
2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2389842, IEEE Transactions on Cloud Computing

1

Orchestrating Bulk Data Transfers across
Geo-Distributed Datacenters

Yu Wu†, Zhizhong Zhang†, Chuan Wu†, Chuanxiong Guo‡, Zongpeng Li§, Francis C.M. Lau†

†Department of Computer Science, The University of Hong Kong, Email:
{ywu,zzzhang,cwu,fcmlau}@cs.hku.hk

‡ Microsoft Research Asia, Beijing, China, Email: chguo@microsoft.com
§Department of Computer Science, University of Calgary, Canada, Email: zongpeng@ucalgary.ca

Abstract—As it has become the norm for cloud providers to host multiple datacenters around the globe, significant demands exist
for inter-datacenter data transfers in large volumes, e.g., migration of big data. A challenge arises on how to schedule the bulk data
transfers at different urgency levels, in order to fully utilize the available inter-datacenter bandwidth. The Software Defined Networking
(SDN) paradigm has emerged recently which decouples the control plane from the data paths, enabling potential global optimization of
data routing in a network. This paper aims to design a dynamic, highly efficient bulk data transfer service in a geo-distributed datacenter
system, and engineer its design and solution algorithms closely within an SDN architecture. We model data transfer demands as delay
tolerant migration requests with different finishing deadlines. Thanks to the flexibility provided by SDN, we enable dynamic, optimal
routing of distinct chunks within each bulk data transfer (instead of treating each transfer as an infinite flow), which can be temporarily
stored at intermediate datacenters to mitigate bandwidth contention with more urgent transfers. An optimal chunk routing optimization
model is formulated to solve for the best chunk transfer schedules over time. To derive the optimal schedules in an online fashion,
three algorithms are discussed, namely a bandwidth-reserving algorithm, a dynamically-adjusting algorithm, and a future-demand-
friendly algorithm, targeting at different levels of optimality and scalability. We build an SDN system based on the Beacon platform and
OpenFlow APIs, and carefully engineer our bulk data transfer algorithms in the system. Extensive real-world experiments are carried
out to compare the three algorithms as well as those from the existing literature, in terms of routing optimality, computational delay and
overhead.

Index Terms—Bulk data transfers, geo-distributed datacenters, software-defined networking

F

1 INTRODUCTION

Cloud datacenter systems that span multiple geographic lo-
cations are common nowadays, aiming to bring services
close to users, exploit lower power cost, and enable service
robustness in the face of network/power failures. Amazon,
Google, Microsoft and Facebook have invested significantly in
constructing large-scale datacenters around the globe, to host
their services [1]. A basic demand in such a geo-distributed
datacenter system is to transfer bulk volumes of data from
one datacenter to another, e.g., migration of virtual machines
[2], replication of contents like videos [3], and aggregation
of big data such as genomic data from multiple datacenters
to one for processing using a MapReduce-like framework [4].
Despite dedicated broadband network connections being typi-
cally deployed among datacenters of the same cloud provider,
the bulk data volumes involved in the inter-site transmissions
are often high enough to overwhelm the backbone optical
network, leading to bandwidth contention among disparate
transmission tasks. The situation exacerbates at long-distance
cross-continent submarine fiber links. A critical challenge
is how to efficiently schedule the dynamically-arising, inter-
datacenter transfer requests, such that transmission tasks of
different urgency levels, reflected by different data transfer
finishing deadlines, can be optimally and dynamically arranged
to fully exploit the available bandwidth at any time.

Though a theoretical, online optimization problem in nature,
the challenge could not be resolved without addressing the
practical applicability of the optimization solution. That is: can
an algorithm which solves the online optimization problem,
if any, be practically realized in a real-world datacenter-to-
datacenter network? It is not easy (if not impossible) to
program a global optimization algorithm into a traditional
distributed routing network like the Internet, given the lack of
general programmability of switches/routers for running extra
routing algorithms [5] (limited network programmability is
only feasible through proprietary vendor-specific primitives)
and the lack of the global view of the underlying network.
The recent Software Defined Networking (SDN) paradigm
has shed light on easy realization of a centralized optimiza-
tion algorithm, like one that solves the bulk data transfer
scheduling problem, using standard programming interfaces.
With a logically central controller in place, the transient
global network states, e.g., topology, link capacity, etc., can
be more easily acquired by periodic inquiry messages, which
are fundamental in practical SDN protocols, between the
controller and the switches. For example, a common solution
for topology discovery is that, the controller generates both
Link Layer Discovery Protocol (LLDP) and Broadcast Domain
Discovery Protocol (BDDP) messages and forwards them to all
the switches; by identifying the receiving message types, the
controller can recognize the active connections and derive the

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2389842, IEEE Transactions on Cloud Computing

2

network topology. Furthermore, with the global knowledge, a
centralized optimal scheduling algorithm can be realized in
the controller, which would be otherwise impossible in its
traditional distributed routing counterpart.

Software defined networking advocates a clean decoupling
of the control path from the data path in a routing system [6].
By allowing per-flow routing decisions at the switches/routers,
it empowers the network operators with more flexible traffic
management capabilities, which are potentially QoS-oriented
and globally optimal. To realize the SDN paradigm, standards
like OpenFlow have been actively developed [7], which de-
fine standard communication interfaces between the control
and data layers of an SDN architecture. IT giants including
Google and Facebook have advocated the OpenFlow-based
SDN architecture in their datacenter systems [8] [9], while
switch vendors including Broadcom, HP and NEC have begun
production of OpenFlow-enabled switches/routers in the past
2-3 years [10], aiming towards a new era of easy network
programmability.

This paper proposes a novel optimization model for dy-
namic, highly efficient scheduling of bulk data transfers in
a geo-distributed datacenter system, and engineers its design
and solution algorithms practically within an OpenFlow-based
SDN architecture. We model data transfer requests as delay
tolerant data migration tasks with different finishing deadlines.
Thanks to the flexibility of transmission scheduling provided
by SDN, we enable dynamic, optimal routing of distinct
chunks within each bulk data transfer (instead of treating
each transfer as an infinite flow), which can be temporarily
stored at intermediate datacenters and transmitted only at
carefully scheduled times, to mitigate bandwidth contention
among tasks of different urgency levels. Our contributions are
summarized as follows.

First, we formulate the bulk data transfer problem into a
novel, optimal chunk routing problem, which maximizes the
aggregate utility gain due to timely transfer completions before
the specified deadlines. Such an optimization model enables
flexible, dynamic adjustment of chunk transfer schedules in a
system with dynamically-arriving data transfer requests, which
is impossible with a popularly-modeled flow-based optimal
routing model.

Second, we discuss three dynamic algorithms to solve the
optimal chunk routing problem, namely a bandwidth-reserving
algorithm, a dynamically-adjusting algorithm, and a future-
demand-friendly algorithm. These solutions are targeting at
different levels of optimality and computational complexity.

Third, we build an SDN system based on the OpenFlow
APIs and Beacon platform [11], and carefully engineer our
bulk data transfer algorithms in the system. Extensive real-
world experiments with real network traffic are carried out to
compare the three algorithms as well as those in the existing
literature, in terms of routing optimality, computational delay
and overhead.

In the rest of the paper, we discuss related work in Sec. 2,
illustrate our system architecture and the optimization frame-
work in Sec. 3, and present the dynamic algorithms in Sec. 4.
Details of our SDN system implementation follow in Sec. 5.
Experiment settings and results are reported in Sec. 6. Sec. 7

concludes the paper.

2 RELATED WORK

In the network inside a data center, TCP congestion control
and FIFO flow scheduling are currently used for data flow
transport, which are unaware of flow deadlines. A number of
proposals have appeared for deadline-aware congestion and
rate control. D3 [12] exploits deadline information to control
the rate at which each source host introduces traffic into the
network, and apportions bandwidth at the routers along the
paths greedily to satisfy as many deadlines as possible. D2TCP
[13] is a Deadline-Aware Datacenter TCP protocol to handle
bursty flows with deadlines. A congestion avoidance algorithm
is employed, which uses ECN feedback from the routers
and flow deadlines to modify the congestion window at the
sender. In pFabric [14], switches implement simple priority-
based scheduling/dropping mechanisms, based on a priority
number carried in the packets of each flow, and each flow
starts at the line rate which throttles back only when high and
persistent packet loss occurs. Differently, our work focuses
on transportation of bulk flows among datacenters in a geo-
distributed cloud. Instead of end-to-end congestion control, we
enable store-and-forward in intermediate datacenters, such that
a source data center can send data out as soon as the first-hop
connection bandwidth allows, whereas intermediate datacen-
ters can temporarily store the data if more urgent/important
flows need the next-hop link bandwidths.

