
Online Learning-Assisted VNF Service Chain
Scaling with Network Uncertainties

Xiaoke Wang∗, Chuan Wu∗, Franck Le†, Francis C.M. Lau∗
∗The University of Hong Kong, Email: {xkwang, cwu, fcmlau}@cs.hku.hk

†IBM T. J. Watson Research Center, Email: fle@us.ibm.com

Abstract—Network function virtualization has emerged as a
promising technology to enable rapid network service composi-
tion/innovation, energy conservation and cost minimization for
network operators. To optimally operate a virtualized network
service, it is of key importance to optimally deploy a VNF
(virtualized network function) service chain within the provi-
sioning infrastructure (e.g., servers and the network within a
cloud datacenter), and dynamically scale it in response to flow
traffic changes. Most of the existing work on VNF scaling assume
access to precise network bandwidth information for placement
decisions, while in reality, network bandwidth typically fluctuates
following an unknown pattern and an effective way to adapt
to it is to do trials. In this paper, we address dynamic VNF
service chain deployment and scaling by a novel combination
of an online provisioning algorithm and a multi-armed bandit
optimization framework, which exploits online learning of the
available bandwidths to enable optimal deployment of a scaled
service chain. Specifically, we adopt the online algorithm to
minimize the cost for provisioning VNF instances on the go,
and a bandit-based online learning algorithm to place the
VNF instances which minimizes the congestion in a datacenter
network. We demonstrate effectiveness of our algorithms using
solid theoretical analysis and trace-driven evaluation.

I. INTRODUCTION

Network Function Virtualization (NFV) is an emerging
technology that consolidates network functions onto industry-
standard high-volume servers, switches and storage using
standard IT virtualization technology, in order to enable rapid
network service composition/innovation, energy conservation
and cost minimization for network operators [1]. Example
network functions include firewalls, intrusion detection sys-
tems (IDSs), and load balancers. A network function deployed
following the NFV paradigm is termed a virtualized network
function (VNF).

An important use case of NFV is virtualization of enterprise
network functions. A significant number of network functions
(comparable to the number of access routers) are typically in
need in enterprise networks. The network functions constitute
one or multiple network function service chains, to support
their services [2]. For example, the access service is commonly
provisioned by a service chain consisting of an intrusion
detection device, a firewall, and a load balancer that distributes
incoming traffic to a pool of servers.

A common proposal to implement an enterprise’s service
chains is to run the VNF instances on virtual machines (VMs)
in a cloud computing platform, i.e., the enterprise’s datacenter
or a public cloud datacenter [3]. No matter whether the

datacenter is owned by the enterprise or operated by a 3rd-
party cloud provider, cost minimization is among the top
priorities. Provisioning cost of VNF instances is mainly due to
power consumption to operate servers and cooling facilities,
largely decided by the numbers and the types of VMs running
different VNFs on the servers. On the other hand, launching
new VNF instances involves transferral of VM images, booting
and attaching them to devices. This leads to a deployment
cost, which is typically considered on the order of the cost
to run a server for a number of seconds or minutes [4]. Such
a deployment cost should be minimized as well, by avoiding
frequent deployment and removal of VNF instances when flow
traffic fluctuates along a service chain.

In the meantime, due to the sharing nature of datacenters,
there are always other workloads which coexist with the VNF
service chain in a datacenter, which share link bandwidths
in the datacenter network. The background traffic caused by
the other workloads is commonly time varying, following
unknown patterns [5]. Being irrespective of the background
traffic when deploying/scaling the VNF service chain may well
lead to unacceptable performance degradation due to network
congestion [6]. It is important to come up with a deployment
solution that guarantees the best performance even in case of
unknown, varying background traffic.

This paper addresses the following key problem in dynamic
VNF provisioning in a cloud datacenter:

Given a VNF service chain, how can we design online
solutions that dynamically scale VNF instances and pack them
onto servers, to achieve close-to-offline-minimum provisioning
cost over the long run of the system, as well as minimize link
congestion levels, in face of unknown time-varying background
traffic?

The key challenges lie in two folds: (i) the unknown
nature of future rates of flows arriving at the service chain,
which can vary significantly over time; (ii) the uncertainty of
background traffic along links in the datacenter. To handle (i),
we need to strategically make online deployment decisions on
the go, avoiding undesirable situations of destroying a VNF
instance immediately followed by launching the same instance.
To address (ii), we seek to exploit knowledge of available
network bandwidths acquired from past experience, while
carrying out some exploration to acquire more information
about background traffic on different links. Such exploration
and exploitation are core components in a multi-armed bandit
(MAB) optimization framework [7], which we advocate in

our algorithm design. We novelly combine an online VNF
provisioning algorithm and the bandit-based online learning
framework to come up with our online VNF deployment
and scaling solutions. Our contributions are summarized as
follows:
. We decouple the problem into two parts. The first part

computes the numbers of VNF instances to deploy according
to the varying traffic rates to the service chain. We propose
a randomized online algorithm to compute the numbers and
guarantee overall cost at most e/(e − 1) times the offline
optimal cost. The algorithm is an adaptation of the classic
ski-rental algorithm [8] which leads to an optimal competitive
ratio.
. Based on the numbers derived by the online algorithm, the

second part is to determine placement of the VNF instances
on servers, according to the learned congestion levels on the
network links inter-connecting the servers, to load balance
traffic on different links. We adapt an εt-greedy multi-armed
bandwidth algorithm, and show that the accumulated gap of
performance achieved by our algorithm from that of a sensible
baseline, grows sublinearly with time, a desirable performance
target in online learning [7].
. Our algorithms are simple and easy to implement in

practice in an online fashion. We demonstrate the effectiveness
of our algorithms using both theoretical analysis as well as
trace-driven evaluation.

