: end if
42: cost t =

∑
h∈[H]

∑
r∈[R] p

r
h(t)w

r
i yih(t) +∑

k∈[K]

∑
r∈[R] q

r
k(t)s

r
i zik(t)

43: Return cost t,y(t), z(t)
44: end function

the same as finding the best schedule to carry out workload
EiNi in [ai, t̂i] except for at a smaller scale, and hence the
function calls itself in line 14 (a.k.a. dynamic programming).
Note that we always store the results of COST t(t, d) and
DP COST (Ti,Di) computed at different t̂i’s, to avoid re-
computing the same subproblem in later iterations.

COST t in lines 21-44 computes the optimal worker and

parameter server deployment to fulfil workload d in time slot
t. We sort servers for worker deployment in non-decreasing
order of overall resource price

∑
r∈[R] p

r
h(t)w

r
i (line 23), and

maximally deploy workers starting from the cheapest server,
respecting capacity constraint (30) and upper bound Ni on the
number of workers in (3), to fulfil workload d (lines 24-29).
Parameter servers are deployed in a similar greedy fashion.
The total number of parameter servers guarantees sufficient
bandwidth to serve workers (constraint (6)) but not over-
provisioning (constraint (7)), subject to capacity constraint
(31) (lines 34-38). If not enough workers or parameter servers
can be deployed, fulfilling workload d in t is infeasible (lines
30-32, 39-41); otherwise, we return total deployment cost in
t (value of objective function (32)) and the schedule.

D. Theoretical Analysis

We next analyze our online algorithm in terms of cor-
rectness, time complexity, and competitive ratio. All missing
proofs can be found in our technical report [32].

Theorem 1 (Optimality of Subroutine). Alg. 2 produces an
optimal solution of problem (27), in which COST t computes
an optimal solution of problem (32).

Theorem 2 (Correctness). OASiS in Alg. 1 (together with
Alg. 2) computes a feasible solution to problems (1) (14) (19).

Though our online algorithm involves a dynamic programming
approach, we prove its polynomial time complexity as follows.

Theorem 3 (Polynomial Running Time). OASiS in Alg. 1
(together with Alg. 2) runs in polynomial time to decide job
admission and schedule upon arrival of each job i, with time
complexity O(TNiEi(H +K) + TN2

i E
2
i ).

The competitive ratio of our online algorithm is the worst-case
upper bound of the ratio of the overall utility of admitted jobs
derived by the offline optimal solution of (1) to the total utility
of admitted jobs achieved by Alg. 1 in the overall system span.

Theorem 4 (Competitive Ratio). OASiS in Alg. 1 is 2α-
competitive, where α = maxr∈[R](1, ln

Ur1
L1
, ln

Ur2
L2

) and Ur1 ,
Ur2 , L1 and L2 are defined in (23)-(26).

Theorem 4 tells that the larger the ratio of the largest utility
to the lowest utility that the jobs can achieve is, the worse the
ratio is. In this case, if OASiS makes a wrong decision, the
gap from the offline optimum is larger. If the timespan T or
the total amount of resources is larger, the ratio is also worse,
as there is more room for the offline algorithm to improve.

V. PERFORMANCE EVALUATION

We next evaluate OASiS by simulation studies and testbed
experiments based on a prototype system implementation.

A. Simulation Studies

Settings. We simulate an ML system running for T = 100-300
time slots, with H = 50 servers to host workers (server re-
source capacities set according to Amazon EC2 C4 instances)
and K = 50 servers to deploy parameter servers (resource
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capacities following EC2 GPU instances P2 and G3 randomly
[28]). Server bandwidth is set within [20, 50]Gbps. Following
similar settings in [17][7][8], we set resource demands of each
worker as follows: 0 to 4 GPUs, 1 to 10 vCPUs, 2 to 32GB
memory, 5 to 10GB storage, and bandwidth of 100Mbps to
5Gbps (bi). Resource demands of each parameter server are:
1 to 10 vCPUs, 2 to 32GB memory, 5 to 10GB storage, and
bandwidth of 5Gbps to 20Gbps (Bi). We set job arrival pattern
according to the Google cluster data [33], but may vary job
arrival rates. For different jobs, Ei is set within [50, 200], Ni
is in [5, 100], Mi is in [10, 100], τi is in [0.001, 0.1] time
slots, and ei is within [30, 575]MB [5]. We use a sigmoid
utility function [20], fi(t− ai) = γ1

1+eγ2(t−ai−γ3) , where γ1 is
priority of job i in [1, 100], γ2 is a decay factor, and γ3 is the
target completion time of job i set in [1, 15]. We set γ2 = 0
for time-insensitive jobs (constant utility), γ2 in [0.01, 1] to
represent time-sensitive jobs and γ2 in [4, 6] for time-critical
jobs. By default, 10%, 55% and 35% jobs are time-insensitive,
-sensitive, and -critical, respectively, in our experiments.

Schemes for comparison. We compare OASiS with four rep-
resentative job scheduling policies in existing cloud platforms.
(i) FIFO: default scheduler in Hadoop and Spark [13]; jobs are
admitted and run in order of their arrivals, with fixed numbers
of workers/parameter servers. (ii) Dominant Resource Fairness
Scheduling (DRF): default scheduler in YARN [12] and Mesos
[15]; jobs are all admitted and numbers of workers/parameter
servers are computed to achieve max-min fairness in dominant
resources upon job arrival and job completion [14]. (iii) Risk-
Reward Heuristic (RRH) [34]: a job is admitted if its utility
minus a delay cost incurred by its admission is larger than
a threshold; upon job arrival or completion, unfinished jobs
either continue running (always with same worker/parameter
server numbers once running) or pause, decided by job’s future
utility gain minus cost. (iv) Dorm [17]: Jobs are admitted;
upon job arrival or completion, numbers and placement of
workers/parameter servers of unfinished jobs are recomputed
by an MILP resource utilization maximization problem, sub-
ject to fairness and adjustment overhead constraints. In (i)-(iii),
we place workers and parameter servers on available servers
in a round-robin fashion. For FIFO and RRH, the number of
workers (parameter servers) is fixed to a number within [1, 30].