Inter-datacenter data transfer is also common today. Chen et
al. [15] conducted a measurement study of a cloud with five
distributed datacenters and revealed that more than 45% of
the total traffic is attributed to inter-datacenter transmissions,
and the percentage is expected to grow further. Laoutaris
et al. propose NetStitcher [16], a mechanism exploiting a
priori knowledge of the traffic patterns across datacenters over
time and utilizing the leftover bandwidth and intermediate
storage between datacenters for bulk data transfer, to minimize
the transmission time of a given volume. In contrast, our
study focuses on flows with stringent deadlines, and will not
assume any traffic patterns. We apply optimization algorithms
to dynamically adjust flow transfer schedules under any traffic
arrival patterns. Postcard [17] models a cost minimization
problem for inter-datacenter traffic scheduling, based on the
classic time expanded graph [18] which was first used in
NetStitcher. Though relatively easy to formulate, the state
explosiveness of the optimization model, when replicating
nodes and links along the time axis, results in a prohibitive
growth rate of the computation complexity. Our work seeks
to present a novel optimization model which can enable
efficient dynamic algorithms for practical deployment in an
SDN network. Chen et al. [19] study deadline-constrained bulk
data transfer in grid networks. Our work differs from theirs
by concentrating on a per-chunk routing scheme instead of
treating each transfer as flows, which renders itself to a more
realistic model with higher complexity in algorithm design.
In addition, we assume dedicated links between datacenters
owned by the cloud provider, and aim to maximize the overall
transfer utility instead of minimizing the network congestion.

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2389842, IEEE Transactions on Cloud Computing

3

In an SDN-based datacenter, Helter et al. [20] design Elas-
ticTree, a power manager which dynamically adjusts the set of
active links and switches to serve the changing traffic loads,
such that the power consumption in the datacenter network is
minimized. For SDN-based inter-datacenter networking, Jain
et al. [9] present their experience with B4, Google’s globally
deployed software defined WAN, connecting Google’s data-
centers across the planet. They focus on the architecture and
system design, and show that with a greedy centralized traffic
engineering algorithm, all WAN links can achieve an average
70% utilization. Hong et al. [21] propose SWAN, a system
that centrally controls the traffic flows from different services
in an inter-datacenter network. Their work focuses more on
coordinating routing policy updates among the switches to
avoid transient congestion. Falling into the similar line of
research for boosting inter-datacenter bandwidth utilization,
our research focuses more on scheduling of bulk data transfers
to meet deadlines, and complement these existing work well
by proposing efficient dynamic optimization algorithms, to
guarantee long-term optimal operation of the network.

Deadline-aware resource scheduling in clouds has attracted
growing research interest. A recent work from Maria et al. [22]
presents a meta-heuristic optimization based algorithm to ad-
dress the resource provisioning (VM) and scheduling strategy
in IaaS clouds to meet the QoS requirements. We believe that
our work well complements those in this category. In addition,
our work focuses on bulk data flows instead of small flows as
we echo the argument of Curtis et al. [23] that in reality only
“significant” flows (e.g., high-throughput “elephant” flows)
should be managed by a centralized controller, in order to
reduce the amount of switch-controller communication.

3 SYSTEM ARCHITECTURE AND PROBLEM
MODEL

3.1 SDN-based Architecture

controller

Openflow API

Core switch

Gateway Server

Core switch Core switch

Datacenter

Gateway ServerGateway Server

JSON-RPC

Datacenter

JSON-RPC

Openflow API

Fig. 1. The architecture of the system.

We consider a cloud spanning multiple datacenters located
in different geographic locations (Fig. 1). Each datacenter
is connected via a core switch to the other datacenters.
The connections among the datacenters are dedicated, full-
duplex links, either through leading tier-1 ISPs or private

fiber networks of the cloud provider, allowing independent
and simultaneous two-way data transmissions. Data trans-
fer requests may arise from each datacenter to move bulk
volumes of data to another datacenter. A gateway server is
connected to the core switch in each datacenter, responsible
for aggregating cross-datacenter data transfer requests from the
same datacenter, as well as for temporarily storing data from
other datacenters and forwarding them via the switch. It also
tracks network topology and bandwidth availability among the
datacenters with the help of the switches. Combined closely
with the SDN paradigm, a central controller is deployed to
implement the optimal data transfer algorithms, dynamically
configure the flow table on each switch, and instruct the
gateway servers to store or to forward each data chunk. The
layered architecture we present realistically resembles B4 [9],
which was designed and deployed by Google for their G-scale
inter-datacenter network: the gateway server plays a similar
role of the site controller layer, the controller corresponds
well to the global layer, and the core switch at each location
can be deemed as the per-site switch clusters in B4.

The fundamental core services enabling bulk data transfer
in a geo-distributed cloud include:

Task admission control. Once a data transfer task is
admitted, we seek to ensure its timely completion within the
specified deadline. On the other hand, if completing a transfer
task within the specific deadline is not possible according
to the network availability when the request arrives, the task
should be rejected.

Data routing. The optimal transmission paths of the data in
an accepted task from the source to the destination should be
decided, potentially through multiple intermediate datacenters.

Store-and-forward. Intermediate datacenters may store the
data temporarily and forward them later. It should be carefully
computed when a data should be temporarily stored in which
datacenter, as well as when and at which rate it should be
forwarded at a later time.

The goal of judiciously making the above decisions is to
maximize the overall utility of tasks, by best utilizing the
available bandwidth along the inter-datacenter links at any
given time.

3.2 Problem Model
Let N represent the set of all datacenters in the system. A
data transfer request (or task equivalently) J can be described
by a five-tuple (S

J

, D
J

, t
J

, T
J

, U
J

), where S
J

is the source
datacenter where the data originates, D

J

is the destination
datacenter where the data is to be moved to, t

J

is the earliest
time J can be transmitted, and T

J

denotes the maximum
amount of time allowed for transfer of task J to complete, i.e.,
all data of task J should arrive at the destination no later than
t
J

+ T
J

. U
J

is a weight modeling the benefit of completing
job J , and jobs with higher importance are associated with
larger weights.

The system runs in a time-slotted fashion. The data of each
job J is segmented into equal-sized chunks at the source
datacenter before their transmission, and W

J

denotes the
corresponding chunk set. Consider the system lifespan [0,�].

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2389842, IEEE Transactions on Cloud Computing

4

Let J denote the set of all jobs which arrive and are to be
completed in this span. The binary variable I

J

denotes if task
J is accepted or not, and x

(w)
m,n

(t) indicates whether chunk
w is transmitted from datacenter m to datacenter n at time
t. The available bandwidth of the connection from datacenter
m to datacenter n is described by B

m,n

, as a multiple of a
unit bandwidth. The length of a scheduling interval (i.e., each
time slot) in the system equals the transmission time of a
chunk using a unit bandwidth. Hence, B

m,n

is equivalent to
the maximum number of chunks that can be delivered from
m to n in a time slot.

We consider chunk sizes at tens of megabytes in such bulk
data transfer, and a unit bandwidth at the magnitude of tens
of Mbps, since the dedicated links between datacenters have
typical bandwidths up to 100 Gbps [24]. In this case, the
scheduling interval length is at tens of seconds, which is rea-
sonable since it may not be feasible in practice to adjust flow
tables at the switches more frequently than that. Propagation
delays and potential chunk queuing delays are ignored as they
are dominated by the transmission times in bulk data transfer,
at the magnitudes of hundreds of milliseconds.

Table 1 summarizes important notation for ease of reference.

