
Proactive VNF Provisioning with Multi-timescale Cloud
Resources: Fusing Online Learning and Online Optimization

Xiaoxi Zhang†, Chuan Wu†, Zongpeng Li§, Francis C.M. Lau†
†Department of Computer Science, The University of Hong Kong, Email: {xxzhang2,cwu,fcmlau}@cs.hku.hk

§Department of Computer Science, University of Calgary, Canada, Email: zongpeng@ucalgary.ca

Abstract—Network Function Virtualization (NFV) represents
a new paradigm of network service provisioning. NFV providers
acquire cloud resources, install virtual network functions (VNFs),
assemble VNF service chains for customer usage, and dynami-
cally scale VNF deployment against input traffic fluctuations.
While existing literature on VNF scaling mostly adopts a reactive
approach, we target a proactive approach that is more practical
given the time overhead for VNF deployment. We aim to effec-
tively estimate upcoming traffic rates and adjust VNF deployment
a priori, for flow service quality assurance and resource cost
minimization. We adapt online learning techniques for predicting
future service chain workloads. We further combine the online
learning method with a multi-timescale online optimization
algorithm for VNF scaling, through minimization of the regret
due to inaccurate demand prediction and minimization of the
cost incurred by sub-optimal online decisions in a joint online
optimization framework. The resulting proactive online VNF
provisioning algorithm achieves a good performance guarantee,
as shown by both theoretical analysis and simulation under
realistic settings.

I. INTROCUTION

Network Function Virtualization (NFV) promises to ease
network service provisioning and scaling at significantly re-
duced costs, by implementing network functions (middle-
boxes) as software on standard virtualized platforms (e.g.,
virtual machines (VMs) in datacenters) instead of dedicated
hardware [1]. In contrast with manual hardware middlebox
installation, the deployment of virtualized network functions
(VNFs) is more flexible, by launching a VM instance with
a pre-built VNF image. Network functions are typically se-
quenced into service chains to provide practical network
service [2], e.g., the service chain “Firewall→IDS→Proxy” is
commonly deployed between external users and an enterprise’s
internal network for access control.

Enterprises and businesses start resorting to VNFs for
provisioning network services [3]. Recent initiatives suggest
establishing (dedicated) NFV service providers, who own or
rent cloud resources, create VNF instances, assemble VNF
service chains and offer them to customers on demand,
eliminating the need to build and maintain these functions at
customers’ premises. A European FP7 ICT project T-NOVA
[4] introduces an enabling framework for NFV providers to
offer VNFs to customers. Customers browse the VNF catalog
at the NFV provider, and make a la carte orderings of service
chains. The emerging NFV marketplace has recently witnessed
its vanguard group of providers and vendors [5][6] , racing to
lead in the multi-billion dollar market envisioned [7].

At the core of NFV service provisioning is optimal re-
source scheduling, for efficient and dynamic provisioning of
VNF instances that best serves fluctuating network traffic
traversing service chains. A delay is typically incurred for
VNF deployment, in copying VM images and launching
VMs/VNFs. A proactive provisioning approach would thus
be much appreciated, adjusting VNF deployment prior to
actual traffic arrival based on effective customer demand
prediction. However, most existing proposals on dynamic VNF
provisioning (e.g., [8][9]) have adopted a reactive approach,
adapting VNF deployment to hitherto arrivals, jeopardizing
service quality during the adjustment period.

We study a new NFV brokerage service, where a NFV
provider predicts upcoming traffic demand, reserves VMs at a
public cloud, deploys VNFs and assembles service chains to
serve customers over time. On today’s public clouds [10][11],
VM instances of different resource composition can be re-
served for desired durations, e.g., on-demand instances for
one-hour and reserved instances for 1 or 3 years at Amazon
EC2. A critical challenge arises on which types of VMs the
NFV provider should purchase for VNF deployment, based on
predicted fluctuation of customer traffic demand. The decisions
are to be made promptly upon predicted changes, at a short
decision interval on the order of seconds or minutes. VM life-
times are typically much larger, e.g., hours or months/years in
commercial cloud platforms [10][11]. Therefore, VM purchase
decisions at one time influence future resource availability and
hence future VM purchase decisions. A carefully designed
proactive online algorithm should (i) effectively predict up-
coming traffic demand to expedite service chain provisioning,
and (ii) strategically and proactively reserve VMs and deploy
VNFs based on the predicted upcoming demand as well as a
future perspective, to best serve customer traffic with minimal
overall cost over the long run.

Algorithm design for the above goals faces a number of
technical challenges. Given the multiple time scales of VM
duration, online VM purchase decisions are coupled with
future decisions at multiple time scales. Moreover, the overall
VM purchase and deployment cost is a non-convex objective
function, further escalating the challenge. In online (convex)
optimization problems solved by online learning techniques,
decisions at each time are made based on predicted (learned)
input for the current time, without direct coupling with future
decisions [12][13]. Exceptions [14][15] study online learning
with decisions coupled over time in a convex function, rely-

1575

ing on lookahead windows. In our problem, online demand
prediction in a smaller time scale is closely related with
online optimization in longer time scales, in both constraints
and the objective function. Moreover, we do not assume a
lookahead window that provides future information. How to
design an online algorithm fusing online learning and online
optimization, achieving provable performance bounds, is an
intriguing task of practical relevance.

We design an online, proactive VNF provisioning algorithm
for the novel NFV brokerage service, addressing the above
challenges. We model proactive VNF provisioning into an
online optimization framework that jointly addresses regret
minimization for demand learning and long-term VM cost
minimization. The algorithm design consists of two main
modules: (i) an online learning approach to predict traffic
demand along the service chains, and (ii) an online algorithm
for purchasing VMs of different durations and deploying VNFs
on VMs according to the predicted demand, simultaneously
retaining a future perspective for long-term cost optimality.

In the learning module, we exploit an efficient online gradi-
ent descent method to predict upcoming traffic demand along
the VNF chains, minimizing the loss due to prediction errors
over time. We carefully design a randomized convexification
technique to convert a non-convex loss minimization into an
online convex optimization problem, such that the gradient
descent method can be effectively applied. An expected regret
bound sub-linear to the time horizon is proven, as compared
to the best static prediction strategy (a common benchmark
for analyzing online learning techniques).

The predicted traffic demand is fed as input to the online
algorithm module for VM purchase and VNF deployment. We
exploit the break-even principle from ski-rental algorithms in
our online algorithm design, and apply it in multiple levels
of online decision making, for purchasing VMs of different
durations. Assuming a given traffic demand sequence, the
online algorithm module achieves a constant competitive ratio
of 3, as compared to the offline optimum derived under the
same demand sequence.