In the rest of the paper, previous literature is reviewed in
Sec. II. We formulate the system model in Sec. III, and design
online algorithms for VNF scaling and placement in Sec. IV.
We discuss several extensions in Sec. V, and evaluate the
performance of our algorithms in Sec. VI. Sec. VII concludes
the paper.

II. RELATED WORK

Before the emergence of NFV, VM placement has been
addressed by a rich body of work. See [9] for a survey of
VM allocation policies available in federated clouds. Differ-
ent from VM placement, VNF instances are often chained
together such that bandwidth required for interconnecting
VNFs should be taken into consideration. A number of work
have recently appeared on VNF placement. Stratos [10] is
a system that provides an abstraction for placement and
scaling of VNF instances, as well as involves a three-stage
heuristic algorithm to reduce network congestion. VNF-P [11]
presents an optimization model for VNF resource allocation
to minimize the number of servers in use, while respecting
end-to-end network latency constraints. Bari et al. [12] study
a similar problem to optimize network operational costs and
utilization, without violating service level agreements. Cohen
et al. [13] investigate the problem of optimal VNF placement
over geo-distributed datacenters, and design several algorithms
achieving proven approximation ratios. Except [13], the other
studies propose heuristics to solve the respective VNF place-
ment problems, without providing any theoretical performance
guarantee. All the above work focus on offline/one-time VNF
placement and resource allocation, instead of dynamic VNF

provisioning, which calls for efficient online algorithms. In
our previous work [14], we propose an online algorithm for
VNF deployment, which is e/(e − 1)-competitive in case of
unknown future input traffic rate to the service chains. In
that work, we assume that inter-server bandwidths are always
sufficient, and do not take background traffic and bandwidth
uncertainty into consideration. In real-world data centers, inter-
server bandwidths may not always be sufficient and any VNF
service chain deployment scheme needs to take bandwidth
uncertainty into considerations, which is the main motivation
of the current work. In addition, Palkar et al. [15] also assume
that the network bandwidth information is known in their NFV
scheduling framework.

Multi-armed bandit optimization is an effective online learn-
ing and optimization framework [16]. In a multi-armed bandit
problem [17] [18], an agent faces a set of arms (actions) and
needs to select one arm or a set of arms repeatedly in a
sequence of rounds. After pulling an arm, the agent incurs
a loss (or receives a reward) on the pulled arm, which is
a realization of the unknown, underlying loss (or reward)
distribution associated with that arm. The goal is to incur the
minimal cumulative loss (or obtain the maximal cumulative
reward) over the whole time horizon. The focus of bandit algo-
rithm design is to achieve a good tradeoff between exploration
and exploitation, i.e., to try some less attempted arms that
might provide a better return (exploration), or stick to the arm
that has brought low loss (or high reward) so far (exploitation).
The performance of a bandit algorithm is evaluated by regret,
which is commonly computed as the gap between the overall
loss incurred (or reward obtained) by an offline solution and
the expected loss (or reward) of the bandit algorithm. To our
knowledge, we are the first in applying bandit optimization to
make optimal VNF placement decisions in the face of network
uncertainties between VNF instances.

III. PROBLEM MODEL

A. System Model

We consider an enterprise deploying a service chain in a
cloud datacenter. The service chain consists of an ordered
sequence of I VNFs, i.e., VNF 1, VNF 2, ..., VNF I. For
ease of problem formulation, a dummy VNF 0 is added to
the head of the chain to indicate the aggregate source of
the traffic flows passing through the chain. Instances of the
VNFs are to be deployed on VMs of U servers in the cloud
datacenter. An instance of VNF i consumes a ci amount of
resource and can maximally process flow traffic at the rate
of bi (in Mbps), without incurring prolonged packet queueing
delays that violate preset performance thresholds. It is worth
noting that the flow rate of traffic may change after being
processed by a network function [10]. Hence we define a
change ratio λi for VNF i, denoting the ratio of the rates
of the flow after and before passing the VNF. We assume that
proportional flow routing is used to route traffic among VNF
instances, i.e., flow from VNF i − 1 is split equally among
instances of the next-stage VNF i, as a practical approach.
The available amount of resource to run the VNF instances

may differ among different servers since these servers may run
other workloads concurrently. We denote the available amount
of resource in server u by Cu, decided by deducting allocated
resources to VMs running other workloads from the server
capacity. Though we only model one type of resource on a
server, we note that the model is readily extensible to the case
of multiple types of resources on each server.

The servers are inter-connected by a set of routers, e.g., via
a fat-tree switching network. We assume that the logical link
between two servers, which consists of multiple physical links
interconnected by switches, does not share common physical
links with other logical inter-server links. This assumption is
only made to simplify our problem formulation. We will see
that this assumption can be dropped, as long as the network
topology is known to us, in Sec. V.

Practically, we are unaware of the rate of background traffic
on the logical link between any pair of servers beforehand,
as produced by other workloads running on the servers. We
assume that the rate of background traffic from server u to
server v, denoted by luv(t), varies following an unknown
distribution, with a hidden mean value of luv . We can infer
the background traffic rate from server u to server v if
and only if our deployment solution places instances of two
consecutive VNFs, VNF i and VNF i + 1, in the service
chain on server u and server v, respectively: we observe
achieved transmission bandwidth between the two servers,
e.g., by keeping track of the number of packets transmitted
in each time slot, and estimate background traffic rate by
deducting the achieved bandwidth from assumed capacity of
the inter-server connection.1 To quantify the performance of
our NFV deployment, we seek to achieve balanced bandwidth
consumption on inter-server links (due to both background
traffic and our service chain traffic), to minimize congestion
on the links.

