
1

Cost-Minimizing Dynamic Migration of Content
Distribution Services into Hybrid Clouds

Xuanjia Qiu∗, Hongxing Li∗, Chuan Wu∗, Zongpeng Li† and Francis C.M. Lau∗

∗Department of Computer Science, The University of Hong Kong, Hong Kong,

{xjqiu,hxli,cwu,fcmlau}@cs.hku.hk
†Department of Computer Science, University of Calgary, Canada, zongpeng@ucalgary.ca

Abstract—With the recent advent of cloud computing technologies, a growing number of content distribution applications are

contemplating a switch to cloud-based services, for better scalability and lower cost. Two key tasks are involved for such a move:

to migrate the contents to cloud storage, and to distribute the web service load to cloud-based web services. The main issue is to

best utilize the cloud as well as the application provider’s existing private cloud, to serve volatile requests with service response time

guarantee at all times, while incurring the minimum operational cost. While it may not be too difficult to design a simple heuristic,

proposing one with guaranteed cost optimality over a long run of the system constitutes an intimidating challenge. Employing Lyapunov

optimization techniques, we design a dynamic control algorithm to optimally place contents and dispatch requests in a hybrid cloud

infrastructure spanning geo-distributed data centers, which minimizes overall operational cost over time, subject to service response

time constraints. Rigorous analysis shows that the algorithm nicely bounds the response times within the preset QoS target, and

guarantees that the overall cost is within a small constant gap from the optimum achieved by a T-slot lookahead mechanism with

known future information. We verify the performance of our dynamic algorithm with prototype-based evaluation.

Index Terms—Hybrid Cloud, Content Distribution, Dynamic Migration, Lyapunov Optimization

✦

1 INTRODUCTION

C Loud computing technologies have enabled rapid
provisioning and release of server utilities (CPU,

storage, bandwidth) to users anywhere, anytime. To ex-
ploit the diversity of electricity costs and to provide ser-
vice proximity to users in different geographic regions, a
cloud service often spans multiple data centers over the
globe, e.g., Amazon CloudFront [1], Microsoft Azure [2],
Google App Engine [3]. The elastic and on-demand na-
ture of resource provisioning has made cloud computing
attractive to providers of various applications. More and
more new applications are being created on the cloud
platform [4][5][6], while many existing applications are
also considering the cloud-ward move [7][8], including
content distribution applications [9][10].

As an important category of popular Internet services,
content distribution applications, e.g., video streaming,
web hosting and file sharing, feature large volumes
of contents and demands that are highly dynamic in
the temporal domain. A cloud platform with multiple,
distributed data centers is ideal to host such a service,
with substantial advantages over a traditional private
or public content distribution network (CDN) based
solution, in terms of more agility and significant cost
reduction with respect to machines, bandwidth, and
management. In this way, the application providers can
focus their business more on content provisioning, rather
than IT infrastructure maintenance.

Two major components exist in a typical content distri-
bution application, namely back-end storage for keeping

the contents, and front-end web services to serve the
requests. Both can be migrated to the cloud: contents
can be stored in storage servers in the cloud, and re-
quests can be distributed to cloud-based web services.
Therefore, the key challenge for cloud-ward move of
a content distribution application is how to efficiently
replicate contents and dispatch requests across multiple
cloud data centers, as well as the provider’s existing
private cloud, such that good service response time is
guaranteed and only modest operational expenditure is
incurred.

It may not be too hard to design a simple heuristic for
dynamic content placement and load distribution in the
hybrid cloud; however, proposing one with guarantee
of cost optimality over a long run of the system, is an
intriguing yet intimidating challenge, especially when
arbitrary arrival rates of requests are considered. Some
existing work [7][8][9][10] have advocated optimal ap-
plication migration into clouds, but none focus on guar-
anteeing over-time cost minimization with a dynamic
algorithm.

In this paper, we present a generic optimization frame-
work for dynamic, cost-minimizing migration of content
distribution services into a hybrid cloud (i.e., private
and public clouds combined), and design a joint content
placement and load distribution algorithm that min-
imizes overall operational cost over time, subject to
service response time constraints. Our design is rooted
in Lyapunov optimization theory [11][12], where cost
minimization and response time guarantee are achieved
simultaneously by efficient scheduling of content mi-

2

gration and request dispatching among data centers.
Lyapunov optimization provides a framework for de-
signing algorithms with performance arbitrarily close to
the optimal performance over a long run of the system,
without the need for any future information. It has been
extensively used in routing and channel allocation in
wireless networks [11][13], and has only recently been
introduced to address resource allocation problems in a
few other types of networks [14][15]. We tailor Lyapunov
optimization techniques in the setting of a hybrid cloud,
to dynamically and jointly resolve the optimal content
replication and load distribution problems.

The contribution of this work can be summarized as
follows:

⊲ We propose a generic optimization framework for
dynamic, optimal migration of a content distribu-
tion service to a hybrid cloud consisting of a private
cloud and public geo-distributed cloud services.

⊲ We design a joint content placement and load dis-
tribution algorithm for dynamic content distribution
service deployment in the hybrid cloud. Providers
of content distribution services can practically apply
it to guide their service migration, with confidence
in cost minimization and performance guarantee,
regardless of the request arrival pattern.

⊲ We demonstrate optimality of our algorithm with
rigorous theoretical analysis and prototype-based
evaluation. The algorithm nicely bounds the re-
sponse times (including queueing and round-trip
delays) within the preset QoS target in cases of
arbitrary request arrivals, and guarantees that the
overall cost is within a small constant gap from the
optimum achieved by a T-slot lookahead mecha-
nism with information into the future.

In the rest of the paper, we discuss related work in
Sec. 2, present the optimization framework in Sec. 3,
design a joint content placement and load distribution al-
gorithm in Sec. 4, and rigorously analyze its performance
in Sec. 5. We evaluate the algorithm with prototype-
based evaluation in Sec. 6, and conclude the paper in
Sec. 7.

2 RELATED WORK

Migration of applications into clouds: A number of research
projects have emerged in recent years that explore the
migration of services into a cloud platform. Hajjat et
al. [7] develop an optimization model for migrating
enterprise IT applications onto a hybrid cloud. Their
model takes into account enterprise-specific constraints,
such as transaction delays and security policies. One-
time optimal service deployment is considered, while
our work investigates optimal dynamic migration over
time, to achieve the long-term optimality. Zhang et al. [8]
propose an intelligent algorithm to factor workload and
dynamically determine the service placement across the
public cloud and the private cloud. Their focus is on

designing an algorithm for distinguishing base workload
and trespassing workload.