TABLE 1
Table of notations

Symbol Definition

J The set of jobs to be completed within time interval [0,�]
J(⌧) The set of jobs arrived at time ⌧
J(⌧�) The set of unfinished, previously accepted job by time ⌧
U

J

The weight of job J
t
J

The earliest time slot for transmission of J
T

J

The maximum number of time slots allowed for transmission of J
S

J

The source datacenter where J originates
D

J

The destination datacenter where J is to be migrated to
W

J

The chunk set of job J
N The set of all datacenters
B

m,n

The available bandwidth from datacenter m to n
I
J

Whether job J is accepted
x

(w)
m,n

(t) Whether transmit chunk w from datacenter m to n at time t

3.3 The Optimal Chunk Routing Problem

We formulate the problem to an optimization framework to
derive the job acceptance decisions I

J

, 8J 2 J, and chunk
routing decisions x

(w)
m,n

(t), 8w 2 W
J

, 8t 2 [t
J

, t
J

+ T
J

�
1], 8J 2 J, 8m,n 2 N,m 6= n.

max

X

J2J
U

J

⇥ I
J

(1)

subject to:

(a)
t

J

+T

J

�1P
t=t

J

P
m2N,m 6=S

J

(x
(w)
m,S

J

(t)� x
(w)
S

J

,m

(t)) = �I
J

,

8w 2 W
J

, 8J 2 J;

(b)
t

J

+T

J

�1P
t=t

J

P
m2N,m 6=D

J

(x
(w)
m,D

J

(t)� x
(w)
D

J

,m

(t)) = I
J

,

8w 2 W
J

, 8J 2 J;

(c)
t

J

+T

J

�1P
t=t

J

P
m2N,m 6=n

(x
(w)
m,n

(t)� x
(w)
n,m

(t)) = 0,

8n 2 N/{S
J

, D
J

}, 8w 2 W
J

, 8J 2 J;

(d)
T0P

t=t

J

P
m2N,m 6=n

x
(w)
m,n

(t) �
t

J

+T

J

�1P
t=T0+1

P
k2N,k 6=n

x
(w)
n,k

(t),

8w 2 W
J

, 8n 2 N/S
J

, 8T0 2 [t
J

, t
J

+ T
J

� 2], 8J 2 J;
(e)

P
J2J

P
w2W

J

x
(w)
m,n

(t) B
m,n

,

8m,n 2 N,m 6= n, 8t 2 [0,�];

(f) x
(w)
m,n

(t) 2 {0, 1},
8m,n 2 N,m 6= n, 8t 2 [t

J

, t
J

+ T
J

� 1],
8w 2 W

J

, 8J 2 J;
(g) x

(w)
m,n

(t) = 0,
8m,n 2 N,m 6= n, 8t 2 [0, t

J

) [(t
J

+ T
J

� 1,�],
8w 2 W

J

, 8J 2 J.
The objective function maximizes the overall weight of all

the jobs to be accepted. A special case where U
J

(·) = 1

(8J 2 J) implies the maximization of the total number of
accepted jobs. Constraint (a) states that for each chunk w in
each job J , it should be sent out from the source datacenter
S

J

at one time slot within [t
J

, t
J

+ T
J

� 1] (i.e., the valid
transmission interval of the job), if it is accepted for transfer
at all in the system (i.e., if I

J

=1); on the other hand, the
chunk should arrive at the destination datacenter D

J

via one
of D

J

’s neighboring datacenters within [t
J

, t
J

+T
J

] as well, as
specified by Constraint (b). Constraint (c) enforces that at any
intermediate datacenter n other than the source and destination
of chunk w, if it receives the chunk at all in one time slot
within the valid transmission interval of the job, it should send
the chunk out as well within the interval.

With constraint (d), we ensure that a chunk should arrive
at a datacenter earlier before it can be forwarded from the
datacenter, i.e., considering any time slot T0 within the valid
transmission interval [t

J

, t
J

+ T
J

� 1] of job J , a datacenter
n may send out chunk w in a time slot after T0 (i.e.,
t

J

+T

J

�1P
t=T0+1

P
k2N,k 6=n

x
(w)
n,k

(t) = 1), only if it has received it earlier

by T0 (i.e.,
T0P

t=t

J

P
m2N,m 6=n

x
(w)
m,n

(t) = 1).

Constraint (e) specifies that the total number of chunks from
all jobs to be delivered from datacenter m to n in any time slot
t, should not exceed the bandwidth capacity of the connection
between m and n. Routing decisions for a chunk w, x(w)

m,n

(t)’s,
are binary, i.e., either sent along connection from m to n in t

(x(w)
m,n

(t) = 1) or not (x(w)
m,n

(t) = 0), and valid only within the
valid transmission interval of the corresponding job, as given
by constraints (f) and (g).

The solutions of our optimization framework translate to
reliable routing decisions in the sense that any accepted job

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2389842, IEEE Transactions on Cloud Computing

5

will be delivered to the destination within the corresponding
deadline. Those rejected jobs are dropped immediately at the
beginning to save bandwidth, but users may resubmit the jobs
at later times.

The structure of the optimization problem is similar to
that in a max flow or min-cost flow problem [25], but the
difference is apparent as well: we model routing of distinct
chunks which can be stored at intermediate datacenters and
forwarded in a later time slot, instead of continuous end-to-
end flows; therefore, the time dimension is carefully involved
to specify the transfer times of the chunks, which does not
appear in a max/min-cost flow problem.

The optimization model in (1) is an offline optimization
problem in nature. Given any job arrival pattern within [0,�],
it decides whether each job should be accepted for transfer
under bandwidth constraints, and derives the best paths for
chunks in accepted jobs, along which the chunks can reach
their destinations within the respective deadlines. In practice
when the transfer jobs are arriving one after another, an online
algorithm to make timely decisions on job admission control
and routing scheduling is desirable, which we will investigate
in the next section.

4 DYNAMIC ALGORITHMS
We present three practical algorithms which make job ac-
ceptance and chunk routing decisions in each time slot, and
achieve different levels of optimality and scalability.

4.1 The Bandwidth-Reserving Algorithm
The first algorithm honors decisions made in previous time
slots, and reserves bandwidth along the network links for
scheduled chunk transmissions of previously accepted jobs in
its routing computation for newly arrived jobs. Let J(⌧) be the
set consisting of only the latest data transfer requests arrived in
time slot ⌧ . Define B

m,n

(t) as the residual bandwidth on each
connection (m,n) in time slot t 2 [⌧ +1,�], excluding band-
width needed for the remaining chunk transfers of accepted
jobs arrived before ⌧ . In each time slot ⌧ , the algorithm solves
optimization (1) with job set J(⌧) and bandwidth B

m,n

(t)’s
for duration [⌧+1,�], and derives admission control decisions
for jobs arrived in this time slot, as well as their chunk transfer
schedules before their respective deadlines.

Theorem 1 states the NP-hardness of optimization problem
in (1) (with detailed proof in Appendix A). Nevertheless, such
a linear integer program may still be solved in reasonable time
at a typical scale of the problem (e.g., tens of datacenters in
the system), using an optimization tool such as CPLEX [26].
To cater for larger scale problems, we also propose a highly
efficient heuristic in Sec. 4.3. More detailed discussions of the
solution time follow in Sec. 6.3.

Theorem 1: The optimal chunk routing problem in 1 is NP-
hard.

4.2 The Dynamically-Adjusting Algorithm
The second algorithm retains job acceptance decisions made
in previous time slots, but adjusts routing schedules for chunks

of accepted jobs, which have not reached their respective
destinations, together with the admission control and routing
computation of newly arrived jobs. Let J(⌧) be the set of data
transfer requests arrived in time slot ⌧ , and J(⌧�) represent
the set of unfinished, previously accepted jobs by time slot ⌧ .
In each time slot ⌧ , the algorithm solves a modified version
of optimization (1), as follows:

• The set of jobs involved in the computation is J(⌧) [
J(⌧�).

• The optimization decisions to make include: (i) accep-
tance of newly arrived jobs, i.e., I

J

, 8J 2 J(⌧); (ii)
routing schedules for chunks in newly arrived jobs, i.e.,
x

(w)
m,n

(t), 8m,n 2 N,m 6= n, 8t 2 [⌧ + 1,�], 8w 2 W
J

where J 2 J(⌧); (iii) routing schedules for chunks in
previously accepted jobs that have not reached their desti-
nations, i.e., x(w)

m,n

(t), 8m,n 2 N,m 6= n, 8t 2 [⌧ +1,�],
8w 2 W 0

J

, where J 2 J(⌧�) and W 0
J

denotes the set of
chunks in J which have not reached the destination D

J

.
• For each previously accepted job J 2 J(⌧�), we set I

J

=

1 wherever it appears in the constraints, such that the
remaining chunks in these jobs are guaranteed to arrive
at their destinations before the deadlines, even after their
routing adjustments.

• Constraints related to chunks in previously accepted jobs,
which have reached their destinations, are removed from
the optimization problem.

• For each remaining job J 2 J(⌧�), its corresponding
t
J

and T
J

used in the constraints should be replaced by
t0
J

= ⌧ + 1 and T 0
J

= t
J

+ T
J

� 1 � ⌧ , given that the
decision interval of the optimization problem has been
shifted to [⌧ + 1,�].