The system works in a time-slotted fashion, spanning time
slots 1, 2, . . . , T . The input traffic rate to the service chain
varies from time to time, denoted by α(t) (e.g., in Mbps) at
time t. Similarly, we denote the total rate of traffic to instances
of VNF i by αi(t). We have αi(t) = α(t)

∏
j∈[i−1] λj . We use

[X] to indicate the set {1, 2, . . . , X} in this paper.

B. Problem Formulation

We aim to design online solutions that dynamically scale
VNF instances and pack them onto servers, to achieve close-
to-offline-minimum provisioning cost over the entire running
span of the system, while in the meantime, minimizing the
congestion in face of unknown varying background traffic.
There is typically a trade-off between cost minimization
and congestion minimization: by provisioning more VNF
instances, the cost is increased but the congestion is likely to
decrease, and vice versa. In this paper, we seek to minimize
the cost first, and then minimize congestion, since cost is still
a major concern for network service operators.

1We do not need to know the exact physical capacity of the inter-server
connection, but only use a reasonable, large bandwidth capacity when running
our algorithm, e.g., 40Gbps.

We define the following decision variables: (i) VNF place-
ment variable xui(t), which denotes the number of instances
of VNF i running on server u in t. We further define
xi(t) =

∑
u∈[U] xui(t) as the total number of instances of

VNF i in t. (ii) Routing variable yuvi(t), which represents
the rate of traffic (in Mbps) forwarded from instances of
VNF i − 1 on server u to instances of VNF i on server
v. Since we adopt proportional routing, we have yuvi(t) =
αi(t)xu(i−1)(t)xvi(t)/xi−1(t)xi(t).

The service chain provisioning cost contains two parts:
I. VNF operational cost. Let φi denote the cost of running

an instance of VNF i per time slot, mainly attributed to
the power consumption of the hosting server. The overall
operational cost is

O =
∑
t∈[T]

∑
i∈[I]

φixi(t) (1)

II. VNF deployment cost. Deploying a new instance of
VNF i requires transferring a VM image containing the
network function into the datacenter, booting it and attaching it
to devices on the server. We associate a cost ϕi for deploying a
newly added instance of VNF i. We ignore cost for migrating
existing instances from one server to another, since technology
for live VM migration has been more and more mature with
less impact on system performance as compared to deploying
a new instance [19].2 The overall VNF deployment cost can
be expressed as

D =
∑
t∈[T]

∑
i∈[I]

ϕi[xi(t)− xi(t− 1)]+ (2)

where [xi(t) − xi(t− 1)]+ = max {xi(t)− xi(t− 1), 0},
indicating the number of newly added instances of VNF i
in t.

The total cost thus can be expressed as O+ D.
On the other hand, the congestion level of the system is

determined by the most congested inter-server connection, i.e.,
that transmits the largest volume of traffic, as follows:

max
u∈[U],v∈[U]

∑
i∈[I]

yuvi(t) + luv(t) (3)

The set of constraints that the decision variables should
respect include the following.

First, all incoming traffic to the service chain at each time
should be served. This can be guaranteed by the following
constraints.

(i) Taking in all the incoming traffic to instances of the
first VNF in a service chain (possibly deployed in different
servers): ∑

v∈[U]

y0v1 ≥ α(t),∀t ∈ [T] (4)

2We also ignore the bandwidth consumption due to VM migration for
simplicity, but can readily model the increase in link bandwidth usage since
we know the size of the VM.

where y0v1(t) denotes the incoming traffic rate (from the
dummy VNF 0 on an imaginary server 0) directed to instances
of VNF 1 on server v.

(ii) Flow conservation at instances of VNF i on each server
u:

λi
∑
v∈[U]

yvui(t) =
∑
v∈[U]

yuv(i+1)(t),∀u ∈ [U], i ∈ [I], t ∈ [T]

(5)
where the left-hand side is the overall input traffic rate to
instances of VNF i on server u multiplied by the change ratio,
and the right-hand side computes the overall output traffic
rate from instances of VNF i on server u to next-stage VNF
deployed on different servers.

(iii) Provisioning a sufficient number of instances of each
VNF on each server, whose overall processing capacity can
serve the overall rate of received traffic from instances of the
previous-stage VNF:∑

v∈[U]

yvui(t) ≤ xui(t)bi,∀i ∈ [I], u ∈ [U], t ∈ [T] (6)

Next, resource capacity on each server should not be over-
committed by the deployed VNF instances at any time:∑

i∈[I]

xui(t)ci ≤ Cu,∀u ∈ [U], t ∈ [T] (7)

Finally, we would like to avoid frequent migration of
VNF instances from one server to another. When background
traffic changes over time, it is possible that the deployment
solution achieving the lowest congestion level on inter-server
connections is different from the deployment solution in the
previous time slot. In that case, we may allow some VNF
instances to migrate from one server to another. However, it
is not realistic to perform excessive migration due to its impact
on service continuity. Therefore, we limit the times of VNF
migration in each time slot by a parameter M :∑
i∈[I]

(
∑
u∈[U]

[xui(t)−xui(t− 1)]+− [xi(t)−xi(t− 1)]+) ≤M

(8)
where the first part of the left-hand side is the sum of newly
deployed instances and migrated instances, and the second part
is the number of newly deployed instances.

We list key notation in Table I for ease of reference.