Migration of content delivery services into clouds: Some
research efforts have been put into migrating generic
content delivery services onto clouds. MetaCDN by
Pathan et al. [16] is a proof-of-concept testbed, experi-
ments on which show that deploying content delivery
based on storage clouds can improve utility, based on
primitive content placement and request routing mech-
anisms. Chen et al. [17] propose to build CDNs in the
cloud in order to minimize cost under the constraints of
QoS requirement, but they only propose greedy-strategy
based heuristics without provable properties. In contrast,
we target an optimization framework which renders
optimal migration solutions for long run of the system.

Some work focuses on migrating specific types of
content delivery services onto clouds, e.g., social net-
working service, or video streaming service. Cheng et
al. [10] study the partition of social data and their storage
onto a number of cloud servers, to migrate a social
networking application into the cloud. It focuses on
balancing the data access load, by considering social
relationships and user access patterns in the data storage.
Li et al. [9] advocate cost saving by partial migration of
a VoD service to a content cloud. Heuristic strategies
are proposed to decide the update of cloud contents,
which are verified by trace-driven evaluations. Our work
focuses on cost minimization in migration of a generic
content distribution application, based on differentiated
charging models of different data centers.

Application of Lyapunov optimization theory: Lyapunov
optimization was developed from the stochastic network
optimization theory [11][12], and has been applied in
routing and channel allocation in wireless networks
[18][11][13], as well as in a few other types of net-
works including peer-to-peer networks [15]. Maguluri
et al. [19] propose various VM configuration scheduling
algorithms for cloud computing platforms, that achieve
arbitrary fraction of the capacity region of the cloud.
But their model does not take into consideration delay
guarantee, which is an important component in our
optimization framework. The work of Ren et al. [20] also
considers an online scheduler that dispatches workloads
across multiple geographically distributed data centers
subject to delay requirements. It assumes where each
job’s data is stored is fixed and known. However in
our work we further incorporate the decision on data
migration into the scheduling. The work of Amble et
al. [14] is close to ours in that it also utilizes Lyapunov
function to study request routing and content caching,
but in the setting of CDNs with capacitated caches and
links. They investigate the optimality of different caching
policies. Given a workload within the capacity region,
they prove that several types of caching and content
eviction methods can each provide a throughput equal
to the workload. Instead, our study focuses on optimal
migration of content distribution services onto a hybrid
cloud, such that the operational cost is minimized while

3

service delay bound is guaranteed.
Related service placement problems: Placement of ser-

vices onto different sites has been investigated [21][22]
based on the theories of Facility Location Problems (FLP)
[23], including the k-Median Problem (kMP) [24] and
k-Component Multi-Site Placement Problem (k-CMSP)
[22]. Such a problem typically involves an NP-hard inte-
ger program, and can only be solved by approximation
algorithms; it focuses on one-time optimization with
fixed service demands, rather than online optimization
over a long run of the system. Our work is significantly
different, which applies Lyanopuv optimization theory
to pursue the global optimality with dynamic request
arrivals over time.

3 THE SERVICE MIGRATION PROBLEM

3.1 System Model

We consider a typical content distribution application,
which provides a collection of contents (files), denoted
as set M, to users spreading over multiple geographical
regions. There is a private cloud owned by the provider
of the content distribution application, which stores the
original copies of all the contents. The private cloud
has an overall upload bandwidth of b units for serving
contents to users.

There is a public cloud consisting of data centers
located in multiple geographical regions, denoted as set
N . One data center resides in each region. There are
two types of inter-connected servers in each data center:
storage servers for data storage, and computing servers
that support the running and provisioning of virtual
machines (VMs). Servers inside the same data center
can access each other via a certain DCN (Data Center
Network).

The provider of the content distribution application
(application provider) wishes to provision its service by
exploiting a hybrid cloud architecture, which includes the
geo-distributed public cloud and its private cloud. The
major components of the content distribution application
include: (i) back-end storage of the contents and (ii)
front-end web service that serves users’ requests for
contents. The application provider may migrate both
service components into the public cloud: contents can
be replicated in storage servers in the cloud, while
requests can be dispatched to web services installed on
VMs on the computing servers. An illustration of the
system architecture is given in Fig. 1.

Our objective in this paper is to design a dynamic, op-
timal algorithm for the application provider to strategi-
cally make the following decisions for service migration
into the hybrid cloud architecture: (i) content replication:
which content should be replicated in which data center
at each time? (ii) request distribution: How many requests
for a content should be directed to the private cloud and
to each of the data centers that store this content at the
time? The goal is to pursue the minimum operational

Fig. 1. The system architecture.

TABLE 1

Notations

M File set
N Region set

v(m) Size of file m, in bytes

a
(m)
j (t) No. of requests for file m from region j at time slot t

Q
(m)
j (t) Size of request queue for file m in region j at t

Amax Max. no. of requests for file m from region j in a time slot

s
(m)
j (t) No. of requests dispatched from Q

(m)
j to private cloud at

t

c
(m)
ji (t) No. of requests dispatched from Q

(m)
j to data center i at

t

y
(m)
i (t) Binary var: store file m on data center i or not at t.

b Max. no. of requests the private cloud can serve in a time
slot

µmax Max. no. of requests dispatched from each request queue

to a data center in a time slot, i.e., c
(m)
ji (t) ≤ µmax

gi Charge for uploading a byte from data center i

oi Charge for downloading a byte into data center i

fi Charge for renting one VM instance in data center i

ri No. of requests a VM in data center i can serve in a time
slot

pi Charge for storing a byte on data center i

q
(m)
i Charge for uploading file m from data center i

h Time-averaged charge for uploading a byte from the pri-
vate cloud

w
(m)
i Charge for migrating file m to data center i

W
(m)
j Bound of queueing delay of requests in queue Q

(m)
j

ǫ
(m)
j Pre-set constant for controlling queueing delay in Q

(m)
j

dj Round-trip delay between region j and the private cloud
eji Round-trip delay between region j and data center i

α Bound of time-averaged round-trip delay
G(t) Virtual queue for bounding time-averaged round-trip de-

lay

Z
(m)
j (t) Virtual queue for bounding queueing delay in Q

(m)
j

V A non-negative parameter to control the tradeoff between
the operational cost and request response delays

cost for the application provider over time, while ensur-
ing the service quality of content distribution.

We next develop an optimization framework to char-
acterize the optimal content distribution service migra-
tion problem. Important notations are summarized in
Table 1 for ease of reference.