Results. Fig. 3 presents the total utility achieved by different
schemes, where T = 300. OASiS performs the best, especially
when the number of jobs in the fixed timespan is larger
(resources are more scarce).

3 6 9 12
Number of Servers in Total

1.0

1.1

1.2

1.3

1.4

1.5

1.6

P
e
rf

o
rm

a
n
ce

 R
a
ti

o γ1 ∈ [50, 100]

γ1 ∈ [75, 100]

γ1 ∈ [1, 100]

γ1 ∈ [25, 100]

Fig. 5: Performance ratio

100 200 300 400
Number of Jobs

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

T
o
ta

l 
U

ti
lit

y

1e4

20%

50%

100%

300%

500%

1000%

Fig. 6: Total job utility under
inaccurate Ur1

L1
, U

r
2

L2

Fig. 4 shows how well the target completion time is met
when 100 time-sensitive and 100 time-critical jobs are run in
T = 100. The actual completion time minus target completion
time (γ3 in the sigmoid utility function) achieved with OASiS
is the closest to zero for both types of jobs, with the smallest
variance. Among the other schemes, only RRH is job utility
(completion time) aware, but its resource utilization is not as
efficient so does not perform well either.

Fig. 5 shows the performance ratio of OASiS, computed by
dividing the total job utility of the offline optimal solution
by the total job utility achieved by OASiS. Due to the time
complexity of solving (1) exactly for the offline optimum, the
number of jobs is limited to 10.3 We set T = 10, vary the
number of servers (proportionally divided to host workers and
parameter servers), and also vary the range of job priorities
(γ1 in the sigmoid function), such that maxr∈[R](

Ur1
L1
,
Ur2
L2

)
increases from left to right at each fixed number of servers in
the figure. We observe a ratio around 1.1 to 1.5, showing the
good performance of our online algorithm. There is no clear
trend of increase or decrease of the ratio with more resources
and larger maxr∈[R](

Ur1
L1
,
Ur2
L2

) – the factors influencing the
worst-case competitive ratio in Theorem 4 (note our simulation
scenario may not be the worst case).

In Fig. 6, we use estimated values of Ur1
L1

and Ur2
L2

as
input to OASiS, at different percentages of their actual values
(T = 300). We observe that an underestimation leads to higher
total utility than overestimation when resources are scarce, as
it prevents abrupt price rise which may filter out jobs that
should be accepted. These results directly reflect impact of
using inaccurate estimations of Ur1

L1
and Ur2

L2
on performance

ratio of OASiS.

B. Testbed Experiments

Prototype implementation. We implement a distributed
ML system based on MXNet [6] with Kubernetes 1.6
[16]. MXNet is modified to support dynamic adjustment of
worker/parameter server numbers. OASiS and other 4 schedul-
ing schemes for comparison are implemented as custom sched-
ulers to replace the default one in Kubernetes, respectively.
The scheduler constantly queries ongoing jobs and available
system resources, and posts scheduling decisions via the

3It takes 2 days to compute the optimal offline solution with 10 jobs, while
OASiS runs for less than 1 second to produce the best schedule for each job
in the case of 100 time slots and 80 worker/parameter servers.
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Kubernetes API server. Each worker or parameter server is
implemented on a Docker container with 0 to 1 GPU, 1 to 5
CPU cores, 2 to 10GB memory, and 1 to 3Gbps bandwidth.
We deploy our system on 9 servers: 2 with 8 CPU cores, 32GB
RAM, 1.5TB storage each host parameter servers, and 7 with
32 CPU cores, 80GB RAM, 600GB storage each host workers
(there are 4 GPUs deployed on 4 servers). All servers are
equipped with a dual-port 1GbE NIC and a dual-port 10GbE
NIC. All data are stored in HDFS [29], with chunk size 2MB.
Experimental setup. We run 6 kinds of model training jobs,
i.e., AlexNet [35], ResNet-50,101,152 [9], VGG-11 [10], and
Inception-BN [36], on ImageNet ILSVRC2012 [4] dataset (we
use 200 images (20.3MB)). Each experiment runs for 10 time
slots and each time slot is 20 minutes long. 12 jobs arrive in
the first 9 time slots and each job runs for 40 minutes to 2
hours. Each data chunk contains 20 or 30 images, each mini-
batch contains 10 images, and the number of epochs is in
[4, 30]. Job utilities are similar to simulation.
Experimental results. We plot the total utility in Fig. 7 and
the actual completion time minus target completion time of all
jobs in Fig. 8. Compared to Fig. 3 and Fig. 4, the comparison
results are similar. With the small number of jobs that we can
run on our small testbed, the difference between OASiS and
others may not be as apparent as that in a large system (as
shown by our larger scale simulations). We are confident that
the advantage of our algorithm will be more obvious when
experimenting on a large testbed.

VI. CONCLUSION

This paper proposes OASiS, an online algorithm for ad-
mission and scheduling of asynchronous training jobs in
an ML cluster. OASiS computes the best schedule to run
each job, using a varying number of workers and parameter
servers over time for best resource utilization and training
expedition, while admitting jobs judiciously based on carefully
set resource prices, for long-term utility maximization. Our
theoretical analysis shows polynomial running time and a good
competitive ratio of OASiS. Simulation and experiments on
a prototype system show that OASiS outperforms common
schedulers in real-world cloud systems.
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