The online learning module and the online optimization
module are combined into our complete proactive online VNF
provisioning algorithm, POLAR. A new performance ratio
is constructed to evaluate POLAR, which jointly measures
the regret in demand prediction and the competitiveness of
online VM purchase. The ratio compares the expected overall
cost incurred by POLAR with that by a strategy using the
best static demand predictor and the optimal strategy for VM
purchase with full knowledge of demand over the system
lifetime. The ratio is upper bounded arbitrarily closely by
the constant 3, when the system lifetime goes to infinity. Our
simulation study under realistic settings further demonstrates
that POLAR outperforms alternative approaches in both
demand prediction and overall cost minimization.

II. RELATED WORK

A few recent studies investigated optimal placement and
scaling of VNF instances and traffic routing in VNF service

chains for cost minimization. VNF-P [16] presents a one-
time optimization model and a heuristic algorithm, for VNF
placement, considering hybrid deployment where part of the
network service is provided by dedicated hardware and part
by VNF instances. Cohen et al. [17] design approximation
algorithms for VNF placement across datacenters, to minimize
the distance cost between clients and VNFs and VNF setup
costs, and present rigorous analysis.

The above literature deals with one-off placement of the
NFV service chains, ignoring the dynamic nature of an NFV
system. Wang et al. [8] design cost-minimizing online algo-
rithms for dynamic VNF provisioning in the NFV provider’s
cloud data center. Ghaznavi et al. [9] design online algorithms
to optimize placement of VNF instances in response to on-
demand workload, considering the trade-off between band-
width and host resource consumption. These dynamic schemes
are reactive in nature, scheduling VNF deployment according
to arrived demand. In contrast, we target a proactive online
algorithm that deploys VNFs according to predicted demand,
while guaranteeing a performance bound.

Recently, cloud brokerage service has been investigated.
Zheng et al. [18] propose the business model where a cloud
virtual service provider rents cloud resources from a cloud
provider and resells them to users. They study economic issues
based on a stochastic job scheduling problem. Wang et al. [19]
investigate a cloud brokerage service and minimize the cost in
choosing different options of resources from a cloud provider
to meet users’ homogenous demand over time. They further
assume that the billing cycle of an instance equals one decision
time slot, which simplifies the model but is not practical.

Online learning based algorithms have been proven effec-
tive in solving online convex optimization problems [12][13]
and some typical non-convex problems, e.g., Prediction with
Expert Advice problem [12]. Our problem can not be encoded
into a convex problem or reduced to classic problems in online
learning settings. Ski-rental problem and its variations have
been extensively studied [20]. However, none of them deals
with multiple time scales of online resource reservation.

III. PROBLEM MODEL

A. Types and Durations of VM instances

We consider a dedicated NFV service provider who operates
for a large number T of time slots, each on the order of
seconds or minutes. The cloud provides M types of VM
instances with different compositions of resources such as
CPU, RAM, and Disk storage. Each VM instance can be
purchased as short-term instances or long-term instances, as
exemplified by the on-demand instances (billed hourly) and
reserved instances (reserved for 1− 3 years) on Amazon EC2
[10], respectively. Let τs be the billing cycle of a short-term
instance (τ s = 60 if billing cycle is an hour and each time slot
is a minute). Let αm be the unit price of a type-m short-term
VM instance per billing cycle, ∀m ∈ [M] = {1, 2, . . . ,M},
e.g., on-demand instances on Amazon EC2 have hourly prices
within [$0.0065, $13.338]. Each long-term instance is reserved
for τ l time slots, with a one-time upfront payment of µm ≥ 0,

1576

xn(t1 + 1), ym(t1 + 1), um(t1 + 1)

tt1 t1 + 1

wm(t1)

Fig. 1: Time slots, VM durations, and online decisions

and a unit price γm per billing cycle of length τs in τ l, for
each type-m instance. For example, an EC2 reserved instance
c4.2xlarge on a 1-year term incurs a $2303 initial charge,
and a significantly reduced hourly fee of $0.263. The overall
price of a long-term instance, βm, equals µm+γm× τl

τs
, charged

no matter whether the VM is in use or not [21]. An illustration
of the time slots and VM durations is given in Fig. 1.

B. VNFs and Service Chain Requests

The NFV service provider offers N types of VNFs, e.g.,
firewall, NAT, IDS. A total number J of service chain requests
arrive during [T] = {1, 2, . . . , T}. A request j ∈ [J] =
{1, 2, . . . , J} arriving at tj specifies an ordered sequence of
VNFs composing service chain j, start time t−j and end time
t+j for using this service chain, where tj < t−j ≤ t+j . For
example, an enterprise outsourcing its access service may
request for the service chain Firewall→IDS→Proxy. Let Lj
be the set of VNFs in service chain j. We use n− and n+ to
represent the successor VNF and the predecessor VNF of a
type-n VNF in the chain, respectively.

Let πj(t) be the total traffic rate (a.k.a. flow rate) arriving at
the first VNF in service chain j in t. πj(t) = 0 for t ∈ [0, t−j)∪
(t+j ,∞). The flow rate may vary at different hops along the
VNF chain: tunneling gateway VNFs (e.g., IPSec/SSL VPN
and media gateways) may increase (decrease) the packet size
for encapsulation (decapsulation) [22]; security VNFs (e.g.,
firewall, IDS) drop packets that violate security policies [23].
Let λjn(t) be the flow rate change ratio of service chain j at
VNF n in t, such that the outgoing rate of flow j (aggregate
flow of service chain j) after traversing an instance of VNF
n is on average λjn(t) times the incoming rate to the n. The
arrival flow rate to a service chain and the change ratios vary
over time and are only known after the traffic has arrived and
has been processed. We assume a customer provides a rough
estimate (e.g., based on prior experience) of its flow rate for
initial service chain deployment.

C. Service Chain Provisioning

The NFV provider provisions a requested service chain by
installing specified VNFs on VMs purchased from the cloud.
Each type of VNF has one target type of hosting VM, based
on preferred hardware configuration for running the VNF.
For example, a Bro IDS [24] can be provisioned using a
c4.2large instance in Amazon EC2, which best fits the
recommended configuration of a compute-optimized processor
with 8 cores. The VM running a type-n VNF is an instance of
VNF n, and let Cn denote its flow processing capacity (e.g.,
in MBps). Multiple instances of VNF n may be needed in a
service chain to provide sufficient capacity for flow processing.

Each type of VM can be used for hosting different types
of VNFs (if it represents the best fit for the VNF software):

in any time slot, only one VNF can be running on one VM,
but the same VM can run different VNFs over different time
slots. Let 1mn indicate whether type-m VMs can host type-n
VNFs (1mn = 1) or not (1mn = 0), where

∑
m∈[M] 1

m
n = 1

and
∑
n∈[N] 1

m
n ≥ 1. For flow routing along a service chain,

the NFV provider informs the customer the IP address(es) of
instance(s) of the first VNF in the chain, and installs forward-
ing rules on VNF instances to ensure that flows belonging to
a particular customer are forwarded along the correct chain.