• For a chunk w in W 0
J

, it may have been transferred to an
intermediate datacenter by time slot ⌧ , and hence multiple
datacenters may have cached a copy of this chunk. Let
⌦(w) be the set of datacenters which retain a copy of
chunk w. The following optimal routing path of this
chunk can originate from any of the copies. Therefore,
in constraints (a)(c)(d) on chunk w, we replace S

J

by
⌦(w), e.g., constraint (a) on chunk w is modified to

t

0
J

+T

0
J

�1P
t=t

0
J

P
n2⌦(w)

P
m2N,m 6=n

(x
(w)
m,n

(t)� x
(w)
n,m

(t)) = �I
J

,

8w 2 W0
J

, 8J 2 J(⌧) [J(⌧�).
(2)

The detailed formulation of the modified optimization prob-
lem is given in (3).

max
X

J2J(⌧)[J(⌧�)

U
J

⇥ I
J

(3)

subject to:

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2389842, IEEE Transactions on Cloud Computing

6

(a)
t0
J

+T 0
J

�1P

t=t0
J

P

n2⌦(w)

P
m2N,m 6=n

(x
(w)
m,n(t)� x

(w)
n,m(t)) = �IJ ,

8w 2 W0
J , 8J 2 J(⌧) [J(⌧�);

(b)
t0
J

+T 0
J

�1P

t=t0
J

P
m2N,m 6=D

J

(x
(w)
m,D

J

(t)� x

(w)
D

J

,m(t)) = IJ ,

8w 2 W0
J , 8J 2 J(⌧) [J(⌧�);

(c)
t0
J

+T 0
J

�1P

t=t0
J

P
m2N,m 6=n

(x
(w)
m,n(t)� x

(w)
n,m(t)) = 0,

8n 2 N/{⌦(w), DJ}, 8w 2 W0
J , 8J 2 J(⌧) [J(⌧�);

(d)
T0P

t=t0
J

P
m2N,m 6=n

x

(w)
m,n(t) �

t0
J

+T 0
J

�1P
t=T0+1

P
k2N,k 6=n

x

(w)
n,k(t),

8w 2 W0
J , 8n 2 N/⌦(w), 8T0 2 [t0J , t

0
J + T

0
J � 2], 8J 2 J(⌧) [J(⌧�);

(e)
P

J2J(⌧)[J(⌧�)

P

w2W0
J

x

(w)
m,n(t) Bm,n

8m,n 2 N,m 6= n, 8t 2 [⌧ + 1,�];

(f) x

(w)
m,n(t) = {0, 1}

8m,n 2 N,m 6= n, 8t 2 [t0J , t
0
J + T

0
J � 1], 8w 2 W0

J , 8J 2 J(⌧) [J(⌧�);

(g) x

(w)
m,n(t) = 0,

8m,n 2 N,m 6= n, 8t 2 [⌧ + 1, t0J) [(t0J + T

0
J � 1,�],

8w 2 W0
J , 8J 2 J(⌧) [J(⌧�);

(h) I(J) = 1, 8J 2 J(⌧�).

Here in the constraints, for newly arrived jobs in J(⌧), we
set t0

J

= t
J

and T 0
J

= T
J

.
This second algorithm is more aggressive than the first one

in computing the best routing paths for all remaining chunks
in the system, both from the newly arrived jobs and from old,
unfinished jobs. More computation is involved. Nonetheless,
we will show in Sec. 6.3 that the solution can still be derived
in a reasonable amount of time under practical setting with
heavy data transfer traffic. It’s worthy to note that the optimal
solution of of the two optimization problems (1)(3) may not be
unique, and we randomly select one for the routing decision.
It could be interesting to study which optimal solution is even
better in an online fashion, if the job request pattern is known
beforehand or can be predicted. This will be part of our future
work.

4.3 The Future-Demand-Friendly Heuristic
We further propose a simple but efficient heuristic to make
job acceptance and chunk routing decisions in each time slot,
with polynomial-time computational complexity, suitable for
systems with larger scales. Similar to the first algorithm, the
heuristic retains routing decisions computed earlier for chunks
of already accepted jobs, but only makes decisions for jobs
received in this time slot using the remaining bandwidth. On
the other hand, it is more future demand friendly than the first
algorithm, by postponing the transmission of accepted jobs as
much as possible, to save bandwidth available in the immediate
future in case more urgent transmission jobs may arrive.

Let J(⌧) be the set of latest data transfer requests arrived in
time slot ⌧ . The heuristic is given in Alg. 1. At the job level,
the algorithm preferably handles data transfer requests with
higher weights and smaller sizes (line 1), i.e., larger weight
per unit bandwidth consumption. For each chunk in job J ,
the algorithm chooses a transfer path with the fewest number
of hops, that has available bandwidth to forward the chunk
from the source to the destination before the deadline (line

Algorithm 1 The Future-Demand-Friendly Heuristic at Time
Slot ⌧

1: Sort requests in J(⌧) by U
J

|W
J

| in descending order.
2: for each job J in sorted list J(⌧) do

3: for each chunk w 2 WJ do

4: Find a shortest path from SJ to DJ that satisfies the
following (suppose the path includes h hops): there is one unit
bandwidth available at the i-th hop link (1 i h) in at least
one time slot within the time frame [tJ +(i� 1)⇥ T

J

h , tJ + i⇥
T
J

h �1]. List all the time slots in the frame when there is one unit
available bandwidth along the i-th hop link as ⌧

i
1, ⌧

i
2, . . . , ⌧

i
L.

5: if such a path does not exist then

6: Reject J , i.e., set IJ = 0, and clear the transmission
schedules made for other chunks in J ;

7: break;
8: end if

9: for each hop (m,n) along the shortest path do

10: suppose it is the i-th hop; choose the r-th time slot in
the list ⌧ i

1, ⌧
i
2, . . . , ⌧

i
L with probability rP

L

p=1 p
; set xw

m,n(⌧
i
r) = 1

and x

w
m,n(t) = 0, 8t 6= ⌧

i
r (i.e., transfer chunk w from m to n

at time slot ⌧ i
r).

11: end for

12: end for

13: Accept J , i.e., set IJ = 1.
14: end for

4). The rationale is that a path with fewer hops consumes
less overall bandwidth to transfer a chunk and with higher
probability to meet the deadline requirement. We compute the
allowed time window for the transfer of a chunk to happen at
the i-th hop along its potential path, by dividing the allowed
overall transfer time T

J

evenly among the h hops of the path.
As shown in Fig. 2, the transfer of the chunk from the source
to the first-hop intermediate datacenter should happen within
time window [t

J

, t
J

+

T

J

h

� 1], and the transfer at the second
hop should happen within time window [t

J

+

T

J

h

, t
J

+

2T

J

h

�1],
and so on, in order to guarantee the chunk’s arrival at the
destination before the deadline of t

J

+T
J

. The path should be
one such that there is at least one unit available bandwidth
at each hop within at least one time slot in the allowed
transmission window of this hop (line 4). If such a path
does not exist, the job should be rejected (line 6). Otherwise,
the algorithm computes the chunk transfer schedule at each
hop along the selected path, by choosing one time slot when
available bandwidth exists on the link, within the allowed
transmission window of that hop. There can be multiple time
slots satisfying these requirements, and the latest time slot
among them is selected with the highest probability (line 10).
If the transfer schedules for all chunks in the job can be
successfully made, the job is accepted (line 13).

Source Destination

1 2 x0

T
J

h

T
J

h

[t
J

, t
J

+

T
J

h
� 1] [t

J

+

T
J

h
,t

J

+2

T
J

h
� 1]

time window at 2nd hoptime window at 1st hop

Fig. 2. Assigning allowed time window for a chunk’s
transfer at each hop along its transmission path.

Alg. 1 tends to be conservative in chunk forwarding by

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2389842, IEEE Transactions on Cloud Computing

7

scheduling the transmissions at a later time possible, with the
rationale to save bandwidth for more urgent transfer requests
that could arrive in the immediate future. The downside is
that it may leave links idle at earlier times. We further design
a supplementary algorithm to expedite chunk transfer in such
scenarios, as given in Alg. 2. The idea is simple: the algorithm
transfers chunks with pending future transmission schedules
along a link, to fully utilize the available link bandwidth at
each time slot. Such opportunistic forward-shifts of scheduled
transmissions reduce future bandwidth consumption in the
system, such that potentially more job transfer requests can
be accommodated.

Algorithm 2 Opportunistic Chunk Transfer in Each Time Slot
1: for each link (m,n) in the system do

2: while there is available bandwidth on (m,n) do

3: if there exists a chunk w which has been received at
datacenter m and is scheduled to be forwarded to datacenter n

at a later time then

4: Send w from m to n.
5: else

6: break

7: end if

8: end while

9: end for

Theorem 2 guarantees that the proposed practical heuristic
has a polynomial-time complexity (with detailed proof in
Appendix B). We also study the performance of this heuristic
in Sec. 6, and compare it with the other optimization based
solutions.

Theorem 2: The practical heuristic described in Alg. 1 and
Alg. 2 has polynomial-time complexity.