4

3.2 Cost-Minimizing Service Migration Problem

We suppose that the system runs in a time-slotted fash-
ion. Each time slot is a unit time which is enough for
uploading any file m ∈ M with size v(m) (bytes) at

the unit bandwidth. In time slot t, a
(m)
j (t) requests are

generated for downloading file m ∈ M, from users
in region j. We assume that the request arrival is an
arbitrary process over time, and the number of requests
arising from one region for a file in each time slot is
upper-bounded by Amax.

The cost of uploading a byte from the private cloud is
h. The charge for storage at data center i is pi per byte per
unit time. gi and oi per byte are charged for uploading
from and downloading into data center i, respectively.
The cost for renting a VM instance in data center i is fi
per unit time. These charges follow the charging model
of leading commercial cloud providers, such as Amazon
EC2 [25] and S3[26]. We assume that the storage capacity
in each data center is sufficient for storing contents from
this content distribution application. We also assume that
each request is served at one unit bandwidth, and the
number of requests that a VM in data center i can serve
per unit time is ri.

Decision variables. The decision variables in our opti-
mization framework are formulated as follows:

(1) For content replication, binary variable y
(m)
i (t) indi-

cates whether file m is stored in data center i in time
slot t or not. If y

(m)
i (t− 1) = 0 and y

(m)
i (t) = 1, file m is

copied from the private cloud to the data center i at t; if

y
(m)
i (t − 1) = 1 and y

(m)
i (t) = 0, file m is removed from

data center i. In other cases, the storage status remain the
same. In case of migration, we assume that the video is
always copied from the private cloud to the destination
data center.

(2) For dispatching requests from region j for file m,

let s
(m)
j (t) be the number of requests to be served by

the private cloud in time slot t, and c
(m)
ji (t) denote

the number of requests dispatched to data center i

in time slot t, with an upper bound of µmax. Based
on the elasticity of clouds, we reasonably assume that
Amax < µmax. Requests for file m can only be dispatched

to data center i when it stores the file, i.e., c
(m)
ji (t) > 0

only if y
(m)
i (t) = 1. We assume that a data center can

serve a file to users in the time slot when the file is
being copied to the data center, since replicating the file
from the private cloud and serving chunks of the file
can be carried out in parallel: after receiving a small
portion of the file, a data center can already start to serve
the received chunks of the file to users. We assume that
upload bandwidth is reserved for replicating files to data
centers from the private cloud, and this bandwidth is not
counted in b, the maximum units of bandwidth that the
private cloud can use to upload contents to users.

Not all requests arising in one time slot are dispatched
in the same time slot, subject to capacity constraints.

A queue Q
(m)
j is maintained to buffer requests for file

Fig. 2. The queueing model.

m generated from users in region j over time, ∀j ∈

N ,m ∈ M. The backlog size of queue Q
(m)
j at time t,

i.e., the number of requests generated in region j for file

m but not dispatched yet by t, is denoted by Q
(m)
j (t).

The update of the request queue size is given as the
following queueing law [12]:

Q
(m)
j (t+1) = max[Q

(m)
j (t)− s

(m)
j (t)−

∑

i∈N

c
(m)
ji (t), 0]+ a

(m)
j (t).

(1)

Fig. 2 illustrates the queueing model in our system.

Service quality. The service quality experienced by users
is evaluated by request response delay, consisting of two
major components: queueing delay in the request queue,
and round-trip delay from when the request is dis-
patched from the queue to the time the first byte of the
requested file is received. We ignore the processing delay
inside a data center, due to the high inter-connection
bandwidth and CPU capacities inside a data center. Let
dj and eji denote the round-trip delay between region
j and the private cloud, and between region j and data
center i, respectively. Let α be the upper-bound of the av-
erage round-trip delay per request, which the application
provider wishes to enforce in this content distribution
application. We reasonably assume α > eii, ∀i ∈ N , i.e.,
this bound is larger than the round-trip delay between
a user and the data center in the same region. We
will show that our dynamic optimal service migration
algorithm can bound both the average round-trip delay
and queueing delay experienced by users.

Operational cost. Our algorithm focuses on minimizing
recurring operational cost of the content distribution sys-
tem, not one-time costs such as the purchase of machines
in the private cloud and contents. The recurring costs in
each time slot t include the following categories:

i) Bandwidth charge at the private cloud for up-
loading contents to users, at the total amount of

5

∑
m∈M

∑
j∈N v(m)s

(m)
j (t)h.

ii) Storage cost at data center i, ∀i ∈ N , for
caching replicated contents, at the total amount of∑

m∈M v(m)y
(m)
i (t)pi.

iii) Request service cost at data center i for uploading
replicated files to users. The cost for serving file m in-

cludes VM rental cost
∑

j∈N
c
(m)
ji

(t)

ri
×fi and upload band-

width cost
∑

j∈N v(m)c
(m)
ji (t)gi. Let q

(m)
i = fi

ri
+ v(m)gi

denote the unit cost to serve each request for file m on
data center i. The total cost of serving requests at data

center i is
∑

m∈M

∑
j∈N c

(m)
ji (t)q

(m)
i .

iv) Migration cost for copying files from the private

cloud to data center i. Let w
(m)
i denote the migration

cost to copy file m into data center i, which includes
costs of upload and download bandwidths from the

private cloud to data center i, i.e., w
(m)
i = v(m)(h + oi).

The total migration cost incurred at data center i is∑
m∈M[y

(m)
i (t)−y

(m)
i (t−1)]+w

(m)
i , where notation [x]+ =

x if x ≥ 0 and [x]+ = 0 if x < 0.

We will not consider any recurring storage cost on
the private cloud (the purchase of storage disks by
the application provider is a one-time investment). In
addition, the removal of contents from a data center is
cost-free.