D. Online Decisions and Offline Optimization Problem

The NFV provider deploys service chains in a proactive
fashion. In time slot t, the NFV provider predicts the upcom-
ing VNF demand due to fluctuation of flow rate πj(t + 1)
and rate change ratios along each existing service chain j,
∀j ∈ [J], t−j ≤ t + 1 ≤ t+j . Then together with the
customer-provided initial demand of new service chains to
start in t+ 1,1 it checks whether VNFs of sufficient capacity
can be provisioned on already purchased VMs (still valid in
t + 1). If the capacity is insufficient, the provider purchases
ym(t+1) ≥ 0 new type-m long-term VMs and um(t+1) ≥ 0
new type-m short-term VM, to deploy enough VNFs for
serving flows in t+ 1.

The NFV provider maintains a small amount of on-premise
resources, e.g., using a private server cluster running stand-
by VMs, for running VNFs absorbing unserved flows due
to inaccurate demand prediction. Let sm(t) be the cost of
using a type-m backup VM in t, which is much higher than
the prices for long-term or short-term VM instances from the
public cloud. In t, with flow arrival (i.e., πj(t)’s and λjn(t)’s
are revealed), wm(t) ≥ 0 type-m backup VMs are used if the
pre-deployed instances are insufficient to handle all the flows.

Specifically, the NFV provider makes the following deci-
sions in each time slot t (Fig. 1): (1) the numbers of backup
VMs of different types for running VNFs to serve unserved
traffic in t (that exceeds the processing capacity of VNFs pre-
deployed in t− 1), i.e., wm(t),∀m ∈ [M]; (2) the numbers of
different types of VNF instances to deploy in t+1, denoted by
xn(t+1), ∀n ∈ [N] = {1, 2, . . . , N}; (3) the numbers of new
long-term and short-term VMs of different types to purchase
for running those VNFs to serve traffic in t+ 1, i.e., ym(t+ 1)

and um(t+ 1), ∀m ∈ [M].
The provider aims to minimize the overall cost over the

T time slots, consisting of the following components. (i)
Total cost of backup VMs:

∑
t∈[T]

∑
m∈[M] sm(t)wm(t). (ii)

Total cost of purchasing new long-term and short-term VM
instances:

∑
t∈[T]

∑
m∈[M] αmum(t) + βmym(t). (iii) Total cost

of deploying VNFs on VM instances, as derived below.
A deployment cost dm is incurred for copying VM image

containing the VNFs to a type-m VM. Since the same VM
can be used for running different VNFs at different times,
the NFV provider includes all VNF software that a VM can
host in the VM image, and only launches a particular VNF

1The NFV provider deploys VNFs at time slot t−j − 1 for new service
chains whose start time is t−j .

1577

when it decides to enable the VM as an instance of that VNF.
Deployment cost is only incurred when starting a new VM, not
upon changing VNF deployment on the VM. To cover the need
of um(t + 1) new short-term VMs, the NFV provider maxi-
mally exploits the um(t+1−τs) short-term VMs purchased at
t+1−τs that expire at t, by renewing them for another billing
cycle τs, avoiding re-copying VNF images. The deployment
cost for short-term VM instances at t is incurred only for
(um(t+1)−um(t+1−τs))+ = max{um(t+1)−um(t+1−τs), 0}
type-m VMs, purchased anew from the cloud. However, long-
term VM instances cannot be renewed (e.g., see current prac-
tice of reserved instances on Amazon EC2 [25], such that all
ym(t+ 1) long-term VMs in need should be purchased anew.
Therefore, the total cost for deploying VNFs on purchased VM
instances is

∑
t∈[T]

∑
m∈[M] dm(ym(t)+[um(t)−um(t−τs)]+).

The overall cost minimization problem is:

minimize
∑
t∈[T]

∑
m∈[M]

{
αmum(t) + βmym(t)

+ dm
(
ym(t) + [um(t)− um(t− τs)]+

)
+ sm(t)wm(t)

}
(1)

subject to:∑
n∈[N]

xn(t)1mn ≤
t∑

t−τl+1

ym(k) +

t∑
t−τs+1

um(k) + wm(t),

∀m ∈ [M], t (1a)∑
j∈[J]:

t−j ≤t≤t
+
j ,n∈L

j

znn−(j, t) ≤ Cnxn(t), ∀n ∈ [N], t (1b)

zn1
0 (j, t) = πj(t), ∀j ∈ [J], t (1c)

zn
+

n (j, t) = λjn(t)znn−(j, t), ∀j ∈ [J], n ∈ Lj , t (1d)

znn−(j, t) ≥ 0, ∀j ∈ [J], n ∈ Lj , t (1e)

wm(t), ym(t), um(t), xn(t) ∈ Z+, ∀n ∈ [N],m ∈ [M], t (1f)

Constraint (1a) ensures that the total number of valid
type-m VMs (from both the cloud and the backup pool) is
sufficient to serve all VNF instances requiring these VMs.
Here

∑t
k=t−τl+1 ym(k) and

∑t
k=t−τs+1 um(k) are the numbers

of valid long-term and short-term instances purchased during
[t − τ l, t − 1] and [t − τs, t − 1], respectively. zn

+

n (j, t) and
znn−(j, t) denote the aggregate rates of flows from instances of
VNF n to instances of next-hop VNF n+, and from instances
of previous-hop VNF n− to instances of VNF n, along service
chain j in t. Constraint (1b) guarantees that the deployed type-
n VNF instances are sufficient to process incoming traffic from
all valid service chains using this VNF at t. We allow a VNF
instance to serve flows from multiple service chains. Let n1
be the first VNF in a service chain, and zn1

0 (j, t) be the rate
of flows coming into instances of the first VNF in chain j in
t. (1c) describes the aggregate incoming traffic rate to each
service chain in t. (1d) models the flow rate change by ratio
λjn(t) when flow j traverses VNF n in t.

Given a solution to the optimization problem, the detailed
VNF to VM mapping in t can be decided: xn(t)1mn VMs
of type m out of all the available type-m VMs (RHS of
(1a)) are used to provision type-n VNF in t (assigned in the
preference order of long-term, short-term and backup VMs of

TABLE I: Notation

M total # of VM types N total # of VNF types
T total # of time slots J total # of service chains
τs # of time slots of short-term
(τ l) (long-term) VM instance duration
ym(t) # of long-term (short-term) VM instances
(um(t)) of type m purchased at time slot t
αm price per type-m short-term VM instance
βm (upfront fee + total hourly fee over τ l)

per type-m long-term VM instance
dm deployment cost for a type-m VM instance
wm(t) # of backup type-m VMs used at t
sm(t) price of each backup type-m VM used at t
xn(t) # of type-n VNF instances that run at t
1
m
n indicator of whether type-n VNFs

should be deployed on type-m VMs
Cn processing capacity of a type-n VNF instance
πj(t) total traffic rate to first VNF of chain j at t
zn

+

n (j, t) aggregate traffic rate from VNF n (n−)
(znn−(j, t)) to next-hop n+ (n) of chain j at t
λjn(t) rate change ratio by passing VNF n in j at t

type m). The VNF instances can be easily allocated to different
service chains according to their flow rates and processing
capacity of each VNF instance, with cross-chain instance
sharing permitted. The flows in service chain j, with aggregate
rate zn

+

n (j, t), can be routed from instances of VNF n to
instances of VNF n+ proportionally, according to processing
capacities allocated to chain j on instances of VNF n+ [26].
Key notation is summarized in Table I.