5 SYSTEM IMPLEMENTATION
We have implemented a prototype bulk data transfer (BDT)
system based on the OpenFlow framework. The BDT system
resides above the transport layer in the network stack, with no
special requirements on the lower transport layer and network
layer protocols, where the standard TCP/IP stack is adopted.
Due to the clean design that will be introduced in this section,
the BDT system is implemented with only 7K lines of Java
code and around 2K lines of Python code, apart from the codes
of the configuration files, the GUI control interface, etc.

5.1 The Key Components
Fig. 3 depicts the main modules of the system, consisting
of both the central Controller and the distributed Gateway
Servers. Common in all SDN-based systems, the centralized
controller could become the performance bottleneck of the
system. To realize fine-grained dynamic traffic scheduling, it
needs to keep track of global state information, which trans-
lates to stressful resource consumption hindering horizontal
scalability, in terms of both memory footprints and processing
cycles. We therefore follow the common design philosophy
by splitting part of the sophistications to the end system, i.e.,
the gateway server, while keeping only necessary tasks to the
core system, i.e., the controller.

Chunk
Buffer

Chunk
Management

Job
Aggregator

Signal
Handler

Transmission
/Forward

Gateway

Transmission
Requests

Data Path

Controller

Request Handler Command Dispatcher

Scheduler

Control
Path

Users

Other
Gateways

eth0

eth1
split

Command
Queues

Core
Switch

Data Path

Flow Table

OpenFlow Interface

Fig. 3. The main components in the BDT system.

B Controller: The controller is built based on the Beacon
framework [11], capitalizing its rich features including cross-
platform portability and multi-thread support. The Request
Handler listens to transmission requests from the gateway
servers at different datacenters, each of which is responsible
for collecting data transfer requests from the datacenter it
resides in. For each incoming request, a unique global “job
id” is assigned and returned to the corresponding gateway
server. The “job id” will be reclaimed later once either the
request is rejected or the data transfer is completed. The
Scheduler periodically retrieves the received requests and
computes the chunk routing schedules, following one dynamic
algorithm we design. Each accepted chunk is labelled with a
timestamp indicating when its transmission should begin, and
the transmission command is pushed to a command queue.
The Command Dispatcher further periodically retrieves the
commands with timestamps no later than the current time from
the command queue, and sends them to the corresponding
gateway servers and core switches. We implement the Com-
mand Dispatcher in the “Adaptor” design pattern, which can
be easily customized to be compliant with different versions of
OpenFlow specifications. Currently, our system is compliant
with OpenFlow version 1.0.0, supported by most off-the-shelf
commodity switch products.

B Gateway Server: Each gateway server is attached to two
separate networks, one (eth0) is for control signaling with
the controller, and the other (eth1) is for data transmission.
Traffic along the control path is significantly less than that
along the data path, since all signaling is via plain light-weight
JSON messages. The data path corresponds exactly to the
dedicated links between the datacenters. The Job aggregator
collects all the incoming data transfer requests from within
the same datacenter, and forwards them to the controller to
schedule. Buffer Management plays the role of managing
all received chunks at the gateway server, including those
destined to this datacenter and those temporarily stored while
waiting to be forwarded by the Transmission/Forward module.
The Transmission/Forward module functions by following the
transmission instructions issued from the controller.

For each transmission instruction, a new thread is created to
transmit the corresponding chunk. Therefore, multiple trans-
missions can happen concurrently, and the maximal number
of transmission threads allowed are constrained by the link
capacity. Actual data transmissions happen directly between
two gateway servers, and the sender gateway server should first

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2389842, IEEE Transactions on Cloud Computing

8

notify the recipient gateway server of the “identity” (job id,
chunk id) of the chunk transmitted at the same TCP connection
to facilitate the management at the Buffer Management module
at the latter. The Signal Handler module handles the signals
communicated with the controller via the control path. Multi-
ple signals are exchanged between the controller and a gateway
server. For instance, the controller instructs the gateway server
which chunks to transmit to which datacenters as the next hop
at the current moment, and the gateway server may notify the
controller of any transmission failure due to network failures.

B Core Switch: The core switch wires the co-located
gateway server with the other gateway servers through the
dedicated links. The controller reconfigures the flow tables in-
side each core switch via standard OpenFlow APIs, according
to the calculated scheduling decisions.

Fig. 4 shows a sequence diagram describing the primary
control signals between different modules at the controller
and a gateway server. Two important background threads are
constantly running (marked with “loop” in Fig. 4) at the
controller: (1) the scheduler thread periodically collects all
the received requests during the last time slot to calculate the
scheduling decisions, and inserts the results to the command
queue; (2) The command dispatcher thread periodically re-
trieves the generated routing decisions and forwards them to
the corresponding gateway servers and core switches.

5.2 Other Design Highlights
Dynamic component model. The modules in our system are
integrated into the Java OSGi framework [27] as independent
bundles, which can be deployed and upgraded at runtime,
without shutting down the controller. More specifically, we
select Equinox [28] as both our development and deployment
platform, which is a certified implementation of OSGi R4.x
core framework specification.

Feasibility in the production network. By integrating
FlowVisor[29] as the transparent proxy between the controller
and the core switch, we can logically “slice” dedicated band-
widths out of the physical links for transmissions, achieving a
rigorous performance isolation from the ordinary traffic in the
production network. By carefully designing the “flow spaces”,
users can specify whether their traffic will go through the BDT
network or the traditional “best effort” one.

Easy deployment of new scheduling algorithm. Our
controller implementation features a simple interface
BDT Schedulable for incorporation of different scheduling
algorithms. Due to space limit, readers are referred to
Appendix C for more highlights of our system design. For
instance, our future-demand-friendly heuristic is implemented
with less than 600 lines of code.

Efficient handling of overwhelming numbers of TCP con-
nections. A standard GNU/Linux distribution (e.g., Gentoo
in our cases) aims to optimize TCP performance in a wide
range of environments, which may not be optimal in our
system deployment. Therefore, we have carefully configured
the TCP buffer and tuned the kernel performance parameters
to optimize the bulk transfer performance in our system. Some
key parameters are listed in Table 2.

net.ipv4.tcp congestion control cubic
net.core.somaxconn 8192

net.ipv4.tcp tw recycle 1
net.ipv4.tcp tw reuse 1

net.ipv4.tcp fack 1

TABLE 2
Key TCP parameters to configure

6 PERFORMANCE EVALUATION

6.1 Experimental Setting

Referring to a series of surveys (e.g., [30]) on the scale of
commercial cloud systems, we emulate a geo-distributed cloud
with 10 datacenters, each of which is emulated with a high-end
IBM BladeCenter HS23 cluster [31]. Each gateway server is
implemented using a mounted blade server with a 16-core Intel
Xeon E5-2600 processor and 80GB RAM, where only 4 cores
and 4GB RAM are dedicatedly reserved for the gateway server
functionality. Hooked to an OpenFlow-enabled HP3500-series
core switch [32] (equipped with crossbar switching fabric of
up to 153.6 Gbps), each gateway server is connected to 4 other
gateway servers via CAT6 Ethernet cables (10 Gbps through-
put). To emulate limited bandwidth on dedicated links between
datacenters, we configure the rate limits of each core switch on
a per-port basis. To make the experimental environment more
challenging, the controller module is deployed on a laptop,
with a 4-core Intel Core i7 and 16GB RAM, and a maximal
10GB memory allocated to the Java virtual machine.

A number of user robots are emulated on the blade servers
to submit data transfer requests to the respective gateway
server. In each second, the number of requests generated
in each datacenter is randomly selected from the range of
[0, 10], with the size of the respective bulk data ranging
from 100 MB to 100 GB (real random files are generated
and transferred in our system). The destination of the data
transfer is randomly selected among the other datacenters.
The data transfer requests can be categorized into two types
according to their deadlines: (1) urgent transmissions with
harsh deadlines (i.e., a deadline randomly generated between
10 seconds and 80 seconds), and (2) less urgent transmissions
with relative loose deadlines (i.e., 80 seconds to 640 seconds).
We define ↵ as the percentage of the less urgent transmission
tasks generated in the system at each time. The chunk size is
100 MB, reasonable for bulk data transfer with sizes up to tens
of GB. The length of each time slot is 10 seconds, and the unit
bandwidth is hence 80 Mbps. Without loss of generality, the
weights of jobs U

J

are assigned values between 1.0 and 10.0,
indicating the importance of the jobs. Unless stated otherwise,
the evaluation results presented in this section are based on
collected logs (around 12GB) after a continuous run of 40

minutes of the system, during which around 12.7 TB transfer
traffic is incurred when ↵ = 10%.