Therefore, the overall operational cost to the applica-
tion provider in time slot t is

M(t) =
∑

m∈M

∑

j∈N

v
(m)

s
(m)
j (t)h+

∑

i∈N

∑

m∈M

v
(m)

y
(m)
i (t)pi

+
∑

i∈N

∑

m∈M

∑

j∈N

c
(m)
ji (t)q

(m)
i

+
∑

i∈N

∑

m∈M

[y
(m)
i (t)− y

(m)
i (t− 1)]+w

(m)
i . (2)

Optimization formulation. The optimization pursued
by our dynamic algorithm is formulated as follows,
which minimizes the time-averaged operational cost
while guaranteeing service quality. We use x(t) =

limT→∞
1
T

∑T
t=1 x(t) to represent the time-averaged

value of x(t).

minM(t) (3)

subject to:
∑

m∈M

∑

j∈N

s
(m)
j (t) ≤ b, ∀t, (4)

c
(m)
ji (t) ≤ µmaxy

(m)
i (t), ∀j ∈ N , i ∈ N ,m ∈ M, ∀t, (5)

a
(m)
j (t) ≤ s

(m)
j (t) +

∑

i∈N

c
(m)
ji (t), ∀j ∈ N , ∀m ∈ M, (6)

∑

j∈N

∑

m∈M

(s
(m)
j (t)dj +

∑

i∈N

c
(m)
ji (t)eji)

≤ α
∑

j∈N

∑

m∈M

(s
(m)
j (t) +

∑

i∈N

c
(m)
ji (t)), (7)

s
(m)
j (t) ∈ Z

+ ∪ {0}, ∀j ∈ N ,m ∈ M,∀t, (8)

c
(m)
ji (t) ∈ Z

+ ∪ {0}, ∀j ∈ N , i ∈ N ,m ∈ M, ∀t, (9)

y
(m)
i (t) ∈ {0, 1}, ∀i ∈ N ,m ∈ M,∀t. (10)

Recall that each request is served by a unit bandwidth.
(4) corresponds to the upload bandwidth limit at the
private cloud. (5) states that requests for a file are only
dispatched to data centers storing this file, and the max-
imum number of requests dispatched from each request
queue to a data center in each time slot is no larger than
µmax. (6) represents each request queue is rate stable. In

(7), Γ1 =
∑

j∈N

∑
m∈M(s

(m)
j (t) +

∑
i∈N c

(m)
ji (t)) is the av-

erage number of overall requests in the system per unit

time, and Γ2 =
∑

j∈N

∑
m∈M(s

(m)
j (t)dj +

∑
i∈N c

(m)
ji (t)eji)

is the total round-trip delay experienced by requests
in the system per unit time. Therefore, this constraint
specifies that the average round-trip delay per request,
Γ2

Γ1
, should be bounded by α.
Though queueing delay is not explicitly modeled in

the constraints, we will show in Sec. 5 that our algorithm
can simultaneously solve this optimization and bound
the queueing delay of each request within a pre-set
threshold as well.

4 DYNAMIC MIGRATION ALGORITHM

In this section, we design a dynamic control algorithm
using Lyapunov optimization techniques, which solves
the optimal migration problem in (3) and bounds the
time-averaged round-trip delays and queueing delays
for each request. We also discuss its practical implemen-
tation.

4.1 Bounding Delays

The optimization problem in (3) includes a constraint
on time-averaged variable values, i.e., inequality (7). Our
dynamic algorithm will only be able to adjust variables
in each time slot. How can we guarantee this inequality
by controlling the variable values over time?

To satisfy constraint (7), we resort to the vir-
tual queue techniques in Lyapunov optimization [12].
We introduce a virtual queue G, with arrival rate

of
∑

j∈N

∑
m∈M(s

(m)
j (t)dj +

∑
i∈N c

(m)
ji (t)eji), i.e., the

overall round-trip delay experienced by all requests

in t, and departure rate of α
∑

j∈N

∑
m∈M(s

(m)
j (t) +∑

i∈N c
(m)
ji (t)), i.e., the total number of requests in t mul-

tiplied by the round-trip delay bound α. G is updated
as follows:

G(t+ 1) = max[G(t) +
∑

j∈N

∑

m∈M

(s
(m)
j (t)dj +

∑

i∈N

c
(m)
ji (t)eji)

− α
∑

j∈N

∑

m∈M

(s
(m)
j (t) +

∑

i∈N

c
(m)
ji (t)), 0]. (11)

If queue G is stable, its time-averaged arrival rate should
not exceed its time-averaged departure rate (according
to Theorem 2.5 in [12]), i.e., constraint (7) is satisfied.
Therefore, we can adjust the request distribution strate-

gies s
(m)
j (t)’s and c

(m)
ji (t)’s in each time slot to guarantee

that this virtual queue is always stable, in order to satisfy
constraint (7). Intuitively, when the size of G is large,
i.e., when a risk arises for constraint (7) to be violated,

6

requests should be dispatched more to the private cloud
or data centers with small round-trip delay from users;
when the queue size is small, requests can be distributed
based more on cost considerations.

Recall that our dynamic migration algorithm also
seeks to bound queueing delays in the request queues
Qm

j , ∀j ∈ N ,m ∈ M. To bound the worst-case queueing

delay of each request in all queues Q
(m)
j , ∀j ∈ N ,m ∈ M,

the ǫ-persistent service queue technique [27] can be applied.
This technique features carefully designing a set of vir-
tual queues. Any scheduling algorithm keeping that set
of virtual queues bounded ensures worst-case queueing
delay of each request bounded. In particular, we design

a set of virtual queues by associating Q
(m)
j with a virtual

queue Z
(m)
j , updated by:

Z
(m)
j (t+ 1) = max[Z

(m)
j (t) + 1

{Q
(m)
j

(t)>0}
(ǫ

(m)
j − s

(m)
j (t)

−
∑

i∈N

c
(m)
ji (t))− 1

{Q
(m)
j

(t)=0}
µmax, 0], (12)

where ǫ
(m)
j (0 < ǫ

(m)
j < µmax) is a constant that can

be gauged to control the queueing delay bound, which
further renders a tradeoff between the queueing delay
bound and the cost optimality achieved by our algorithm
(to be discussed in Sec. 5). The rationale behind (12) can
be explained intuitively: If request queue Q

(m)
j is not

empty in time slot t (i.e., Q
(m)
j (t) > 0), then a constant

number of arrivals ǫ
(m)
j are added into virtual queue

Z
(m)
j , while the departure rate from the virtual queue,

s
(m)
j (t)+

∑
i∈N c

(m)
ji (t), is the same as the departure rate

from request queue Q
(m)
j . If the request queue Q

(m)
j is

empty in t (i.e., Q
(m)
j (t) = 0), the length of the virtual

queue Z
(m)
j decreases by µmax. In the algorithm design

given in Sec. 4.2, we will strategically decide s
(m)
j (t)’s

and c
(m)
ji (t)’s to keep the virtual queue bounded. In

this way, requests are expediently dispatched from the
request queue, resulting in limited queueing delay per
request. Detailed analysis is given in Theorem 2 in Sec. 5.

4.2 Dynamic Algorithm Design via Drift-Plus-

Penalty Minimization Method

Next we design a dynamic algorithm which stabilizes all
queues and solves optimization (3).