IV. ONLINE ALGORITHMS FOR VNF PROVISIONING AND
PLACEMENT

A. Online VNF Provisioning

We observe from the above formulation that in order to
minimize total cost, we only need to consider the value of
xi(t) instead of xui(t). This is because constraints (4), (5)
and (6) together determine the minimal number of instances
of each VNF required. Let ni(t) denote the minimal number
of instances of VNF i needed in t. Then ni(t) = dαi(t)/bie.
Hence, to minimize total cost, we only need to determine
how many VNF instances to provision in each time slot. We
reformulate the cost minimization problem as follows.

[X] integer set {1,2,...,X}
U # of servers in the system
I # of VNFs in the service chain
M times of VNF instance migration allowed per time slot
T total # of time slots

luv(t) rate of background traffic from server u to server v in t
xui(t) # of VNF i instances on server u in t
yuvi(t) rate of service chain traffic from u to VNF i instances on v in t
Cu capacity of server u
bi processing capacity of an instance of VNF i
λi flow rate change ratio when passing VNF i
αi total traffic rate to VNF i instances
φi per-time-slot operational cost of an instance of VNF i

TABLE I
NOTATION

min
∑
t∈[T]

∑
i∈[I]

(φixi(t) + ϕi[xi(t)− xi(t− 1)]+) (9)

s.t. xi(t) ≥ ni(t),∀i ∈ [I], t ∈ [T] (10)

xi(t) ∈ {0, 1, ...},∀i ∈ [I], t ∈ [T]

This problem is then a variant of the classic ski-rental
problem [8]. In the classic ski-rental problem, one is going
skiing for an unknown number of days (depending on how
long the snow will last). Everyday he decides whether to buy
a ski, paying a one-time cost, or rent a ski, paying a much
lower price for the day. A ski-rental algorithm is an online
buy/rent decision making algorithm, aiming to minimize the
ratio between what one pays using the algorithm and what one
would pay optimally if he knew the number of days to ski. In
this problem, we decide whether to remove an instance from
a server, potentially paying a deployment cost for running it
anew, or keep the instance running, paying an operational cost.
We design the online algorithm in Alg. 1 based on classical
ski-rental algorithms [8] [20] to solve the problem, striking a
balance between operational cost and deployment cost in face
of unknown future input traffic rates to the service chain.

It can be proved that the randomized online algorithm in
Alg. 1 produces a feasible solution of problem (9) and achieves
a competitive ratio of e/(e− 1), which is the same as that by
a classical online ski-rental algorithm [8].

B. Online VNF Placement

Once we obtain the solution of problem (9), we can mini-
mize the congestion level in the system by carefully placing
these VNF instances. The congestion minimization problem is
as follows:

min max
u,v∈[U]

∑
i∈[I]

yuvi(t) + luv(t) (11)

s.t. constraints (4)(5)(6)(7)(8)∑
u∈[U]

xui(t) = xi(t),∀i ∈ [I], t ∈ [T] (12)

Algorithm 1: Online VNF Provisioning Algorithm in t
Input: αi, xi(t− 1), ni(t− 1)
Output: xi(t), ni(t)

ni(t) := αi(t)/bi;
for i ∈ [L] do

if ni(t) ≥ xi(t− 1) then
Switch all the idle VNF i instances to running;
Deploy additional ni(t)− xi(t− 1) instances on
servers;

else if ni(t− 1) ≤ ni(t) < xi(t− 1) then
Switch ni(t)− ni(t− 1) idle VNF i instances to
running;

else
Switch ni(t− 1)− ni(t) running VNF i instances to
idle;

forall the idle VNF i instances do
if marked as running in the previous time slot then

counter := 0;
deadline := j with probability
(∆i−1

∆i
)∆i−j 1

∆i(1−(1−1/∆i)
∆i)

, where
∆i = bϕi/φic;

if counter ≥ deadline then
Remove it from the server;

xi(t) :=total # of running and idle VNF i instances on
servers

xui(t) ∈ {0, 1, ...},∀u ∈ [U], i ∈ [I], t ∈ [T] (13)

Note that xi(t) is already determined by Alg. 1, and now
we only need to decide xui(t). Without constraint (8), we can
prove this problem can be reduced to the bottleneck travelling
salesman problem (TSP) [21]. Therefore, it is NP-hard to
obtain the exact solution to the problem.

Theorem 1. Problem (11) is NP-hard and can be reduced
to the bottleneck TSP problem when we do not consider
constraint (8).

Proof: The goal of the bottleneck TSP problem is to find
a Hamiltonian path on a set of points in order to minimize the
edge with the largest weight in the tour or path. We consider
a special case of problem (11) where the service chain has
a length of U and each server only has room for one VNF
instance. In addition, the input traffic rate to the service chain
is sufficiently small compared with the background traffic.
Then, the feasible solution of problem (11) is a Hamiltonian
path on the set of servers. Our goal is equivalent to find a
path whose most congested link has the lightest background
traffic among all the paths. This exactly defines the bottleneck
TSP problem. Since the bottleneck TSP problem is NP-hard
to solve, problem (11) is also NP-hard to solve.

However, when we include constraint (8), the solution space
of problem (11) is limited, as the following theorem shows.

Theorem 2. Let N denote the number of newly added or
removed instances in a time slot. There are at most IMU2M+N

feasible VNF placement solutions in the time slot.

Proof: Given the placement solution in the previous time

slot, when we add or remove N instances, there are at most
UN different solutions. Then we migrate M instances. Each
time we perform a VNF instance migration, there are at most
UI types of source VNF instances and U destination servers to
be chosen. Therefore, we consider at most IMU2M+N feasible
VNF placement solutions.

Since we would like to react promptly to the time-varying
traffic, the duration of each time slot should be kept small.
Within a small interval, the number of instances to be removed
or added, N , is typically small (less significant traffic rate
variation over a small amount of time), and the allowed
number of migration to perform, M , should be small as well,
to prevent large impact on system performance. Therefore,
enumerating the solution space is computationally tractable.

