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Abstract

As the size of deep learning models gets larger and larger,
training takes longer time and more resources, making fault
tolerance critical. Existing state-of-the-art methods like Check-
Freq and Elastic Horovod need to back up a copy of the
model state in memory, which is costly for large models and
leads to non-trivial overhead. This paper presents SWIFT,
a novel failure recovery design for distributed deep neural
network training that significantly reduces the failure re-
covery overhead without affecting training throughput and
model accuracy. Instead of making an additional copy of
the model state, SWIFT resolves the inconsistencies of the
model state caused by the failure and exploits replicas of the
model state in data parallelism for failure recovery. We pro-
pose a logging-based approach when replicas are unavailable,
which records intermediate data and replays the computa-
tion to recover the lost state upon a failure. Evaluations show
that SwIFT significantly reduces the failure recovery time
and achieves similar or better training throughput during
failure-free execution compared to state-of-the-art methods
without degrading final model accuracy.
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1 Introduction

Large deep neural networks (DNNs) have recently been
shown to improve model performance 2], but training these
models is prone to failures due to the use of many machines
(e.g., hundreds of GPU machines) and long training time
(e.g., days to months). Currently, the most common method
for fault tolerance in deep learning frameworks is global
checkpointing, which periodically saves the entire model
state (i.e., parameters and optimizer states) and restarts from
the latest checkpoint in the event of a failure. Depending
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on the checkpointing frequency, this often results in several
hours of lost computation time [8]. CheckFreq [9] achieves
more frequent checkpoints by splitting the operation into
two phases: first, the model state is copied into the GPU
memory, called a snapshot, or to the CPU memory if the
GPU memory is insufficient; next, the snapshot is written to
the disk asynchronously. Elastic Horovod [1], a framework
for elastic training, adopts a similar approach but without the
second phase. The reason is that Elastic Horovod assumes
distributed data-parallel training, where each worker main-
tains a replica of the model state; during failure recovery, one
of the surviving workers broadcasts the snapshot to other
workers, and all workers restart training from the snapshot.
Taking a snapshot is necessary for Elastic Horovod to pre-
vent a corrupted state: if a failure occurs during the model
update, the surviving workers are in an awkward situation -
some parameters are updated while the others are not. We
identify this problem as the crash-consistency problem. How-
ever, we found that both methods can slow down training
due to the overhead of snapshotting, as shown in Figure 1.
This paper studies a better failure resilience design for dis-
tributed DNN training that significantly reduces the recov-
ery overhead without affecting training throughput and final
model accuracy. SWIFT uses a combination of replication-
based recovery and logging-based recovery to achieve this
goal. We implement SWIFT in PyTorch [10] and the code is
publicly available at https://github.com/jasperzhong/swift.

2 SwrFT Design

First, SWIFT uses a novel method called update-undo that
resolves model state inconsistencies caused by the failure and
thus enables replication-based recovery using replicas of the
model state in data parallelism without creating additional
snapshots. Second, SWIFT proposes logging-based recovery
to achieve expedited failure recovery in pipeline parallelism.

2.1 Update-undo

Many update operators in optimizers like SGD and Adam [6]
are mathematically invertible, meaning that there is an in-
verse operator that can reverse the operation of the original
operator. For example, linear operators like element-wise
addition and scalar multiplication are all invertible. How-
ever, some optimizers involve non-linear operators, such as
the LAMB optimizer [13] which scales gradients with the
L2 norm of the parameters. In this case, it is necessary to
save the L2 norm as a scalar for recovery purposes. In the
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event of a failure during model updates, if some parameters
at the workers have been updated and others have not, the
surviving workers can undo the update for the updated pa-
rameters. In addition to restoring the model parameters, it is
also necessary to restore optimizer states such as momentum
to ensure consistency across all workers. With update-undo,
replicas of the model state can be used for failure recovery
in data parallelism, called replication-based recovery.