In our dynamic algorithm for the cost minimizing
problem, three types of queues are needed, i.e., request

queues Q
(m)
j (∀j ∈ N , ∀m ∈ M), virtual queue G,

and virtual queues Z
(m)
j (∀j ∈ N , ∀m ∈ M). Let

Θ(t) = [Q(t),G(t),Z(t)] be the vector of all queues in
the system. Define our Lyapunov function as

L(Θ(t)) =
1

2
[
∑

m∈M

∑

j∈N

(Q
(m)
j (t)2 + Z

(m)
j (t))2 +G(t)2]. (13)

The one-slot conditional Lyapunov drift is

∆(Θ(t)) = E{L(Θ(t+ 1))− L(Θ(t))|Θ(t)}.

Following the drift-plus-penalty framework in Lyapunov
optimization (Chapter 5 in [12]), we can make the time-
averaged operational cost M(t) within an upper bound
of optimality and stabilize all queues, by minimizing an
upper bound of the following item in each time slot:

∆(Θ(t)) + VM(t),

where V is a non-negative parameter set by the applica-
tion provider to control the tradeoff between the oper-
ational cost and request response delays. The rationale
is as follows: if in every time slot greedily minimizing
Lyapunov drift ∆(Θ(t)), backlogs are consistently pushed
towards smaller, which intuitively maintains queues sta-
ble. Adding VM(t) (a weighted term of incurred opera-
tional cost at time slot t) onto ∆(Θ(t)) allows a tradeoff
between backlog reduction and operational cost mini-
mization at time slot t. Although we do not minimize
∆(Θ(t)) + VM(t) directly, minimizing one of its upper
bound can have similar effects. In the long term with this
carefully designed local optimizing objective we stabilize
all queues and make the time-averaged operational cost
M(t) within an upper bound of optimality.

Now we derive an upper bound of ∆(Θ(t)) + VM(t)
by squaring the queueing laws (1), (11) and (12) as
follows (the details are in Appendix D):

∆(Θ(t)) + VM(t)

= B −
∑

m∈M

∑

j∈N

s
(m)
j (t)[Q

(m)
j (t) + (α− dj)G(t)

+ 1
{Q

(m)
j

(t)>0}
Z

(m)
j (t)− v

(m)
V h]−

∑

m∈M

∑

j∈N

∑

i∈N

c
(m)
ji (t)

[Q
(m)
j (t) + (α− eji)G(t) + 1

{Q
(m)
j

(t)>0}
Z

(m)
j (t)− V q

(m)
i]

+ V
∑

m∈M

∑

i∈N

[v(m)
y
(m)
i (t)pi + [y

(m)
i (t)− y

(m)
i (t− 1)]+w

(m)
i]

+
∑

m∈M

∑

j∈N

Z
(m)
j (t)[1

{Q
(m)
j

(t)>0}
ǫ
(m)
j − 1

{Q
(m)
j

=0}
µmax]

+
∑

m∈M

∑

j∈N

Q
(m)
j (t)a

(m)
j (t),

(14)

where B = 1
2
|M||N |[A2

max + ǫ2max + 2(b + Nµmax)
2] +

+ 1
2
(|M||N |2µmaxemax + bdmax)

2 + 1
2
α2(|M||N |2µmax + b)2 is

a constant, with dmax = max{dj |j ∈ N}, emax = max{eji|j ∈

N , i ∈ N}, and ǫmax = max{ǫ(m)
j |j ∈ N ,m ∈ M}. The

impact of constant B will be shown in Theorem 3.
In the following we design an algorithm that min-

imizes the the right-hand-side of inequality (14), and
will discuss queue stability and cost optimality in Sec. 5.
To minimize the right-hand-side of inequality (14), the

algorithm observes the queues Q
(m)
j (t), G(t) and Z

(m)
j (t)

in each time slot t, and decides optimal values of s
(m)
j (t)

and c
(m)
ji (t), ∀j ∈ N , i ∈ N ,m ∈ M.

We simplify the notation by defining

γ
(m)
j (t) = Q

(m)
j (t)+1

{Q
(m)
j

(t)>0}
Z

(m)
j (t)−V v

(m)
h+(α−dj)G(t),

which is a constant in time slot t, and

η
(m)
ji (t) = Q

(m)
j (t)+1

{Q
(m)
j

(t)>0}
Z

(m)
j (t)−V q

(m)
i +(α−eji)G(t),

7

which is also a constant in t, and
φ
(m)
i (t) = V (v(m)

pi + 1
{y

(m)
i

(t−1)=0}
w

(m)
i),

which is a constant in t as well, when y
(m)
i (t−1) is given.

Therefore, minimizing the right-hand-side of (14) is
equivalent to:

max F (t) =
∑

m∈M

∑

j∈N

s
(m)
j (t)γ

(m)
j (t)+

∑

m∈M

∑

j∈N

∑

i∈N

c
(m)
ji (t)η

(m)
ji (t)−

∑

m∈M

∑

i∈N

φ
(m)
i (t)y

(m)
i (t) (15)

subject to: constraints (4) (5) (8) (9) (10).

It is equivalent to solve the following problems sepa-
rately:

max
∑

m∈M

∑

j∈N

s
(m)
j (t)γ

(m)
j (t) (16)

s.t. : constraint (8)

and, for each m ∈ M and each i ∈ N ,

max
∑

j∈N

c
(m)
ji (t)η

(m)
ji (t)− φ

(m)
i (t)y

(m)
i (17)

s.t. : c
(m)
ji (t) ≤ µmaxy

(m)
i (t), ∀j ∈ N

constraints (9)(10)

The solution of (16) is:

s
(m)
j

∗
(t) =

b if (m, j) = argmax(m′∈M,j′∈N){φ
(m′)

j′
(t)}

and γ
(m)
j (t) ≥ 0

0 otherwise

(17) can be solved by choosing the larger solution
value from the following two cases:

• Case 1: y
(m)
i (t) = 0. c

(m)
ji

0
= 0, ∀j ∈ N . The optimal

value of the objective function (17) is 0.

• Case 2: y
(m)
i (t) = 1. (17) is equivalent to:

max
∑

j∈N

c
(m)
ji (t)η

(m)
ji (t)− φ

(m)
i (18)

s.t. : c
(m)
ji (t) ≤ µmax, ∀j ∈ N

c ∈ Z
+ ∪ {0}.

The optimal solution of (18) is

c
(m)
ji

1
(t) =

{
µmax if η

(m)
ji (t) ≥ 0

0 otherwise

Now we compare the optimal values of the ob-
jective function (17) in Case 1 and Case 2: If
∑

j∈N c
(m)
ji

1
(t)η

(m)
ji (t) − φ

(m)
i > 0, the optimal solution

is y
(m)
i = 0 and c

(m)
ji

∗

= c
(m)
ji

0
, ∀j ∈ N . Otherwise, the

optimal solution is y
(m)
i = 1 and c

(m)
ji

∗

= c
(m)
ji

1
, ∀j ∈ N .