However, we are unaware of the time-varying background
traffic rate, luv(t). We seek to design a multi-armed bandit
based online learning algorithm to estimate the background
traffic rate over time, and strategically make VNF placement
decisions accordingly. In our problem, the arm is an inter-
server connection (logical link). In each time slot, we decide
the deployment solution, which further decides the inter-server
links for sending the service chain traffic, i.e., a set of arms
to pull. The background traffic on the selected connections
can be estimated, as a realization of the unknown, underlying
background traffic distribution on that connection.

In existing multi-armed bandit problems, typically only one
arm or the same number of arms are pulled in each round; the
corresponding bandit algorithms, e.g., UCB [7], EXP3 [22],
achieve a good tradeoff between exploiting the arm (set) that
has provided the best result so far and exploring a new arm
(set), for overall performance optimization. In our problem,
the number of arms to pull may differ from one time slot to
the next, and we cannot directly decide the arm set, but rather
infer it based on the deployment decisions made. We need
to carefully design a strategy to explore different arms. The
rationale is as follows: Over time, we observe the background
traffic in the inter-server links based on our service chain
deployment. Due to the stochastic nature of the background
traffic, our observation is noisy. Instead of always sticking
to the connections with high available bandwidth so far, we
should make some explorations to use again links which have
exhibited large background traffic, with some probability. In
the meanwhile, we should not explore too much either, as each
time we choose a suboptimal link to route the service chain
traffic, we may introduce some unnecessary congestion.

To this end, we adapt an εt-greedy algorithm [7] to deal
with the hardness of arm selection in our problem. The idea
of the algorithm is that we choose an optimal deployment
solution with a high probability and pick a random feasible
solution with a small probability, based on current estimation
of background traffic rates. By doing so, we exploit good links
frequently while in the meantime, doing some explorations
by picking random links. Also, the probability of doing
exploration decreases over time, so that the algorithm will
converge to the optimal solution. In our problem, sometimes
picking a random deployment solution does not provide more

Algorithm 2: Online Learning Algorithm for VNF Place-
ment in t

Input: αi, xi(t), 0 < c < 1
Output: xui(t)
εt = c/t ∈ (0, 1];
Compute all the feasible solutions of problem (11) based on
xui(t− 1), l̃uv and Tuv;
Pick a random number between 0 and 1;
if the random number < 1− εt then

Choose the optimal solution of problem (11);
else

Randomly choose a solution;
while the solution is dominated by optimal solution do

Randomly choose a solution of problem (11);

if
∑
i∈[I]

yuvi(t) > 0 then

estimate luv(t) as capacity of link uv minus
∑
i∈[I]

yuvi(t);

l̃uv = (l̃uvTuv + luv(t))/(Tuv + 1);
Tuv = Tuv + 1;

information than choosing the optimal solution, because the
connections chosen by the random solution might be a subset
of the connections chosen by the optimal solution. We say
such a solution is dominated by the optimal solution. In this
case, we should discard this random solution and pick another
random solution.

Let Tuv denote the times that link uv is used to route service
chain traffic and l̃uv denote the estimated mean value of the
background traffic rate of link uv. The algorithm is given in
Alg. 2.

Finally, we combine Alg. 1 and Alg. 2 to produce the
complete online algorithm in Alg. 3.

Algorithm 3: Complete Online Algorithm for t
Input: αi(t), xi(t− 1), ni(t− 1)
Output: xui(t), ni(t)

Determine xi(t) and ni(t) by Alg. 1;
Determine xui(t) by Alg. 2;

C. Analysis of Algorithm 2

Definition of Regret. Multi-armed bandit based online learn-
ing is commonly described as a repeated game between a
player and an adversary. In the beginning of each time slot, we
(the player) choose a placement solution Xt from a feasible
solution set χt (of problem (11)). The adversary samples the
background traffic rate luv(t) for each inter-server connection
from a respective distribution which is unknown to us. We
use ft(Xt) to denote the congestion level we can obtain when
choosing the placement solution Xt, i.e., value of the function
in (3) evaluated at Xt. We can observe the background traffic
rate luv(t) if and only if the flow paths derived from Xt

includes the link uv. Unlike the full-information setting, in
bandit-based online learning, we do not observe the entire loss
function ft at all possible Xt’s, but only its value at the chosen

Xt. Our goal is to minimize the accumulated congestion level
over all T time slots.

The expected accumulative congestion level achieved by our
algorithm after T rounds is E[

∑T
t=1 ft(Xt)]. To evaluate how

good this accumulative congestion level is, we compare it to
that achieved by a baseline strategy. The baseline strategy
is a sequence of deterministic decisions (on service chain
placement) for T time slots. A common way to evaluate
a bandit algorithm’s performance is to measure its external
pseudo-regret (which we abbreviate as the regret), using base-
line decisions which achieve the largest gap from our online
solutions, defined as follows [7] [22] [23] [24]:

E[R(T)] = max
Yt∈χt

E[
T∑
t=1

(ft(X1, ..., Xt)−ft(X1, ..., Xt−1, Yt))]

(14)
In our problem, the domain of ft only depends on the

placement solution in the previous time slot. In other words,
ft can be a function of the immediately previous decision and
the current decision, i.e.,

ft(X1, ..., Xt) = ft(Xt−1, Xt)

Therefore, the regret definition in Eq. (14) becomes

E[R(T)] = E[
T∑
t=1

ft(Xt−1, Xt)]− max
Yt∈χt

T∑
t=1

ft(Xt−1, Yt)

(15)
Analysis of Regret. We show that if the set of feasible
solutions does not change, i.e., χ1 = χ2 = ... = χT , our
bandit algorithm can guarantee a regret sublinear to T .