We have implemented four chunk scheduling algorithms and
compared their performance under the above general setup:

B RES – the bandwidth-reserving algorithm given in
Sec. 4.1.

B INC – the dynamically-adjusting algorithm given in

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2389842, IEEE Transactions on Cloud Computing

9

Gateway
Request
Handler

Scheduler

Job Request

Job ID

Fetch Requests

Requests Received

Clear Request Queues
Schedule
Computing

Job ID, accepted / reject

Update Command Queues

Command
Dispatcher

Transmission Command

loop

loop

Core
Switch

OFMod command

Fig. 4. The control logic between the controller and a gateway server.

Sec. 4.2.
B HEU – our future-demand-friendly heuristic given in

Alg. 1 and Alg. 2 in Sec. 4.3.
B RSF – a random store-and-forward algorithm, in which

when and where a chunk is to be forwarded are randomly
decided.

Most existing work on inter-datacenter data transfer either
assume known or predictable request arrival patterns [16]
(e.g., diurnal patterns) or enforce routing path reservation for
continuous network flows [12], while our algorithms do not
require so. Hence it is difficult to make direct comparisons
with those work. Nevertheless, we will establish special ex-
periment setup in Sec. 6.3 and Sec. 6.5 (to make the algorithms
comparable), and compare our algorithms with Postcard [17]
and NetStitcher [16], respectively.

6.2 Aggregate Weight and Job Acceptance

Fig. 5 plots the aggregate weight of accepted jobs in the entire
system over time. For RSF, we treat the jobs that finish transfer
before their deadlines as “accepted”. We can clearly see that
INC performs the best, benefiting from its dynamic chunk
routing adjustment. RSF performs the worst, necessitating a
more efficient deadline-aware scheduling algorithm. An inter-
esting observation is that HEU outperforms RES, though the
former is a heuristic and the latter is the optimal solution of the
optimal chunk scheduling problem. We believe this is credited
to the “future demand friendliness” implemented in HEU: RES
optimally schedules transfer requests received in the latest time
slot but does not consider any subsequently arriving requests;
HEU is conservative in its bandwidth occupancy during its
chunk routing scheduling, leaving more available bandwidth
for potential, subsequent urgent jobs.

Fig. 7 plots the number of accepted jobs in the system
over time. INC, RES and HEU accept a similar number of
jobs over time, while RSF accepts the least. Comparing to
Fig. 5, this result reveals that INC is able to admit more
important jobs than the other algorithms do, and performs
the best in supporting service differentiation among jobs of
different levels of practical importance.

We further verify if similar observations hold when the
percentage of less urgent jobs, ↵, varies. Fig. 6 and Fig. 8
show similar trends at different values of ↵.

6.3 Computation complexity of the algorithms
We examine the computation complexity of different algo-
rithms, in terms of the time the control spends on calculating
the chunk routing schedules using each of the algorithms,
referred to as the scheduling delay. Note that an important
requirement is that the scheduling delay of an algorithm should
be less than the length of a time slot, i.e., 10 seconds.

In Fig. 9, y axis represents the scheduling delay of the
algorithms at the central controller in logarithm scale. We
can see that INC and RES consume more computation time
as expected, due to solving an integer optimization problem.
However, as we claimed earlier, both algorithms are still
efficient enough under our practical settings, with scheduling
delays much less than the scheduling interval length (10
seconds). HEU incurs similar computation overhead to RSF,
implying the applicability of HEU to systems at larger scales.

Although Postcard [17] targets a scenario different from
ours (i.e., to minimize the operational cost), we still implement
it to investigate the time that the controller needs to run its
scheduling algorithm, under a similar setting to that of the
other algorithms: we assign an identical cost per traffic unit
transferred on each link (a

i,j

in [17]), and use the same job
arrival series with ↵ = 10%. We can see in Fig. 9 that
the scheduling delay of Postcard is much larger (sometimes
more than 15 minutes), due to a much more complicated
optimization problem formulated.

Fig. 10 plots the average scheduling delays of the algorithms
over time, at different values of ↵. The scheduling delays by
INC and RES increase as ↵ grows, since both the number
of chunks and the lifetime of a job are larger with larger ↵,
which contribute to the complexity of the integer optimization
problems. On the other hand, the scheduling delays of HEU
remain at similar values with the increase of system scale,
which reveals the good scalability of our practical heuristic.

Similarly, we also evaluate the maximum number of con-
current job requests that can be handled within the scheduling

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2389842, IEEE Transactions on Cloud Computing

10

Fig. 5. Aggregate weight of accepted jobs: ↵ = 10%.

0% 5% 10% 15% 20%
0

100

200

300

α

A
g

g
re

g
at

e
w

ei
g

h
t

HEU RSF INC RES

Fig. 6. Aggregate weight of accepted jobs at different
percentages of less urgent jobs.

Fig. 7. Total number of accepted jobs: ↵ = 10%.

0% 5% 10% 15% 20%
0

10

20

30

40

50

α

T
o

ta
l

n
u

m
b

er
o

f
ac

ce
p

te
d

 j
o

b
s

HEU RSF INC RES

Fig. 8. Total number of accepted jobs at different per-
centages of less urgent jobs.

Fig. 9. Scheduling delay: ↵ = 10%.

0% 5% 10% 15% 20%

10
2

10
4

α

S
ch

e
d
u
lin

g
d
e
la

y
(m

s)

HEU RSF INC RES

Fig. 10. Scheduling delay at different percentages of
less urgent jobs.

delay constraint, i.e., 10 seconds. Fig. 17 plots the average
maximum job rate for three different algorithms. We can see
that INC and RES can only accomodate quite a limited job
rate, i.e., 40.8 and 182.4 respectively, as opposed to a job rate
of 1633.2 achieved by HEU. In our experimental setting, each
transfer job has an average of 500 chunks (50 GB) to transmit,
and thus the job rate can be greatly increased if the job size
is reasonably constrained since the complexity of solving the
integer problems mainly depends on the number of chunks
and the lifetime of the jobs (specified by the deadline).

6.4 Resource Consumption at Gateway Servers

Next we investigate the resource consumption on the gateway
servers in Fig. 11 to Fig. 16, due to handling data transmissions
and control signaling. The results shown are averages of
the corresponding measurements on the 10 gateway servers.
The average CPU consumption per gateway server given

in Fig. 11 mostly represents the CPU usage for handling
control signaling with the controller. We can see that the
CPU consumption is similar when each of the four algorithms
is deployed, which increases slowly as more transmission
tasks accumulate in the system, to be scheduled, over time.
The memory consumption in Fig. 13 follows the similar
trend. The bandwidth consumption in Fig. 15 represents the
average data volumes transmitted on each dedicated link. We
see that the peak bandwidth consumption of RSF is much
higher than that of the other three algorithms, which shows
that the “random” behavior of RSF leads to high bandwidth
consumption with a low aggregate weight achieved, while the
other three, especially INC, incur less bandwidth consumption
while achieving a better aggregate weight (see Fig. 5). Fig. 12,
Fig. 14, and Fig. 16 further verify the better performance
of our proposed online algorithms (i.e., INC, RES, HEU) as
compared to RSF, with much slower growth rates of resource
consumption with the increase of system load. As compared

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2389842, IEEE Transactions on Cloud Computing

11

to CPU consumption, memory consumption and bandwidth
consumption are relatively dominating on the gateway servers
where a large number of TCP connections are established.

0 500 1000 1500 2000

INC

RES

HEU

max # of job requests per second

Fig. 17. Maximum job rates accommodated by three
different algorithms.

6.5 Link Utilization
As mentioned earlier, the only real-world inter-datacenter bulk
data transfer system we are aware of is NetStitcher [16].
Different from ours, NetStitcher relies on a priori knowledge
of the traffic pattern on the network links over time, with a
scheduling goal of minimizing the transfer time of a given
volume of data. It applies the time expansion graph technique
which is later adopted by Postcard [17], whose computation
overhead prevents the scheduling from happening as fre-
quently as ours. Therefore, to make a “fair” comparison, we set
the scheduling interval in this set of experiments to 30 minutes,
and the chunk size is configured to 18 GB, accordingly. We
consider data transfer requests arising from the same source
datacenter and destined to the same destination datacenter,
with the rest 8 datacenters as potential intermediate store-and-
forward nodes. An average of 100 transfer requests (180 GB,
identical weights) are issued at the source datacenter every
30 minutes in a 12-hour span, with the deadlines configured
to the end of the timespan (used only when running our
algorithm). The link bandwidths are configured similarly to our
previous experiments. Fig. 18 presents the size of data arriving
at the destination by our INC algorithm and NetStitcher
during the 12-hour span. We can see that the size of data
transmitted by NetStitcher decreases gradually when the links
become saturated, whereas INC performs better with a stable
throughput over time. We believe the reason is as follows:
although NetStitcher allows inactive replicas of chunks cached
at the intermediate nodes to tackle the extreme situations (e.g.,
“a node can go off-line, or its uplink can be substantially
reduced”), only the active replica can be scheduled when the
routing paths of a data transfer job need to be recomputed.
Differently, INC can better exploit the available bandwidth in
the system as any intermediate datacenter received a specific
chunk can serve as the source afterwards, achieving higher
link utilization.