The solution means that for each data center, it will
choose migrating the file and uploading the file to users

if the corresponding queues is long enough (η
(m)
ji (t) ≥

0 implies that the request queue and associated virtual
queue is long) and the related weight surpasses the cost
of migrating the file and/or keeping the file in storage

(
∑

j∈N c
(m)
ji (t)η

(m)
ji (t)− φ

(m)
i > 0).

4.3 Discussions on Practical Implementation

Our dynamic algorithm is to be deployed by the appli-
cation provider to optimally distribute its content dis-
tribution service onto the hybrid cloud. The application
provider deploys one or multiple web servers providing
portal service of the content distribution application, in a
centralized or distributed fashion. The portal aggregates
user requests and sends the collected request informa-
tion to a control center, which executes our algorithm
periodically.

The control center maintains a content placement table

with entries y
(m)
i , ∀j ∈ N ,m ∈ M, indicating whether

file m is currently replicated on data center i. The entries
are initialized to be 0 at the system initialization stage.
In each time slot, received requests for file m originated

from region j are placed in request queue Q
(m)
j . Virtual

queues Z
(m)
j and G are maintained simply as counters.

The control center observes lengths of the queues and
request arrival rates, and calculates the optimal content
placement and load distribution strategies by solving
(15).

Based on the derived content placement strategies, it
updates the placement table, and compares the optimal

solution y
(m)
i (t) against the current value of y

(m)
i (t−1) in

the table, ∀j ∈ N ,m ∈ M: If y
(m)
i (t−1) = 0 and y

(m)
i (t) =

1, the control center instructs data center i to request a

copy of file m from the private cloud; if y
(m)
i (t− 1) = 1

and y
(m)
i (t) = 0, it signals data center i to remove file m

from its storage.
Based on the request distribution decisions, the control

center dispatches s
(m)
j (t) requests from queue Q

(m)
j to the

private cloud, and c
(m)
ji (t) requests from the queue Q

(m)
j

to data center i, ∀j, i ∈ N ,m ∈ M. Virtual queue Z
(m)
j

and G are updated accordingly.
The sketch of our complete dynamic, joint content

placement and load distribution algorithm is presented
in Algorithm 1.

As an engineering parameter, the length of intervals
between two executions of the algorithm can be set by
the application provider, based on update frequencies
of contents, sizes of the files, as well as its targeted
performance optimality.

5 PERFORMANCE ANALYSIS

We next analyze the performance guarantee provided
by our dynamic algorithm, with respect to bounded
queueing delay and optimality in cost minimization.

5.1 Bound of Queueing Delay

Theorem 1: (Bound of Queue Length) Define

Q
(m)
j

max
= V (v(m)

pĩ + w
(m)

ĩ
+ q

(m)

ĩ
) +Amax, (19)

Z
(m)
j

max
= V (v(m)

pĩ + w
(m)

ĩ
+ q

(m)

ĩ
) + ǫ

m
j , (20)

where

8

Algorithm 1: Control Algorithm on the Control Cen-
ter

Initialization:
Set up request queue Q

(m)
j , virtual queues G and

Z
(m)
j , ∀j ∈ N ,m ∈ M, and initialize their backlogs

to 0;
In every time slot t:
1. Enqueue received requests to request queues

(Q
(m)
j ’s);

2. Solve optimization (15) to obtain optimal content

placement and load distribution strategies c
(m)
ji (t),

s
(m)
j (t), y

(m)
i (t), ∀j, i ∈ N ,m ∈ M;

3. Update content placement table with y
(m)
i (t)’s,

and migrate files as follows:
for i ∈ N ,m ∈ M do

if y
(m)
j (t− 1) = 0 and y

(m)
j (t) = 1 then

instruct data center i to request file m from
private cloud;

if y
(m)
j (t− 1) = 1 and y

(m)
j (t) = 0 then

signal data center i to remove file m;

4. Dispatch s
(m)
j (t) requests from queue Q

(m)
j to

private cloud, c
(m)
ji (t) requests to data center i,

∀j, i ∈ N ,m ∈ M;
5. Update virtual queue Z

(m)
ji and G according to

Eqn. (12) and (11);

ĩ = argmin
i
{v(m)

pi + w
(m)
i + q

(m)
i |α− eji > 0, ∀i ∈ N}. (21)

Then we have Q
(m)
j (t) ≤ Q

(m)
j

max
and Z

(m)
j (t) ≤

Z
(m)
j

max
, ∀j ∈ N , ∀m ∈ M, i.e., Q

(m)
j

max
and Z

(m)
j

max
is

the maximum size of queue Q
(m)
j and Z

(m)
j at any time

t respectively.

The proof is given in Appendix A. Based on Theorem
1, we have

Theorem 2: (Bounded Queueing Delay): For each re-

quest queue Q
(m)
j , ∀j ∈ N , ∀m ∈ M, define

W
(m)
j = ⌈

Q
(m)
j

max
+ Z

(m)
j

max

ǫ
(m)
j

⌉

where ĩ is defined as in (21). The queueing delay of each

request in Q
(m)
j is bounded by W

(m)
j .

The proof is given in Appendix B.

5.2 Optimality against the T-Slot Lookahead Mecha-
nism

Since request arrival rates are arbitrary in our system, it
is difficult to find the global cost optimum, with which
to compare the time-averaged cost M(t) achieved by
our algorithm. Therefore we utilize a local optimum
target, which is the optimal (objective function) value

of a similar cost minimization problem within known
information (e.g., request arrivals) for T time slots into
the future, i.e., a T-slot lookahead mechanism [12]. We will
show that the optimal value obtained by our algorithm is
close to that of the T-slot lookahead mechanism, even if
our algorithm does not assume any future information.