Theorem 3. If χ1 = χ2 = ... = χT , the expected regret of
our bandit algorithm in Alg. 2 over T time slots is bounded
as

E(R(T)) ≤ dk + cd log(
T − 1

k + 1
), (16)

where c is the input parameter in Alg. 2, d = ft(Yt) −
max
X∈χt

ft(X) is the gap between the best baseline placement

solution and the worst placement solution, and k = eK/c,
where K = |χt| is the size of the solution space.

Proof: The regret can be divided into two parts: (1)
regret incurred due to doing some exploration to discover
the optimal solution; (2) regret due to deviating from the
optimal solution by having certain probability to explore other
suboptimal solutions.

For the first part, in every time slot t, there is an exploration
probability εt = c/Kt, where 0 < c < 1 to choose the
optimal solution. In expectation, it takes k time slots to choose
the optimal solution, where k is derived from the following
inequality:

k∑
t=1

c

Kt
≥ 1.

Solving this inequality gives us k = eK/c. That is, in the first
k time slots, we are exploring suboptimal solutions, which
leads to a regret of deK/c.

For the second part, the expected regret accumulated up till
time t is bounded:

E(R2(T)) ≤ d
T∑

t=k+1

c

t
.

This is because the optimal solution is to choose placement
solution Yt, but due to exploration, we have εt chance to
choose another placement solution, which at most differs d
from the optimal solution. Bounding a discrete sum by an
integral, we have

E(R2(T)) ≤ cd
∫ T−1

t=k+1

1

x
dx = cd log(

T − 1

k + 1
).

χ1 = χ2 = ... = χT holds when the input traffic rate to the
service chain is stable over time. Nevertheless, our algorithm
can guarantee a sublinear regret too when the input traffic rate
varies over time. The main rationale is that the uncertainties
we would like to estimate are the background traffic rates
traversing the links, and even though for different traffic rates
we have different feasible solution spaces, all these solutions
are dealing with the same set of uncertainties.

Theorem 4. (Chernoff-Hoeffding bound). Let X1, ..., Xn be
random variables with common range [0, 1] such that
E[Xt] = µ. Let Sn = X1 + · · ·+Xn. Then for all a > 0,

P{Sn > nµ+ a} ≤ e−2a
2/n,P{Sn < nµ− a} ≤ e−2a

2/n

(17)

Lemma 5. In T time slots, each inter-server link is explored
for at least U(U − 1) log(T)/c times in expectation.

Proof: In time slot t, due to exploration in our bandit
algorithm, for any link, there is at least c

U(U−1)t chance that
the link will be chosen to route traffic. Adding up these
probabilities, each link is at least explored U(U−1) log(T)/c
times in expectation.

Theorem 6. The expected regret of our bandit algorithm in
Alg. 2 grows sublinearly with T .

Proof: The regret consists of two parts: (1) regret due
to making random trials to explore the links which are not
in the routing paths of the optimal solution; (2) regret due
to insufficient information which misleads us to choose the
suboptimal solution. The regret analysis of the first part is
similar to what we did for part (2) in proof of Theorem 3, and
the regret is bounded by cd log(T − 1).

To analyze the regret of the second part, based on the
Chernoff-Hoeffding bound in Theorem 4 and Lemma 5, the
probability that our estimation on the background traffic differs
from the true expected value by a small constant number is
smaller than g/T , where g is a parameter. The chance that we
overestimate in a suboptimal solution and underestimate in an

optimal solution simultaneously is even smaller. Therefore, the
regret in the second part also grows sublinearly with time.

Summing up the regret in these two parts, the expected
regret accumulated due to our bandit algorithm grows sublin-
early with time.

V. DISCUSSIONS

We next discuss a few directions to further improve the
performance of our bandit-based online algorithm in Alg. 2.

A. Solution Space Reduction

Although the size of the solution space χt can be as large
as IMU2M+N initially, when we learn more and more of
the available bandwidth on each inter-server link, the solution
space can be reduced. The reason is that after gaining more
information of each link, we get to know which link is likely
to be most congested for a given placement solution. Then
in a time slot, for each link, there is one placement solution
which routes the minimal amount of service chain traffic in
that link while the link is the most congested link among all
links exploited in that solution. Such a solution is a candidate
best solution, and we only need to compare U(U − 1) such
candidate solutions to obtain the optimal placement solution
for that time slot. When we randomly choose a solution in
Alg. 2, we only need to consider these U(U − 1) candidate
solutions as well.

B. Handling Correlation among Inter-server Links

In our model, we assume that there is no correlation
among server-to-server links. Servers in a datacenter are often
connected through a special network topology such as a fat-
tree. The logical link between a pair of servers is composed
by a series of physical links, and different logical links
can share the same physical links. If we send some traffic
from server u to server v, we may also make the logical
links connecting other servers more congested. The congestion
level of the system should be more accurately the congestion
level of the most congested physical link. We can extend
our algorithm to deal with this case: Each time we send
traffic along the link between server u and server v, as long
as we can obtain feedback on the available bandwidth of
physical links constituting the overlay link, we can retain and
update estimations of background traffic on these physical
links instead of logical overlay links in our algorithm; when
we compute the optimal placement solution, we will also make
use of bandwidth estimations of these physical links. The rest
of our Alg. 2 remains.