2.2 Logging-based Recovery

We propose logging-based recovery for pipeline parallelism.
This involves logging the inter-machine communication (i.e.,
intermediate activations in the forward pass and the gradi-
ents in the backward pass), as well as metadata such as the
sender and the receiver and the timestamp (i.e., the current
training iteration and the current micro-batch being trained).
Our logging method is similar to upstream backup [5], where
the sender rather than the receiver logs the message to en-
sure that the intermediate data needed for recovery is not
lost upon a failure. Logging is done asynchronously in the
background using a dedicated CUDA stream. A queue is set
up for each worker. The worker keeps pushing outgoing
tensors into the queue during training, while another back-
ground thread keeps reading tensors from the queue and
doing the logging. In addition, we perform logging during
the bubble time in synchronous pipeline-parallel training.
In this way, logging is off the critical path. Note that global
checkpointing is still used to limit the logging size because
all logging files are obsoleted after a global checkpointing.

In the event of a failure, the surviving upstream workers
flush the queue of uncompleted logging tasks when detecting
a failure in the training job. The upstream workers then
upload their logging files to global storage (e.g., HDFS). The
replacement workers for the failure workers then download
the necessary logging files from the global store, load the
latest checkpoint, and replay previously received tensors
from the logging file in the exact order of their timestamps.
If necessary, the surviving workers will undo the update. This
method allows for a more limited scope of recovery, focusing
on the local computation graph on the failed machine rather
than the entire computation graph compared to pure global
checkpointing, resulting in faster recovery. Note that logging
requires the computation to be deterministic (i.e., the same
input leads to the same output).

Parallel recovery. To further improve the recovery process,
we utilize the surviving workers to assist in the recovery of
the failed workers. By logging the intermediate results of all
micro-batches, we can use data-parallel training based on
the logged data to expedite the recomputation of lost states.

Selective logging. We next investigate a trade-off between
the storage space and the recovery time with selective log-
ging. Our idea is to group machines and log inter-group
communication but not intra-group communication. The
original approach is a particular case where each machine
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Figure 1. Replication-based recovery for Wide-ResNet-50.
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Figure 2. Logging-based recovery for BERT-128.

forms a group. If one machine in a group fails, training on
the entire group of machines needs to be rolled back from
the latest checkpoint, and the recovery time will be longer.

3 Evaluation

We experiment on 16 DGX-2 machines, each equipped with
eight 32 GB V100 GPUs connected via 40Gbps Ethernet. We
compare the performance of Swirt with CheckFreq and
Elastic Horovod for training a scaled-up version of the Wide-
ResNet-50 model [14] (base channel size 320, 1.23 billion
parameters) on the ImageNet dataset [12] using data paral-
lelism, and with synchronous logging (i.e., saving a tensor
before sending it) and global checkpointing for training a
BERT-128 model [3] (128 transformer layers, 1.11 billion
parameters) on the Wikipedia dataset [3] using pipeline par-
allelism. We simulate a failure by killing one machine at
iteration 100. Figure 1 shows that SWIFT’s replication-based
recovery significantly reduces recovery time by 98.1% com-
pared to CheckFreq and Elastic Horovod for Wide-ResNet-50.
Figure 2 shows that SWIFT’s logging-based recovery achieves
similar throughput while reducing recovery time by up to
76.3% compared to global checkpointing for BERT-128. In ad-
dition, SWIFT demonstrates no loss of accuracy in end-to-end
finetuning tasks for BERT-Large on the SQuAD dataset [11]
and ViT-Base/32 [4] on the CIFAR-100 dataset [7], compared
to its failure-free counterparts.

Simulation study. We calculate the expected end-to-end
training time using traces collected in our experiments. We
inject failures uniformly randomly during training, assum-
ing a 17-hour median-time-between-failure [8]. Our results
show that SWIFT can speed up end-to-end training for Wide-
ResNet-50 and BERT-128 by 1.16x and 1.10x, respectively.
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