IV. PROACTIVE ONLINE ALGORITHM FOR VNF
PROVISIONING

We introduce POLAR, a Proactive OnLine AlgoRithm, for
the NFV provider to decide xn(t+1), ym(t+1) and um(t+1),
for all n ∈ [N] and m ∈ [M], in t.

A. Preliminaries
If we know the incoming flow rates to service chains πj(t+

1)’s and ratios λjn(t+ 1)’s, we can compute xn(t+ 1) based
on (1b), dividing the total incoming traffic rate to VNF n by
processing capacity Cn. By (1c) and (1d), the overall rate of
flows arriving at type-n VNF instances in service chain j is
znn−(j, t + 1) = λ̂

j

n(t + 1)πj(t + 1), where λ̂
j

n(t + 1) is the
cumulative rate change ratio along chain j in t + 1, before
flow j reaches VNF n, computed as follows: (∀t ∈ [T], j ∈
[J], n ∈ Lj): λ̂

j

n1
(t) = 1, λ̂

j

n(t) = λ̂
j

n−(t)λj
n−

(t). We thus have

xn(t+ 1) =
⌈∑j∈[J]:t−j ≤t+1≤t+j ,n∈L

j λ̂
j

n(t+ 1)πj(t+ 1)

Cn

⌉
(2)

Then the total number of type-m VMs needed in t + 1 to
provision all VNFs (LHS of (1a)), denoted by vm(t+ 1), is:

vm(t+ 1) =
∑
n∈[N]

xn(t+ 1)1mn (3)

Given vm(t + 1), we can compute ym(t + 1) and um(t + 1)
to ensure that new and previously purchased type-m in-
stances meet the demand in t + 1, i.e.,

∑t+1

k=t−τl+2
ym(k) +∑t+1

k=t−τs+2 um(k) ≥ vm(t+ 1).

1578

However, in the first place, we do not know πj(t+ 1) and
λjn(t + 1) at time t. We seek an online learning algorithm
to predict the demand. Instead of predicting πj(t + 1) and
λjn(t+ 1), we predict xn(t+ 1) directly, based on which we
can derive vm(t+ 1), ym(t+ 1) and um(t+ 1).

B. Minimizing Loss in VNF Demand Prediction

Let x∗n(t+1) be the actual demand for type-n VNFs revealed
in t + 1, based on actual flow rates. v∗m(t + 1) denotes the
actual demand for type-m VMs computed by x∗n(t+ 1) using
(3). There are three cases for vm(t+ 1) computed at t:
(i) vm(t + 1) = v∗m(t + 1). By (1a), we have wm(t + 1) =

max{v∗m(t+1)−(
∑t+1

k=t−τl+2
ym(k)+

∑t+1
k=t−τs+2 um(k)), 0} =

0, i.e., no backup type-m VMs is needed in t+ 1.
(ii) vm(t+ 1) < v∗m(t+ 1) (under-provisioning). We may have
wm(t + 1) > 0. As compared to the objective value of (1)
in case (i), cost for purchasing and deploying cloud VMs
is smaller using the under-estimation, but backup VM cost
sm(t)wm(t) is larger, leading to a larger overall cost (since
sm(t) is larger than price of any VM in the cloud).
(iii) vm(t + 1) > v∗m(t + 1) (over-provisioning). We have
wm(t + 1) = 0 (no backup VM needed), but a larger cloud
VM purchase and deployment cost is incurred, as compared
to case (i), due to over-provisioning of those VMs.

Loss minimization. We seek to minimize the prediction error
|xn(t) − x∗n(t)| (a.k.a. the loss function), to bound the sub-
optimality gap in overall cost due to imperfect prediction. A
loss minimization problem is constructed as follows, ∀n ∈ [N]:

minimizexn(t)∈Z+,∀t∈[T]

∑
t∈[T]

|xn(t)− x∗n(t)| (4)

We solve (4) through an online gradient descent (OGD)
method, which derives xn(t + 1) in each t based on past
prediction errors. OGD uses the gradient of the objective
function at a single step to approximate the best static predictor
over all time slots [13]. The variable update step in OGD
is simple but proven effective for solving online convex
optimization problems. However, (4) is non-convex, due to
integrality of xn(t)’s. We convert (4) into a convex problem
first, whose objective value equals that in (4) in expectation.
Randomized Convexification. We construct a surrogate loss
function fnt(·) using a convex function on variable θn(t) ≥ 0:

fnt(θn(t)) = |θn(t)− x∗n(t)|, ∀n ∈ [N], t ∈ [T], (5)

and convert (4) into the following minimization problem:

minimizeθn(t)≥0,∀t∈[T]

∑
t∈[T]

fnt(θn(t)) (6)

We obtain xn(t) by randomized rounding of θn(t) to one of
its two nearest integers according to the distribution in (7):

Dxn(t)(θn(t)) =

{
Pr[xn(t) = bθn(t)c+ 1] = θn(t)− bθn(t)c
Pr[xn(t) = bθn(t)c] = 1− θn(t) + bθn(t)c

(7)
The value of fnt(θn(t)) then equals the loss function |xn(t)−
x∗n(t)| in expectation, as shown in the following Lemma.
Detailed proofs of lemmas and theorems can be found in [27].

Algorithm 1: Proactive Online VNF Provisioning Algo-
rithm – POLAR

Input: M , N , C, α, β, d, x∗max

Output: x, y, u, w
Initialize: x = 0, y = 0, ŷ = 0, u = 0, i = 1; θ = 0, φ = 2,

η = 0
1 for t = 1, 2, · · · , T do
2 Observe actual flow rates π∗j (t) and flow rate change ratios

λj∗n (t), ∀n ∈ [N], j ∈ [J] : t−j ≤ t ≤ t
+
j ;

3 Derive actual total number of type-n VNFs needed, x∗n(t)
acc. to (2) using π∗j (t), λj∗n (t), ∀n ∈ [N] ;

4 for m = 1, 2, · · · ,M do
5 Derive actual total number of type-m VMs needed,

v∗m(t) acc. to x∗n(t) and (3);
6 Deploy backup type-m VMs to absorb flows unserved

by cloud-based VMs at wm(t) = max{v∗m(t)−
(
∑t
k=t−τl+1 ym(k) +

∑t
k=t−τs+1 um(k)), 0} ;

7 end
8 if t+ 1 > 2i then
9 i = i+ 1, φ = 2i;

10 end
11 for n = 1, 2, · · · , N do
12 η =

x∗max
n√

2φ
;