VI. PERFORMANCE EVALUATION

We evaluate the performance of our online algorithms using
trace-driven simulation and small-scale experiments. When
evaluating our online VNF provisioning algorithm in Alg. 1,
we compare it to the offline optimum solution and the RHC(0)
algorithm in [25], which solves the ILP problem (9) exactly
in each time slot. When evaluating our bandit-based online

VNF placement algorithm in Alg. 2, we compare it to an
algorithm which knows the distributions of background traffic
beforehand and always chooses the optimal placement solution
in each time slot based on the placement solution in the
previous time slot.

A. Settings

Servers and VNFs: In our simulations, there are 16 servers
inter-connected through a 4-ary fat tree and a 10Gbps Eth-
ernet. There are multiple paths between two servers, and we
explicitly control which path is chosen to route traffic from
one server to another, as exemplified in Fig. 1: When there are
multiple available uplinks to aggregation switches, if the server
is connected to the first (second) port in the edge switch, we
choose the first (second) uplink. We take a similar approach
when there are multiple uplinks to core switches. Note that
the logical links among servers are correlated in the fat tree
topology. For example, in the figure, we can see that the
green path is shared by flows from the red server to the green
server and from the blue server to the green server. We will
show even without explicit feedback on physical-link level
available bandwidth, our bandit algorithm still performs better
than others.

Fig. 1. 4-ary Fat Tree

The service chain is composed by four types of VNFs, i.e.,
load balancer, firewall, NAT and IDS. Following configura-
tions in [12], a load balancer, firewall, NAT or IDS instance
can handle an incoming traffic rate of 900Mbps, 900Mbps,
900Mbps or 600Mbps respectively. Firewall and IDS have a
flow rate change ratio of 0.9 and 0.8, respectively. We assume
that at most three VNF instances can be placed on a server.
The operational cost of running a VNF instance depends on
the number of CPUs it requires: a load balancer, firewall, NAT
or IDS instance require 2, 4, 2 or 8 CPUs, respectively.

Workload traces: As in [20] and [4], we use a week of
I/O traces at MSR Cambridge [26], representing activities in
a service used by hundreds of users. We use the trace data as
time-varying input traffic rates to the service chains. The trace
data is normalized such that the peak load is 5Gbps, and the
peak-to-mean ratio (PMR), which captures the gap between
the peaks and valleys of the workload, is 5.13.

We study the performance of our algorithms under two
types of background traffic, i.e., uniform and permutation
traffic matrix. For uniform background traffic, a server sends
200Mbps traffic to every other server in expectation with
support in the range of [0, 1] Gbps. For permutation traffic,
we randomly generate a permutation matrix and route 2Gbps
traffic between two servers in expectation, with support in

[0, 3] Gbps. We use the following distribution to guarantee
that the expected background traffic volume is a with support
in [0, b]. Let p(x) denote the probability density function:

p(x) =

{
b−a
ab x < a,

a
b2−ab a ≤ x ≤ b.

(18)

B. Performance of Online VNF Provisioning

We vary ϕi/φi, the ratio of unit deployment cost to unit
operational cost, and show in Fig. 2 the competitive ratio
achieved by our Alg. 1 and the RHC(0) algorithm, as compared
to the offline optimum derived by solving problem (9) exactly.
We can see that our randomized online algorithm performs bet-
ter than RHC(0) when the deployment cost is more prominent,
and has a stable performance.

1 2 3 4 5 6 7 8 9 10
1

1.2

1.4

1.6

1.8

ϕi / φi

c
o

m
p

e
ti
ti
v
e

 r
a

ti
o

Alg. 1
RHC(0)

Fig. 2. Impact of ϕi/φi on online VNF provisioning

C. Performance of Online VNF Placement

We place VNF instances randomly on the servers at the
beginning. Then in each later time slot, we allow at most one
VNF instance to be migrated from one server to another. The
regret achieved by Alg. 2 under two different background traf-
fic patterns is shown in Fig. 3. The positive regret values show
that our bandit-based online learning algorithm performs only
slightly worse than an algorithm which knows the distribution
of background traffic rates beforehand. Our bandit algorithm
performs consistently well regardless of the characteristic of
the background traffic and the regret is stable over time.

0 100 200 300 400 500 600 700 800 900 1000
−0.5

0

0.5

1

1.5

2

Time slot

R
e

g
re

t

permutation

uniform

Fig. 3. Regret of the bandit algorithm: simulation

D. Experimental Evaluation of Online Learning Algorithm

Other than simulations, we also test the performance of
our bandit algorithm using testbed experiments in a small
server cluster. The cluster consists of 8 servers, connected
by a 10Gbps switch. Each server has 16 CPUs and can
accommodate 4 firewalls, 8 load balancers, 8 NATs or 4 IDS
instances. We run the permutation background traffic among

0 100 200 300 400 500 600 700 800 900 1000
−1

0

1

2

3

Time slot

R
eg

re
t

Fig. 4. Regret of the bandit algorithm: experiments

these servers. Other settings in the experiments are the same
as in the simulations. The regret achieved by Alg. 2 is shown
in Fig. 4. We can see that the regret is small and does not
grow linearly with the increase of time either, very similar to
the simulation results.

VII. CONCLUDING REMARKS

Network function virtualization provides a flexible way to
deploy, operate and orchestrate network services with much
lower capital and operational expenses. Dealing with the
uncertainties in the input traffic rates and the background
workloads when deploying VNF service chains is critical
for cost reduction and service performance guarantee. This
paper proposes practically useful online algorithms for VNF
service chain deployment and scaling, in the face of such
uncertainties. The randomized online VNF provisioning al-
gorithm achieves a competitive ratio of e/(e − 1), and the
bandit-based online learning algorithm for VNF placement can
guarantee an O(log(T)) regret, compared with algorithms with
full information. Our trace-driven evaluations demonstrate that
the overall cost can be reduced significantly as compared to
existing strategies, and the regret due to online learning grows
sublinearly with the time span.