7 CONCLUSION
This paper presents our efforts to tackle an arising challenge
in geo-distributed datacenters, i.e., deadline-aware bulk data

1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

S
iz

e
 o

f
D

a
ta

T
ra

n
sf

e
rr

e
d
 (

T
B

)

Time (hours)

INC NetStitcher

Fig. 18. Size of data transferred over time.

transfers. Inspired by the emerging Software Defined Net-
working (SDN) initiative that is well suited to deployment of
an efficient scheduling algorithm with the global view of the
network, we propose a reliable and efficient underlying bulk
data transfer service in an inter-datacenter network, featuring
optimal routing for distinct chunks over time, which can be
temporarily stored at intermediate datacenters and forwarded
at carefully computed times. For practical application of the
optimization framework, we derive three dynamic algorithms,
targeting at different levels of optimality and scalability. We
also present the design and implementation of our Bulk Data
Transfer (BDT) system, based on the Beacon platform and
OpenFlow APIs. Experiments with realistic settings verify
the practicality of the design and the efficiency of the three
algorithms, based on extensive comparisons with schemes in
the literature.

APPENDIX A
PROOF OF THEOREM 1

Proof: First, the inequality sign in constraint (d) (�) can
be more rigorously specified as the equality sign (=), enforced
by constraints (a), (b) and (c). For ease of reference, we denote
the revised problem as P

orig

.
Next, we construct a new graph (Fig. 19). Let t

min

be
the minimal value among the earliest time slots for the job
transmissions to happen, i.e., t

min

= min
J2J

t
J

. Similarly, we
define t

max

as the latest deadline of all the job transmissions,
i.e., t

max

= max
J2J

{t
J

+ T
J

}. Then, the detailed construction
of the new graph can be carried out as follows:

• The topology contains N ⇥ (t
max

� t
min

+ 1) nodes
(N = |N|), with nodes at each row i represented as
n

i,t

min

, n
i,t

min

+1, . . . , ni,t

max

.

• Between each pair of nodes n
r1,j

, n
r2,j+1

(r1, r2 2 [1, N], j 2 [t
min

, t
max

�1]) in two neighbouring
columns, add a directed link n

r1,j

! n
r2,j+1, with a

bandwidth B
r1,r2 if r1 6= r2, or +1 if r1 = r2.

• The source and destination nodes for each chunk
w 2 W

J

belonging to J 2 J correspond to nodes n
S

J

,t

J

and n
D

J

,t

J

+T

J

in Fig. 19, respectively.

We consider a new optimization problem, denoted as P
new

,
which computes job acceptance and routing paths of each
chunks of each job in the newly-constructed graph, such

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2389842, IEEE Transactions on Cloud Computing

12

Fig. 11. CPU performance: ↵ = 10%.

0% 5% 10% 15% 20%
0

5

10

15

α

C
P

U
 U

sa
g

e
(%

)

HEU RSF INC RES

Fig. 12. CPU performance at different percentages of
less urgent jobs.

Fig. 13. Memory performance: ↵ = 10%

0% 5% 10% 15% 20%
0

50

100

150

200

250

α

M
em

o
ry

 (
M

B
)

HEU RSF INC RES

Fig. 14. Memory performance at different percentages
of less urgent jobs.

Fig. 15. Bandwidth consumption: ↵ = 10%

0% 5% 10% 15% 20%
0

1000

2000

3000

4000

α

B
an

d
w

id
th

 (
M

b
p

s)

HEU RSF INC RES

Fig. 16. Bandwidth consumption at different percent-
ages of less urgent jobs.

that the aggregate weight of all accepted jobs is maximized.
Especially, if any transmission occurs from r1 to r2 at time
j, it corresponds to a link n

r1,j

! n
r2,j+1 in Fig. 19. If each

job is considered as an individual commodity, problem P
new

is a maximum multi-commodity flow problem which has been
proven to be NP-Complete [33]. It is easy to see that any job
J 2 J is accepted in P

new

if and only if J is accepted in
P

orig

. On the other hand, it takes only polynomial time to
reduce problem P

new

to problem P
orig

by consolidating all
the nodes in a single row as well as the associated links with
the following detailed steps:

• For all the nodes in the r-th row, i.e.,
n

r,t

min

, n
r,t

min

+1, . . . , nr,t

max

, create a single node
n

r

.

• For each pair of links between any two
neighbouring columns at different rows, e.g.,
n

r1,j

! n
r2,j+1, j 2 [t

min

, t
max

� 1], create a

new link between the two newly-created nodes n
r1 and

n
r2 with a bandwidth B

r1,r2 .

• Remove all the links between any two neighbouring
columns at the same rows.

• Remove all the original nodes and links.
Hence P

new

is polynomial-time reducible to P
orig

, which
implies, P

new

is no harder than P
orig

. Based on the reduction
theorem (Lemma 34.8 in [34]), we can derive that P

orig

is NP
hard. The original problem in (1) is hence also NP hard.

APPENDIX B
PROOF OF THEOREM 2

Proof: Let’s first check the complexity of Alg. 1. Assume
N

J

represents the number of jobs to be scheduled, max
w

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2389842, IEEE Transactions on Cloud Computing

13

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

n1, t

min

n1, t

min

+ 1

n1, t

max

n
N, t

min

n2, t

max

n
N, t

max

n2, t

min

Possible Transmission of Job J0

n
S

J0 , t

J0

n
D

J0 , t

J0+T

J0

Fig. 19. The newly-constructed network for P
new

represents the maximal number of chunks in a single job, T
max

represents the maximally allowed number of time slots for
transmission of a single job, and N represents the number
of datacenters. A detailed complexity analysis of individual
statements in the algorithm is as follows:

1) The complexity of sorting the requests (line 1) is
O(N

J

⇥ log(N
J

)).

2) The complexity of searching for a shortest path is
O(N2 ⇥ log(N)) [35]. Once the path is fixed, it takes
at most O(N ⇥ T

max

) steps to verify whether the path
is valid, as the path has at most N hops and at most
T

max

time slots need checking for each hop.

3) In Line 6, the transmission schedules, xw

m,n

(t), of
at most max

w

chunks need to be clearly, and the
complexity is therefore O(N2 ⇥ T

max

⇥max
w

).

4) The complexities of line 9 and 10 is O(N ⇥ T
max

).
As a result, the overall complexity of Alg. 1 is therefore

O(N
J

⇥log(N
J

)+N
J

⇥max
w

⇥(N2⇥log(N)+N⇥T
max

+

N2 ⇥ T
max

⇥ max
w

+ N ⇥ T
max

)), which is polynomial.
Similarly, Alg. 2 can be proved to have polynomial-time
complexity, with easier efforts. Then, Theorem 2 can be
readily proved.

APPENDIX C
THE PROGRAMMING INTERFACE OF BDT
To-be-scheduled jobs are automatically updated by the frame-
work via Class BDT Job Set, and the singleton object Com-
mandQueue is used to obtain the command queue to save the
scheduling commands that will be triggered at the specified
time. The example code snippets are listed as follows.

//BDT_Schedulable.java

public interface BDT_Schedulable {

public void schedule();

}

//BDT_Job_Set.java

/

**

*

@param clear whether to remove the

previously accepted jobs

*

The set contains only the latest jobs if

clear is true;

*

The set contains both latest jobs and

previously accepted ones if clear is false

*

/

public static void initialize (boolean clear)

{...}

//Some concrete scheduler

CommandQueue cmd_queue =

CommandQueue.getQueue();

cmd_queue.add_command(cmd.pre_fetch_time,

cmd.time_to_invoke, cmd.cmd_to_switch,

cmd.src_ip, cmd.dest_ip, cmd.job_id,

cmd.chunk_index);

ACKNOWLEDGEMENT
The research was supported in part by Wedge Network Inc.,
and grants from RGC under the contract HKU717812 and
HKU 718513.

REFERENCES
[1] Data Center Map, http://www.datacentermap.com/datacenters.html.
[2] K. K. Ramakrishnan, P. Shenoy, and J. Van der Merwe, “Live Data

Center Migration across WANs: A Robust Cooperative Context Aware
Approach,” in Proceedings of the 2007 SIGCOMM workshop on Internet
network management, ser. INM ’07, New York, NY, USA, 2007, pp.
262–267.