13 θn(t+ 1) = θn(t)− η∇fnt(θn(t));
14 end
15 Derive prediction xn(t+ 1) acc. to (7), ∀n ∈ [N];
16 for m = 1, 2, · · · ,M do
17 Compute predicted vm(t+ 1) acc. to (3);
18 Add initial demand from new service chains (to start at

t+ 1) into xn(t+ 1) and vm(t+ 1);
19 Call LTP(t, vm, ŷm, τ l, τs, αm, βm, dm) to derive

ym(t+ 1) and purchase a corresponding number of
long-term instances;

20 Call STP(t, vm(t+ 1), ŷm, um, τ l, τs, αm, dm) to
derive um(t+ 1) and purchase/renew a corresponding
number of short-term instances;

21 end
22 for n = 1, 2, · · · , N do
23 Launch VNF n on xn(t+ 1)1mn type-m VMs,

∀m ∈ [M];
24 end
25 end

Lemma 1. When xn(t) is drawn from the distribution
Dxn(t)(θn(t)) in (7), we have

fnt(θn(t)) = |E[xn(t)]− x∗n(t)| = E[|xn(t)− x∗n(t)|] (8)

C. Proactive Online Algorithm
As shown in Alg. 1, our proactive online algorithm

POLAR uses the OGD method to compute θn(t + 1) that
minimizes fn(t+1)(θn(t + 1)) in each time slot t. It then
produces xn(t + 1) following (7) and vm(t + 1) using (3).
Next it uses additional online algorithm modules to derive
the numbers of new long-term and short-term instances to
purchase for t+ 1 according to vm(t+ 1).
Algorithm Procedure. In each t, we observe the actual
arrived flow rates and change ratios (line 2). If the flow
demands exceed the capacities of pre-deployed VNFs, decide
the numbers of backup VMs needed and deploy VNFs on them
according to the demand of unserved flows (lines 3-7). Next,

1579

predict future VNF demand: obtaining θn(t+ 1) using online
gradient descent method (line 13) according to θn(t) and:
∇fnt(θn(t)) equals 1 if θn(t) > x∗n(t); −1 if θn(t) < x∗n(t);
0, otherwise. Then, we round θn(t+ 1) to xn(t+ 1) (line 15).

Here η is the step size to update θn(t), computed according
to line 12. In an OGD method, η is typically set proportional to

1√
T

(e.g., x
∗max
n√

2T
). Not necessarily knowing the system lifespan

T during the online process, we use φ in η (line 12) instead,
which is a forecast of T adjusted over time. This introduces a
multiplicative loss factor of

√
2√

2−1 in the regret of our demand
prediction, to be analyzed in Theorem 1. x∗maxn indicates the
upper-bound of xn(t), such that xn(t) ≤ x∗maxn ,∀t. While
x∗maxn may be unknown during the execution of Alg. 1, we can
use an estimate of x∗maxn (e.g., based on past experience); we
evaluate in Sec. VI the consequences of inaccurate estimation.

Given prediction xn(t+1) for all n, we can obtain vm(t+1)
according to (3) (line 17). We may also boost vm(t+1) if there
are new service chains to start at t + 1 (line 18). Then call
sub-routine LTP to decide how many long-term VM instances
to purchase (line 19), and call subroutine STP to decide the
number of short-term VM instances to purchase or renew to
serve the remaining demand (line 20). LTP and STP will be
introduced in Alg. 2 and Alg. 3 in Sec. V, respectively.

D. Regret Analysis for VNF Demand Prediction

We analyze performance of our online prediction of xn(t+
1), by computing an expected regret over random choices of
xn(t + 1)’s. The expected regret of our prediction of type-n
VNFs is computed by comparing the overall loss (objective
value of (4)) incurred by our algorithm and by the best
static prediction strategy [14]. The latter uses the same θ̄n
(=E[xn(t)]) to produce xn(t) following the distribution in
(7) in all time slots, and achieves the smallest overall loss
in expectation among all such static predictors θ̄n ≥ 0. Let θ̄′n
denote the best static predictor. We have

θ̄′n =argminθ̄n≥0

∑
t∈[T]

|θ̄n − x∗n(t)|

=argminθ̄n≥0

∑
t∈[T]

Exn(t)∼Dxn(t)(θ̄n)[|xn(t)− x∗n(t)|] (9)

The expected regret is computed as

RegretTn (POLAR) = E[
∑
t∈[T]

|xn(t)− x∗n(t)|]

−minθ̄n≥0

∑
t∈[T]

Exn(t)∼Dxn(t)(θ̄n)[|xn(t)− x∗n(t)|] (10)

The following theorem upper-bounds the overall regret.

Theorem 1. The regret of POLAR in Alg. 1 in predicting
VNF demands, as compared to the best static prediction
strategy that uses θ̄′n in (9) for all t ∈ [T], is upper-bounded:

RegretT (POLAR) =
∑
n∈[N]

RegretTn ≤
2
√
T√

2− 1

∑
n∈[N]

x∗maxn

where x∗maxn is the upper-bound of x∗n(t) over all t ∈ [T].

2

1

: 1 short-term VM: 1 long-term VM

layer 1

layer 2

3 3

t

1

t1-2 t1-1 t1+1t1

vm(t)

(a) original demands (b) after excluding demands

 covered by long-term VM

1

0

2 2

t

1

vm(t)

t1-2 t1-1 t1+1t1

Fig. 2: An illustration of VM demands in Alg. 2

V. ONLINE ALGORITHM FOR VM PURCHASE

Given the predicted total number of type-m VMs in need,
vm(t+1), Alg. 1 uses LTP to decide ym(t+1) long-term VMs
to purchase to fulfil vm(t+ 1), and then calls STP to decide
um(t+ 1) short-term VMs to cover the discrepancy. The key
rationale is to use cheaper long-term VMs to meet long-lasting
demand as much as possible, for cost minimization.

Our algorithm design follows the key principle of break-
even algorithms for online ski-rental problems [20], in which
a ski is purchased when a threshold of renting days is reached,
and the threshold is relevant to the ratio of purchasing cost
vs. renting cost. Our online decisions are on reserving long-
term VM instances for long use or short-term instances for
brief usage. Expired short-term VMs may also be renewed
continuously even if they are not in immediate need, to save
deployment costs in case that the demand arises soon again.

A. Online Algorithm for Reserving Long-term VMs

LTP in Alg. 2 is designed based on a VM demand grid in
Fig. 2 (a). Each block represents the demand of 1 type-m VM
in one time slot. Each block can be covered by one long-term
or short-term instance. Suppose one long-term (short-term)
instance lasts for 4 time slots (2 time slots) in the example
in Fig. 2. Intuitively, in each layer, if the cost by using short-
term instances to fulfil the demand over [t+ 1, t+ τ l] exceeds
the cost of a long-term VM (βm+dm), we should use a long-
term VM. The critical question is that we do not know the
future demand beyond t + 1. The idea is to use the demand
and VM purchase decisions in the past τ l time slots to estimate
whether it would be more beneficial to purchase a long-term
instance right away for future use.