VIII. ACKNOWLEDGEMENTS

This work was supported in part by grants from Hong Kong
RGC under the contracts HKU 718513, 17204715, 17225516,
C7036-15G (CRF), a grant NSFC 61628209, and the Huawei
Innovation Research Program (HIRP) HO2016050002BE.
This research was also partially sponsored by the U.S. Army
Research Laboratory and the U.K. Ministry of Defence un-
der Agreement Number W911NF-16-3-0001. The views and
conclusions contained in this document are those of the
authors and should not be interpreted as representing the
official policies, either expressed or implied, of the U.S. Army
Research Laboratory, the U.S. Government, the U.K. Ministry
of Defence or the U.K. Government. The U.S. and U.K. Gov-
ernments are authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation
hereon.

REFERENCES

[1] N. ISG, “White Paper Ver. 2,” 2013.
[2] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi, “Design and

Implementation of a Consolidated Middlebox Architecture,” in Proc. of
NSDI, 2012.

[3] G. ETSI, “Network Functions Virtualisation (NFV); Use Cases,” V1,
vol. 1, 2013.

[4] M. Lin, A. Wierman, L. L. Andrew, and E. Thereska, “Dynamic Right-
sizing for Power-proportional Data Centers,” IEEE/ACM Transactions
on Networking (TON), vol. 21, no. 5, pp. 1378–1391, 2013.

[5] T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding Data
Center Traffic Characteristics,” ACM SIGCOMM Computer Communi-
cation Review, vol. 40, no. 1, pp. 92–99, 2010.

[6] M. Welzl, Network congestion control: managing internet traffic. John
Wiley & Sons, 2005.

[7] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time Analysis of the
Multiarmed Bandit Problem,” Machine learning, vol. 47, no. 2-3, pp.
235–256, 2002.

[8] A. R. Karlin, M. S. Manasse, L. A. McGeoch, and S. Owicki, “Compet-
itive Randomized Algorithms for Nonuniform Problems,” Algorithmica,
vol. 11, no. 6, 1994.

[9] M. Gahlawat and P. Sharma, “Survey of Virtual Machine Placement
in Federated Clouds,” in Advance Computing Conference (IACC), 2014
IEEE International. IEEE, 2014, pp. 735–738.

[10] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl, X. Gao, A. Anand,
T. Benson, A. Akella, and V. Sekar, “Stratos: A Network-aware Orches-
tration Layer for Middleboxes in the Cloud,” Technical Report, Tech.
Rep., 2013.

[11] H. Moens and F. De Turck, “VNF-P: A Model for Efficient Placement
of Virtualized Network Functions,” in Proc. of International Conference
on Network and Service Management (CNSM), 2014.

[12] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “On orches-
trating virtual network functions,” in Network and Service Management
(CNSM), 2015 11th International Conference on. IEEE, 2015, pp.
50–56.

[13] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near Optimal
Placement of Virtual Network Functions,” in Proc. of INFOCOM, 2015.

[14] X. Wang, C. Wu, F. Le, A. Liu, Z. Li, and F. Lau, “Online VNF
Scaling in Datacenters,” in Proceedings of the 9th IEEE International
Conference on Cloud Computing (IEEE Cloud), 2016.

[15] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo,
and S. Shenker, “E2: a framework for nfv applications,” in Proceedings
of the 25th Symposium on Operating Systems Principles (SOSP), 2015.

[16] S. Bubeck and N. Cesa-Bianchi, “Regret Analysis of Stochastic
and Nonstochastic Multi-armed Bandit Problems,” arXiv preprint
arXiv:1204.5721, 2012.

[17] Y. Gai, B. Krishnamachari, and R. Jain, “Combinatorial Network Op-
timization with Unknown Variables: Multi-armed Bandits with Linear
Rewards and Individual Observations,” IEEE/ACM Transactions on
Networking (TON), vol. 20, no. 5, pp. 1466–1478, 2012.

[18] W. Chen, Y. Wang, and Y. Yuan, “Combinatorial multi-armed bandit:
General framework and applications,” in Proceedings of the 30th Inter-
national Conference on Machine Learning, 2013, pp. 151–159.

[19] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live Migration of Virtual Machines,” in Proceedings
of the 2nd conference on Symposium on Networked Systems Design &
Implementation-Volume 2. USENIX Association, 2005, pp. 273–286.

[20] T. Lu, M. Chen, and L. L. Andrew, “Simple and Effective Dynamic
Provisioning for Power-proportional Data Centers,” IEEE Transactions
on Parallel and Distributed Systems,, vol. 24, no. 6, 2013.

[21] R. G. Parker and R. L. Rardin, “Guaranteed Performance Heuristics
for the Bottleneck Travelling Salesman Problem,” Operations Research
Letters, vol. 2, no. 6, pp. 269–272, 1984.

[22] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “The Non-
stochastic Multiarmed Bandit Problem,” SIAM Journal on Computing,
vol. 32, no. 1, pp. 48–77, 2002.

[23] M. Zinkevich, “Online Convex Programming and Generalized Infinites-
imal Gradient Ascent,” 2003.

[24] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and Games.
Cambridge university press, 2006.

[25] M. Lin, Z. Liu, A. Wierman, and L. L. Andrew, “Online Algorithms
for Geographical Load Balancing,” in Proc. of International Green
Computing Conference (IGCC), 2012.

[26] D. Narayanan, A. Donnelly, and A. Rowstron, “Write Off-loading:
Practical Power Management for Enterprise Storage,” ACM Transactions
on Storage (TOS), vol. 4, no. 3, p. 10, 2008.