In the T-slot lookahead mechanism, time is divided
into successive frames, each consisting of T time slots.
Denote each frame as Fk = {kT + 1, kT + 2, . . . , kT +
T}, where k = 0, 1, In each time frame, con-
sider the following optimization problem on variables

c
(m)
ji (t), s

(m)
j (t), y

(m)
i (t), ∀j ∈ N , i ∈ N ,m ∈ M, t ∈ Fk:

min
1

T

kT+T∑

t=kT+1

M(t) (22)

subject to:
∑

m∈M

∑

j∈N

s
(m)
j (t) ≤ b, ∀t ∈ Fk, (23)

c
(m)
ji (t) ≤ µmaxy

(m)
i (t),

∀j ∈ N , ∀i ∈ N ,m ∈ M, t ∈ Fk, (24)
kT+T∑

t=kT+1

[a
(m)
j (t)− s

(m)
j (t)−

∑

i∈N

c
(m)
ji (t)] ≤ 0,

∀j ∈ N ,m ∈ M, (25)

1

T

kT+T∑

t=kT+1

[s
(m)
j (t) +

∑

i∈N

c
(m)
ji (t)] ≥ ǫ

(m)
j ,

∀j ∈ N ,m ∈ M (26)
kT+T∑

t=kT+1

∑

j∈N

∑

m∈M

(
∑

i∈N

c
(m)
ji (t)eji + s

(m)
j (t)dj)

≤ α

kT+T∑

t=kT+1

∑

j∈N

∑

m∈M

(
∑

i∈N

c
(m)
ji (t) + s

(m)
j (t)), (27)

s
(m)
j (t) ∈ Z

+{0}, ∀j ∈ N ,m ∈ M, t ∈ Fk, (28)

c
(m)
ji (t) ∈ Z

+{0}, ∀j ∈ N , i ∈ N ,m ∈ M, t ∈ Fk (29)

y
(m)
i (t) ∈ {0, 1}, ∀i ∈ N ,m ∈ M, t ∈ Fk. (30)

Assuming full knowledge of request arrivals in the T

time slots in Fk, this optimization derives the optimal
content placement and load distribution decisions in
each of the T time slots, which minimize the average
cost per time slot in the objective function. We show the
time-averaged cost M(t) achieved by our algorithm is
within a constant gap BT

V from that achieved by solving
the above optimization:

Theorem 3: (Optimality of Cost) Let M̂k denote the
optimal objective function value in the T-slot Lookahead
problem (22) in time frame Fk. The minimum opera-
tional cost derived with our algorithm is M(t) in time
slot t. Suppose the time lasts for KT time slots, where
K is a constant. We have

1

KT

KT−1∑

t=0

M(t) ≤
1

K

K−1∑

k=0

M̂k +
BT

V
, (31)

i.e., our algorithm achieves a time-averaged cost within
constant gap BT

V from that by assuming full knowledge
in T time slots in the future.

9

Fig. 3. The key modules of our prototype.

Theorem 3 is proved in details in Appendix C.

Theorems 2 and 3 show that when V increases, worst-
case queueing delay W

(m)
j increases, while the gap be-

tween the operational cost of our algorithm and that of

the T-Slot lookahead mechanism is reduced. ǫ
(m)
j has a

similar effect: when ǫ
(m)
j increases, the worst-case queue-

ing delay W
(m)
j decreases, and B increases such that the

gap to optimality increases. We will investigate proper
values to assign to these tradeoff control parameters in
our evaluation in Sec. 6.

6 PERFORMANCE EVALUATION

6.1 Experiment Setup

We evaluate the performance of the dynamic algorithm
with a prototype deployed on six VMs that are located in
six data centers (in the cities of Dallas, Fremont, Atlanta,
Newark, London, Tokyo) of Linode Cloud [28] and a
cluster residing in our lab in the University of Hong
Kong. We deploy the web portal and the control center
on one Linode VM and use it to emulate the private
cloud at the same time, while we use the remaining
five Linode VMs to emulate five data centers of the
public cloud. When instructed by the control center, the
Requester module at the public cloud is responsible for
requesting a copy of a file from the Uploader module at
the private cloud. The communication among the control
center, the private cloud and the public cloud is via our
customized protocol encapsulated in TCP. We emulate
the users of the content distribution service using our
lab cluster. Each user is emulated by an independent
thread, which communicates with the portal, the public
cloud and the private cloud via HTTP protocol. We
implement a web-based file download application. Users
issue requests in the form of HTTP requests for the
files. A user will be responded with a URL redirection
command pointing to the data center from which the
user can download a copy of the requested file. The key
modules of the prototype are illustrated in Fig. 3.

6.1.1 Workload

The distribution of the file sizes follows the measurement
result of YouTube videos in [29], with a mean size of 7.6
MB and an upper bound of 25 MB (because 99.1% of
YouTube videos are less than 25 MB in size). The total
number of files is 1000. The total number of requests for
all files follows a Poisson distribution over time, with
a mean of 0.15 request per file per time slot. All the
concurrent file uploadings share the dynamical overall
bandwidth of a VM, which is generally larger than
150Mbps. The number of files and the mean number
of requests for a file are so set due to the bandwidth
capacity of Linode VMs available to us. Especially, the
scale of experiment is approximately restricted by the
following:

Mean file size×Mean # of requests per file per time slot×# of files
of seconds per time slot

≤ Bandwidth per VM × # of VMs

Nevertheless, we believe that the system can scale up
smoothly without degraded performance when the sys-
tem is deployed on real elastic clouds. We briefly dis-
cuss how the system will behave when the system is
scaled up: When the average file size becomes larger,
the application provider adjusts the system parameters
b (maximum number of requests that the private cloud
can serve in a time slot) and ri (number of requests a
VM in data center i can serve in a time slot), or use
VMs that have higher bandwidth capacity, to make sure
each file can be uploaded with a time slot. When the
workload is more intensive, more VMs will be rented
from the public cloud to serve more requests. Since our
control center is implemented in a distributed fashion,
it would not become the bottleneck of the system. We
will emperically study the case when the number of files
increases in Sec. 6.4.

We split the total number of requests onto different
files in different regions, in each time slot. The rela-
tive access frequency of the files follows a Zipf-like
distribution [30] with parameter 0.8. We emulate the
geographical diversity of requests by splitting the re-
quests among regions following a binomial distribution.
We assign the probability that a request is dispatched
to region i (i = 0, 1, 2, 3, 4, 5) to be the probability of
obtaining exactly i successes out of 6 Bernoulli trials. For
distributing the requests for each file, we assign each of
the 6 regions an index by arranging them in a random
order. The maximum number of requests arising from
each region for each file in one time slot, Amax, is 2,
and the maximum number of requests dispatched from
a queue to a data center per time slot, µmax, is 4. The
impact of the setting of Amax and µmax is negligible
as long as they are significantly larger than the mean
number of requests for a file in each time slot (0.15 as
set above).

10

6.1.2 Cost

We emulate a charging mechanism in the prototype as
follows, instead of relying on native charging method
of Linode Cloud (Linode allows us to transfer 4TB of
data per month for free based on our two-year rental
contract). All charges below are in the units of US
dollars.

The cost of uploading data from the private cloud is
$1×10−10 per byte, which is the average price for Inter-
net access provided by typical hosting service providers
[31][32].