In particular, looking back at the past interval [t−τ l+2, t+
1], there were VM demands served by short-term instances,
according to decisions of LTP and STP (to be discussed in
Alg. 3 shortly) made in the past interval. We run a subroutine
MinST (with detailed steps given in [27] due to space limit)
to retrospectively compute the optimal strategy for short-term
VM purchase/renewal and deployment to cover these demands
during this interval, which incurs the minimal cost (referred to
as F in Alg. 2) based on full knowledge of the past interval.
We compare this optimal cost F with the cost if we had
deployed a long-term VM (βm + dm): if F > βm + dm,
we know that we should have used a long-term VM to cover
these demands that our online algorithm fulfilled using short-
term instances, and then we will learn from the mistake and
purchase a long-term instance right away.

In Alg. 2, we loop through all layers as shown in Fig. 2 (b)
(demand not covered by long-term VMs yet) in a bottom-up

1580

Algorithm 2: Online Algorithm for Purchasing Long-Term
type-m VMs for t+ 1 – LTP

Input: t, vm, ŷm, τ l, τs, αm, βm, dm
Output: ym(t+ 1), ŷm

1 while
∑t+1

k=t−τl+2
vm(k)− ŷm(k) > 0 do

2 Compute F = MinST(vm, ŷm, τ
l, τs, t, αm, dm);

3 if F ≥ βm + dm then
4 Update ym(t+ 1) = ym(t+ 1) + 1;
5 ŷm(k) = ŷm(k) + 1,∀t− τ l + 2 ≤ k ≤ t+ τ l;
6 else
7 Break;/* ym(t+ 1) is ready*/
8 end
9 end

10 Purchase and launch ym(t+ 1) new long-term type-m
instances;

11 Return ym(t+ 1), ŷm;

fashion (the while loop), and decide if a long-term instance
should be purchased right away (increment ym(t+ 1) in line
4), based on retrospective examination of the strategies in the
past τ l time slots (lines 2-4). The algorithm stops purchasing
long-term VMs when the optimal cost for using short-term
instances (F) is lower than the cost for using a long-term
instance, to cover the demand in a layer (line 7), i.e., F <
βm + dm (which will be true for higher layers as well since
higher layers have less demand), or all demands have been
covered by long-term instances (line 1). ŷm(k) is an auxiliary
variable recording the number of layers in the demand figure,
which have been examined for time slot k with a positive long-
term VM purchase decision made. An algorithm illustration
can be found in [27] due to space limit.

B. Online Algorithm for Purchasing Short-term VMs

If the available VMs (those purchased earlier plus new long-
term VMs purchased in t) still cannot fulfil demand vm(t +
1), short-term instances are purchased/renewed to cover the
discrepancy. On the other hand, even if the available VMs can
meet the demand, we may still wish to renew some expiring
short-term VMs, preparing to serve demand that may arise in
the future, to save deployment costs over the long run.

In STP in Alg. 3, we first compute the discrepancy Rm(t+
1) between demand (vm(t + 1)) and available long-term and
short-term VMs (ŷm(t + 1) + ûm(t + 1)) (lines 1-2). If the
discrepancy is larger than the number of expiring short-term
VMs in t (those purchased at t+ 1− τs, line 3), we renew all
these u(t + 1 − τs) VMs (line 4), and purchase additionally
Rm(t + 1) − um(t + 1 − τs) new short-term VMs from the
cloud (line 5). If the discrepancy is less (line 8), we renew
Rm(t+ 1) (if > 0) out of the um(t+ 1− τs) expiring VMs
(line 9) and examine all the other expiring VMs: if an expiring
VM has been in use or has been idled for less than b dmαm

cτs
time slots, we renew this VM for future use (lines 11-15). The
rationale is to use the break-even point b dmαm

cτs to balance the
tradeoff between retaining a short-term VM with per-timeslot
cost αm and deploying a new VM with deployment cost dm.

Algorithm 3: Online Algorithm for Purchasing Short-
Term Type-m VMs for t+ 1 – STP

Input: t, vm(t+ 1), ŷm, um, τ l, τs, αm, dm
Output: um(t+ 1)

1 ûm(t+ 1) =
∑
t−τs+2≤k≤t+1 um(k);

2 Rm(t+ 1) = vm(t+ 1)− ŷm(t+ 1)− ûm(t+ 1);
3 if Rm(t+ 1) ≥ um(t+ 1− τs) then
4 Renew all um(t+ 1− τs) instances that expire at t;
5 Purchase Rm(t+ 1)− um(t+ 1− τs) new short-term

VMs;
6 um(t+ 1) = Rm(t+ 1);
7 end
8 if Rm(t+ 1) < um(t+ 1− τs) then
9 Select max{Rm(t+ 1), 0} VMs, which have been idled

for the least time, from set Um(t+ 1− τs) of short-term
VMs expiring at t, and renew them;

10 um(t+ 1) = max{Rm(t+ 1), 0};
11 foreach VM i in Um(t+ 1− τs) not selected above do
12 if i has been idled for less than b dm

αm
cτs time slots

then
13 Renew VM i;
14 um(t+ 1) = um(t+ 1) + 1;
15 end
16 end
17 end
18 Return um(t+ 1);

C. Competitive Analysis of Online VM Purchase

We next temporarily ignore the online learning part in
POLAR and analyze the competitive ratio achieved by online
decisions for VM purchase, y and u, made in lines 16-17
of Alg. 1 by calling LTP and STP. Let Cost(POLAR)
denote the total cost for purchasing and deploying long-term
and short-term VMs over T time slots in POLAR, based on
VM demand vm(t),∀t ∈ [T], predicted by online learning:
Cost(POLAR) =

∑
t∈[T]

∑
m∈[M] αmum(t) + βmym(t) +

dm
(
ym(t) + [um(t) − um(t − τs)]+

)
(objective value in (1)

excluding the last term). Let Cost(OPT) denote the minimum
overall VM purchase and deployment cost computed by OPT ,
the offline optimal VM purchase solution derived with full
knowledge of vm(t)’s in the entire system lifetime – the same
VM demands as predicted in POLAR. The competitive ratio
is computed as Cost(POLAR)

Cost(OPT) .

Theorem 2. POLAR in Alg. 1 is 3-competitive in over-
all VM purchase and deployment cost, as compared to the
offline optimum derived under the same demand sequence
vm(t),∀m ∈ [M], t ∈ [T].