[3] Y. Wu, C. Wu, B. Li, L. Zhang, Z. Li, and F. C. M. Lau, “Scaling Social
Media Applications into Geo-Distributed Clouds,” in INFOCOM, 2012.

[4] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[5] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford,
G. Xie, H. Yan, J. Zhan, and H. Zhang, “A Clean Slate 4D Approach
to Network Control and Management,” ACM SIGCOMM Computer
Communication Review, vol. 35, no. 5, pp. 41–54, 2005.

[6] SDN, https://www.opennetworking.org/sdn-resources/sdn-definition.
[7] N. McKeown, T. Anderson, H. Balakrishnan, G. M. Parulkar, L. L.

Peterson, J. Rexford, S. Shenker, and J. S. Turner, “OpenFlow: Enabling
Innovation in Campus Networks,” Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[8] U. Hoelzle, “Openflow@ google,” Open Networking Summit, 2012.
[9] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,

S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with a
Globally-deployed Software Defined WAN,” in Proceedings of the ACM
SIGCOMM 2013 conference on SIGCOMM. ACM, 2013, pp. 3–14.

[10] S. J. Vaughan-Nichols, “OpenFlow: The Next Generation of the Net-
work?” Computer, vol. 44, no. 8, pp. 13–15, 2011.

[11] Beacon Home, https://openflow.stanford.edu/display/Beacon/Home.
[12] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better Never

than Late: Meeting Deadlines in Datacenter Networks,” in Proceedings
of the ACM SIGCOMM, New York, NY, USA, 2011, pp. 50–61.

[13] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware Datacenter
TCP (d2tcp),” in Proceedings of the ACM SIGCOMM 2012 conference
on Applications, technologies, architectures, and protocols for computer
communication. ACM, 2012, pp. 115–126.

[14] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker, “pFabric: Minimal Near-optimal Datacenter Transport,”
in Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM,
ser. SIGCOMM ’13. New York, NY, USA: ACM, 2013, pp. 435–446.

[15] Y. Chen, S. Jain, V. K. Adhikari, Z.-L. Zhang, and K. Xu, “A First
Look at Inter-data Center Traffic Characteristics via Yahoo! Datasets.”
in INFOCOM, 2011.

[16] N. Laoutaris, M. Sirivianos, X. Yang, and P. Rodriguez, “Inter-datacenter
Bulk Transfers with Netstitcher,” in Proceedings of the ACM SIGCOMM
2011 conference, New York, NY, USA, 2011, pp. 74–85.

[17] Y. Feng, B. Li, and B. Li, “Postcard: Minimizing Costs on Inter-
Datacenter Traffic with Store-and-Forward,” in Proceedings of the
2012 32nd International Conference on Distributed Computing Systems
Workshops, ser. ICDCSW ’12. Washington, DC, USA: IEEE Computer
Society, 2012, pp. 43–50.

[18] E. Khler, K. Langkau, and M. Skutella, “Time-Expanded Graphs for
Flow-Dependent Transit Times,” in Proc. 10th Annual European Sym-
posium on Algorithms. Springer, 2002, pp. 599–611.

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2389842, IEEE Transactions on Cloud Computing

14

[19] B. B. Chen and P. V.-B. Primet, “Scheduling Deadline-constrained Bulk
Data Transfers to Minimize Network Congestion,” in Proceedings of the
Seventh IEEE International Symposium on Cluster Computing and the
Grid, 2007, pp. 410–417.

[20] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,
S. Banerjee, and N. McKeown, “ElasticTree: Saving Energy in Data
Center Networks.” in NSDI, vol. 3, 2010, pp. 19–21.

[21] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving High Utilization with Software-Driven
WAN,” in Proceedings of the ACM SIGCOMM, Hong Kong, China,
2013.

[22] M. A. Rodriguez and R. Buyya, “Deadline Based Resource Provisioning
and Scheduling Algorithm for Scientific Workflows on Clouds,” IEEE
Transactions on Cloud Computing, vol. 2, no. 2, April 2014.

[23] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, “DevoFlow: Scaling Flow Management for High-
performance Networks,” SIGCOMM Comput. Commun. Rev., vol. 41,
no. 4, pp. 254–265, Aug. 2011.

[24] H. Liu, C. F. Lam, and C. Johnson, “Scaling Optical Interconnects in
Datacenter Networks Opportunities and Challenges for wdm,” in High
Performance Interconnects (HOTI), 2010 IEEE 18th Annual Symposium
on. IEEE, 2010, pp. 113–116.

[25] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory,
Algorithms, and Applications. Englewood Cliffs, NJ: Prentice Hall,
1993.

[26] CPLEX Optimizer, http://www-01.ibm.com/software/commerce/
optimization/cplex-optimizer/.

[27] OSGi Alliance, http://www.osgi.org/Main/HomePage.
[28] Equinox, http://eclipse.org/equinox/.
[29] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McK-

eown, and G. Parulkar, “Flowvisor: A Network Virtualization Layer,”
OpenFlow Switch Consortium, Tech. Rep, 2009.

[30] Google Data Center FAQ, http://www.datacenterknowledge.com/
archives/2012/05/15/google-data-center-faq/.

[31] IBM BladeCenter HS23, http://http://www-03.ibm.com/systems/
bladecenter/hardware/servers/hs23/specs.html.

[32] HP 3500 and 3500 yl Switch Series, http://h17007.www1.hp.com/us/en/
networking/products/switches/HP 3500 and 3500 yl Switch Series/
index.aspx#.Uezkh2TIydM.

[33] S. Even, A. Itai, and A. Shamir, “On the Complexity of Time Table and
Multi-commodity Flow Problems,” in Proceedings of the 16th Annual
Symposium on Foundations of Computer Science. Washington, DC,
USA: IEEE Computer Society, 1975, pp. 184–193.

[34] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction
to Algorithms, 2nd ed. McGraw-Hill Higher Education, 2001.

[35] R. Bellman, “On a Routing Problem,” Quarterly of Applied Mathemat-
ics, vol. 16, pp. 87–90, 1958.

Yu Wu received the B.E. and M.E. degrees
in computer science and technology from Ts-
inghua University, Beijing, China, in 2006 and
2009, respectively, and the Ph.D. degree in com-
puter science from the Univeristy of Hong Kong,
Hong Kong, in 2013.

He is currently a Postdoctoral Scholar with the
Department of Electrical, Computer, and Energy
Engineering, Arizona State university, Tempe,
AZ, USA. His research interests include cloud
computing, mobile computing, network virtual-

ization and content-centric network.

Zhizhong Zhang received his B.Sc. degree in
2011 from the Department of Computer Science,
Sun Yat-sen University, China. He is currently a
Ph.D. student in the Department of Computer
Science, The University of Hong Kong, Hong
Kong. His research interests include networks
and systems.

Chuan Wu received her B.E. and M.E. degrees
in 2000 and 2002 from Department of Computer
Science and Technology, Tsinghua University,
China, and her Ph.D. degree in 2008 from the
Department of Electrical and Computer Engi-
neering, University of Toronto, Canada. She is
currently an associate professor in the Depart-
ment of Computer Science, The University of
Hong Kong, China. Her research interests in-
clude cloud computing, peer-to-peer networks
and online/mobile social network. She is a mem-

ber of IEEE and ACM.

Chuanxiong Guo (M’03) received the Ph.D.
degree in communications and information sys-
tems from Nanjing Institute of Communications
Engineering, Nanjing, China, in 2000. He is
a Senior Researcher with the Wireless and
Networking Group, Microsoft Research Asia,
Beijing, China. His research interests include
network systems design and analysis, data-
center networking, data-centric networking, net-
work security, networking support for operating
systems, and cloud computing.

Zongpeng Li received his B.E. degree in Com-
puter Science and Technology from Tsinghua
University (Beijing) in 1999, his M.S. degree in
Computer Science from University of Toronto
in 2001, and his Ph.D. degree in Electrical
and Computer Engineering from University of
Toronto in 2005. Since August 2005, he has
been with the Department of Computer Sci-
ence in the University of Calgary. Zongpeng’s
research interests are in computer networks and
network coding.

Francis C.M. Lau (SM, IEEE) received his Ph.D.
in Computer Science from the University of Wa-
terloo, Canada. He has been a faculty member
in the Department of Computer Science, The
University of Hong Kong, since 1987, where he
served as the department head from 2000 to
2006. His research interests include networking,
parallel and distributed computing, algorithms,
and application of computing to art. He is the
editor-in-chief of the Journal of Interconnection
Networks.