D. Performance Analysis of the Complete POLAR Algorithm

POLAR combines an online learning module and an on-
line VM purchase algorithm. Following the standard metrics,
a regret bound is shown for the online learning approach
(Sec. IV-D) and a competitive ratio is derived for the on-
line algorithm (Sec. V-C). To demonstrate the performance
of the complete algorithm, we construct a performance ra-
tio which jointly measures the regret of our VNF demand
prediction and the competitiveness of online VM purchase:

1581

RatioT (POLAR), the ratio of the expected overall cost in
(1) incurred by POLAR (over random realization of xn(t)’s)
to that incurred by an optimal strategy SOPT . For each n,
SOPT uses the best static predictor θ̄′n defined in (9) for all
t ∈ [T], draws xn(t) from the distribution in (7) using θ̄′n, and
computes optimal strategy for long-term and short-term VM
purchase/renewal for any realization of xn(t)’s, by solving (1)
based on full knowledge of these xn(t)’s in T . We have

RatioT (POLAR) =
Exn(t)[G(POLAR)]

Exn(t)∼Dxn(t)(θ̄
′
n)[G(SOPT)]

, (11)

where G(·) denotes the value of the objective function in (1).

Theorem 3. The performance ratio (11) of POLAR in Alg. 1,
is upper bounded by 3

(
1 + maxm∈[M]

2smax
m χτ l

(
√
2−1)(βm+dm)

√
T

)
,

where smaxm = maxt∈[T] sm(t) and χ =

maxn∈[N]

maxt∈[T]

∑
j∈[J]:t

−
j
≤t≤t

+
j

,n∈Lj
λ̂
j
n(t)πj(t)

mint∈[T]

∑
j∈[J]:t

−
j
≤t≤t

+
j

,n∈Lj
λ̂
j
n(t)πj(t)

.

A larger smax
m

βm+dm
indicates higher VM cost in case of

under-estimation of VM demands (such that backup VMs
are used). A larger τ l leads to a smaller lower-bound of the
expected G(SOPT). A larger χ comes with greater traffic rate
fluctuation. All lead to a larger performance ratio. In addition,
with the increase of T , RatioT (POLAR) approaches 3, the
competitive ratio of the online VM purchase algorithm given
in Theorem 2. The implication is that influence of inaccurate
demand prediction fades when T grows.

VI. PERFORMANCE EVALUATION

A. Simulation Setup

We simulate an NFV system lasting tens of thousands of
time slots (T). Each time slot is 10 minutes long. We simulate
service chains and their flow rates using Amazon Elastic
MapReduce Trace [28]. Each record in the trace contains a
HTTP request file, a source IP address, and the time stamp.
For each time slot t, we group records containing the same IP
address and a time stamp falling into the slot, by summing up
their HTTP request files, and consider each group as one flow.
Each flow goes through a service chain containing 2−5 VNFs,
randomly chosen among these given in the table below [29].
The traffic rate πj(t) injecting into a service chain is computed
by dividing the total request file size by the duration of a time
slot. Flow rate change ratios (λjn(t)) along the service chain
is randomly picked in [0.5, 2]. Over different time slots, the
flows (obtained as above) with the same source IP address
are considered to be the same flow with fluctuating flow rates
over time. The arrival time of such a flow is the first time the
source IP address appears in the trace, and the departure time
is the last time that IP address appears. We simulate around
104 flows in total.

According to CPU requirement of VNFs in the table and
simulating Amazon EC2 instances, we choose m4.xlarge,
m4.xlarge, t2.medium and c4.2xlarge as the hosting VM types
for the four VNFs, respectively. Each VM instance can be
purchased as a 1-year-term reserved instance or an on-demand

instance lasting one hour. Thus, τs = 6 and τ l = 52560. αm,
βm are set according to prices of these instances in Amazon
EC2 [10]. dm/αm is set uniformly at random within [0.1, 3].
sm(t) = 2(βm + dm). All are default settings.

Network Function CPU Required Processing Capacity per Instance
Firewall 4 900Mbps
Proxy 4 900Mbps
NAT 2 900Mbps
IDS 8 600Mbps

B. Impact of Parameters

We first evaluate the impact of inaccurate estimation of
x∗maxn on RegretT (POLAR) for online learning. We run
Alg. 1 using the actual x∗maxn (derived under default setting
of πj(t)’s and λjn(t)’s), x∗max

n

2 and 2x∗maxn in computing
the prediction update factor η. Fig. 3 shows that both over-
estimation and under-estimation only have minor influence on
the regret. The regret under real-world input is much smaller
than the theoretical upper-bound given in Theorem 1.

In Fig. 4, we multiply each πj(t) by a random number
within [3, 5] ([0.1, 0.5]) to obtain a larger (smaller) x∗maxn . A
larger x∗maxn leads to higher regret, consistent with Theorem 1.
We also evaluate the regret using η =

x∗max
n√
2T

to update θn(t),
and observe that regret by POLAR, using φ to compute η
instead of T , is similar to the regret when using T .

We next evaluate RatioT (POLAR) by dividing the ex-
pected cost incurred by POLAR (repeating experiments for
50 times) by that by SOPT , obtained by computing the best
static predictor θ̄n to realize xn(t) and then exactly solving (1)
using a brute force approach. Fig. 5 shows that a larger τ l leads
to a larger ratio in general, but the impact is not as significant
as what the theoretical ratio in Theorem 3 (3(2τ l

√
T

+ 1) in this

experiment) implies. In Fig. 6, a larger smax
m

βm+dm
brings a larger

ratio, which is nevertheless much smaller than the theoretical
ratio – at least 3(105√

T
+ 1) in our setting. The ratios decrease

when T grows.

C. Comparison with Alternative Heuristics

We further compare POLAR with an online learning algo-
rithm, Follow-The-Leader (FTL) from [30], and a heuristic,
Adaptive. FTL uses θn(t + 1) = argminθ≥0

∑t
k=1 fnk(θ),

the best static predictor based on history, to update θn(t+ 1)
each time. Adaptive changes the step size η in line 12 of
POLAR to η(t) =

maxk∈[1,t]x
∗
n(k)√

2φ
, where maxk∈[1,t]x

∗
n(k) is

an alternative to x∗maxn . Fig. 7 shows that POLAR outper-
forms FTL and Adaptive.

We next compare POLAR with two heuristics SLTP and
NRSTP , which differ in the online VM purchase algorithm.
SLTP simplifies LTP by setting F as the short-term VM
purchase/renewal and deployment cost incurred by POLAR
during [t−τ l+2, t+1]. NRSTP does not renew any expiring
short-term instance if it is idle. These simpler heuristics
sacrifice cost effectiveness, as shown in Fig. 8. We also observe
that when the break-even point (decided by dm

αm
) is larger

(more aggressively renewing idling short-term VMs), the ratio
is larger, though it does not appear directly in theoretical ratio.

1582

0 2000 4000 6000 8000 10000

T

−200

0

200

400

600

800

1000

1200

1400
R
eg
re
tT

POLAR

over-estimated x∗max
n

under-estimated x∗max
n

theoretical upper-bound

Fig. 3: RegretT (inaccurate x∗maxn)

0 2000 4000 6000 8000 10000

T

−200

0

200

400

600

800

1000

1200

1400

R
eg
re
tT

POLAR

larger x∗max
n

smaller x∗max
n

η= x∗max
n /

√
2T

Fig. 4: RegretT (varying η)

2× 104 4× 104 6× 104 8× 104 105

T

0

1

2

3

4

5

6

7

R
a
ti
o
T
(P
O
L
A
R
) 4.5

2.9

3.9

2.2 2.1

4.7

4.2
4.4

3.6

2.9

4.9

5.7

4.0
3.6

3.1

τl =103

τl =104

τl =105

Fig. 5: RatioT (varying τ l)

2× 104 4× 104 6× 104 8× 104 105

T

0

2

4

6

8

10

R
a
ti
o
T
(P
O
L
A
R
)

4.5

2.4
2.9 3.1

2.2

6.7

4.2 4.4

3.4

2.7

8.9

5.7
6.0

4.1
3.7

smaxm /(βm + dm) = 1

smaxm /(βm + dm) = 3

smaxm /(βm + dm) = 5

Fig. 6: RatioT (varying smax
m

βm+dm
)

2× 104 4× 104 6× 104 8× 104 105 1. 2× 105

T

0

50

100

150

200

250

300

350

400

R
a
ti
o
T

POLAR

FTL

Adaptive

theoretical ratio of POLAR

Fig. 7: RatioT (different predictions)

1 2 4 8 16

dm/αm

0

1

2

3

4

5

6

7

8

9

R
a
ti
o
T

2.8
3.3 3.3

4.5

5.1

2.8

3.9

5.0

5.9

8.0

2.8

5.3
5.6

7.4

8.2
POLAR

SLTP

NRSTP

Fig. 8: RatioT (diff. online alg.s)

VII. CONCLUSION

This paper studies a novel NFV brokerage service where
an NFV provider acquires resources from the cloud to serve
service chain demands of customers. For better flow service
quality assurance and cost effectiveness, we adopt online learn-
ing to predict the upcoming traffic demand, and adjust VNF
deployment in a proactive fashion. We design efficient online
optimization techniques to purchase cloud VMs of different
usage durations. The online VM purchase algorithm works in
concert with online learning in a unified algorithm framework.
We define a novel performance ratio that jointly measures
sub-optimality of the prediction and the online algorithm,
and demonstrate good performance of our algorithm in both
theoretical analysis and trace-driven simulation.

VIII. ACKNOWLEDGEMENTS

This work was supported in part by grants from Hong Kong
RGC under the contracts HKU 718513, 17204715, 17225516,
717812, C7036-15G (CRF), a grant from the Natural Sciences
and Engineering Research Council of Canada (NSERC), a
grant from Wedge Networks, and a grant NSFC 61628209.

REFERENCES

[1] “Network Functions Virtualization,” https://goo.gl/q2uBgy.
[2] “Service Function Chaining Use Cases In Data Centers, IETF Draft,”

https://goo.gl/A1gpRm.
[3] “Network Functions Virtualisation Use Cases,” http://goo.gl/1HrZlw.
[4] “TNOVA,” http://www.t-nova.eu.
[5] “Network Function Virtualization: Rebuilding Network Functions and

Open Architectures.”
[6] “New NFV Vendor Ecosystem, Usual Suspects: Cisco, Juniper ALU,

HP,” http://goo.gl/XpCB9H.
[7] “NFV Market on Pace to Hit $11 Billion,” http://goo.gl/5e8vDk.
[8] X. Wang, C. Wu, Z. Li, Z. L. Franck Le, Alex Liu, and F. Lau, “Online

VNF Scaling,” in Proc. of IEEE Cloud, 2016.
[9] M. Ghaznavi, A. Khan, N. Shahriar, K. Alsubhi, R. Ahmed, and

R. Boutaba, “Elastic Virtual Network Function Placement,” in Proc. of
IEEE CloudNet, 2015.

[10] “EC2 - Amazon Web Services,” https://aws.amazon.com/ec2/.
[11] “Microsoft Azure,” https://azure.microsoft.com/.

[12] S. Shalev-Shwartz, “Online Learning and Online Convex Optimization,”
Journal of Foundations and Trends in Machine Learning, vol. 4, no. 2,
pp. 107 – 194, 2012.

[13] M. Zinkevich, “Online Convex Programming and Generalized Infinites-
imal Gradient Ascent,” in Proc. of International Conference on Machine
Learning (ICML), 2003.

[14] N. Chen, A. Agarwal, A. Wierman, S. Barman, and L. L. H. Andrew,
“Online Convex Optimization Using Predictions,” in Proc. of ACM
SIGMETRICS, 2015.

[15] N. Chen, J. Comden, Z. Liu, A. Gandhi, and A. Wierman, “Using
Predictions in Online Optimization: Looking Forward with an Eye on
the Past,” in Proc. of ACM SIGMETRICS, 2016.

[16] H. Moens and F. De Turck, “VNF-P: A Model for Efficient Placement
of Virtualized Network Functions,” in Proc. of International Conference
on Network and Service Management (CNSM), 2014.

[17] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near Optimal
Placement of Virtual Network Functions,” in Proc. of IEEE INFOCOM,
2015.

[18] L. Zheng, C. Joe-Wong, C. G. Brinton, C. W. Tan, S. Ha, and M. Chi-
ang, “On the Viability of a Cloud Virtual Service Provider,” in ACM
SIGMETRICS, 2016.

[19] W. Wang, B. Liang, and B. Li, “To Reserve or Not to Reserve: Optimal
Online Multi-Instance Acquisition in IaaS Clouds,” in USENIX ICAC,
2013.

[20] M. S. Manasse, “Ski Rental Problem,” Encyclopedia of Algorithms, pp.
849–851, 2008.

[21] “Reserved Instances – AWS EC2,” http://goo.gl/9s9i3g.
[22] “Provider Provisioned VPN Terminology,” https://ietf.org/rfc/rfc4026.
[23] “Benchmarking Terminology for Firewall Performance,”

https://ietf.org/rfc/rfc2647.
[24] “Bro Cluster,” https://www.bro.org/sphinx-git/cluster/index.html.
[25] “AWS Developer Forums: Auto-renewal of reserved instances?”

https://forums.aws.amazon.com/message.jspa?messageID=209350.
[26] W. Stallings, Foundations of Modern Networking: SDN, NFV, QoE, IoT,

and Cloud. Addison-Wesley Professional, 2015.
[27] “Proactive VNF Provisioning with Multi-timescale Cloud Resources,”

Tech. Rep., https://goo.gl/6w1oiq 2016.
[28] “Amazon EMR Trace,” s3://us-east-1.elasticmapreduce.samples.
[29] M. Faizul Bari, S. Rahman Chowdhury, R. Ahmed, and R. Boutaba,

“On Orchestrating Virtual Network Functions in NFV,” ArXiv e-prints,
Mar. 2015.

[30] S. D. Rooij, T. V. Erven, P. D. Grnwald, and W. M. Koolen, “Follow
the Leader If You Can, Hedge If You Must,” The Journal of Machine
Learning Research, vol. 15, no. 1, pp. 1281 – 1316, 2014.

1583