The charges by the public cloud are extracted
from real settings of Amazon EC2 and S3
[25][26]. We estimate VM rental cost per file
according to the following: VM rental cost per file =

Rental cost of a VM instance
Upload bandwidth per VM/Mean size of a file . Since the rental cost

of individual VM instances is not available in the Linode
charging model, we set it according to comparable
charges in Amazon EC2, as the rental cost of a typical
Amazon EC2 VM with upload bandwidth of 250 Mbps
[33], which is $0.7 per hour. The charge of storing a byte
on a data center is in the range [$4.6×10−16, $1.0×10−15].
The cost of uploading from a data center in the
public cloud is randomly selected from the set
{$0.5 × 10−10, $0.7 × 10−10, $0.9 × 10−10, $1.2 × 10−10}
(per byte), which are prices of the data upload service
offered by Amazon EC2 for different scales of purchases
[25]. According to the current cloud business model
[26], there is no charge for downloading data into the
cloud, i.e., oi = 0, ∀i ∈ N .

6.1.3 Delays

In the control center we set the round-trip delay between
users in a region and a data center in another region as
the real latency we obtained by pinging the respective
Linode VMs. We set the round-trip delay between a user
and the data center in the same region ejj to be 5 ms for
all regions j. The average round-trip delay bound set by
the application provider, i.e., α, is 200 ms, since a RTT
more than 200ms will bring users poor experience [34].

ǫ
(m)
j ’s are set proportional to Q

(m)
j

max
+ Z

(m)
j

max
to

make the queueing delay bounds W
(m)
j ’s the same for

each request. By default the target W
(m)
j ’s are 20 and the

impact of its other values will be evaluated in Sec. 6.3.2.

6.1.4 Other Parameters

The duration of a time slot is 10 seconds. The duration of
a time slot is set based on the following practical consid-
erations: On one hand, running the optimization solver
too frequently is too costly, and since file migration is
involved, it is unlikely to be done in a time scale smaller
than a few seconds; on the other hand, the duration of a
time slot should not be too long, as otherwise queueing
delays experienced by requests tend to be too long. After
some trials, we find 10-seconds is an appropriate value.
The default value of V is 100000, and its impact on
the system performance will be evaluated in Sec. 6.3.1.

0 20 40 60
0

20

40

60

80

Time(minutes)

C
os

t p
er

 m
in

iu
te

 (
$)

Our dynamic algorithm
IPMW with Min-Weight Evictions
Myopic scheduling algorithm

Fig. 4. Cost comparison among our dynamic algo-

rithm, IPMW with Min-Weight Evictions, and the Myopic

Scheduling Algorithm (average costs are 22.5, 26.8, 35.6

dollars respectively).

Initially, the files are not deployed in the data centers,

i.e., y
(m)
i (0) = 0, ∀i ∈ N , ∀m ∈ M.

Under each configuration, we run the prototype sys-
tem for 60 minutes, for multiple times. The data pre-
sented in Sec. 6.2 and Sec. 6.3, which show temporal
dynamics of the system, are collected in a representative
run of the experiment, because we observe that the
results of multiple runs reveal the same pattern, while
the data presented in Sec. 6.4 are the average of the
results in 10 runs of the experiments.

6.2 Cost Optimality

6.2.1 Comparison with Existing Algorithms

We first compare our dynamic algorithms against a sim-
ple Myopic Scheduling Algorithm and another existing
algorithm for content placement and request routing
for traditional CDN [14], named Iterative Periodic Max-
Weight Scheduling with Min-Weight Evictions (abbreviated
as IPMW with MWE).

The Myopic Scheduling Algorithm processes all re-
quests in the time slot when they arrive without buffer-
ing them in queues, and decides content replication and
request distribution by minimizing overall operational
cost (3) under constraints (4)(5)(7)(8)(9)(10) by changing
all time-average expressions to that of the current single
time slot.

Similar to our work, IPMW with MWE Algorithm
models the system of frontend source nodes and back-
end cache (backend cache in [14] is a synonym for space of the
storage server in this paper) of the CDN as the input and
output nodes of a switch. It builds queues for requests
for different files at the source nodes, makes decisions on
request routing in every time slot, and refreshes contents
of backend cache periodically. But different from our
algorithm, the size of the cache is static, which renders a
trade-off between the storage cost and queueing delays.
To make the comparison fair, we do a binary search for
the optimal size of its backend cache which leads to
the smallest cost, under the constraint that the queueing
delays of more than 90% of requests are within the

11

0 20 40 60
0

1

2

3

4

5

Time(minutes)

C
os

t p
er

 m
in

ut
es

 (
$)

T-slot look ahead mechanism
Our dynamic algorithm

Fig. 5. Cost comparison among our dynamic algorithm

and the T-slot lookahead mechanism (|M| = 100) (aver-

age costs are 2.6 and 3.0 dollars respectively).

specific target. Another parameter that needs to be set for
IPMW with MWE is the periodicity when the content of
the backend cache is allowed to be refreshed. To compare
fairly, we set the periodicity to be 1, the same as what is
allowed in running our dynamic algorithm.

Fig. 4 shows the overall cost incurred at each time slot
when each method is applied. We observe that the cost
incurred by our dynamic algorithms is lower than that
by the Myopic Scheduling Algorithm and IPMW with
MWE at all times. Our dynamic algorithm outperforms
IPMW with MWE not only in terms of cost reduction,
but also in that our dynamic algorithm can guarantee
the queueing delays of 100% of requests are within the
specific QoS while under the same setup IPMW with
MWE can only guarantee 90%. This is because (1) our al-
gorithm is aware of worst-case queueing deadlines while
IPMW with MWE is not; (2) our dynamic algorithm
flexibly occupies caches of suitable sizes on the fly due
to its deployment in an elastic cloud, while IPMW with
MWE occupies caches of fixed sizes, which tends to incur
more cost; (3) our dynamic algorithm aims to strike a
good trade-off between delays and cost, while IPMW
with MWE only shortens the queue lengths in the best
effort fashion.

6.2.2 Comparison with T-slot Lookahead Mechanism

We next compare our algorithm against the T-slot looka-
head mechanism. In order to solve (22) which contains
non-linear items [y

(m)
i (t)− y

(m)
i (t− 1)]+, we convert the

problem (22) to an equivalent problem as follows:

min
1

T

kT+T∑

t=kT+1

[
∑

m∈M

∑

j∈N

v
(m)

s
(m)
j (t)h+

∑

i∈N

∑

m∈M

v
(m)

y
(m)
i (t)pi

+
∑

i∈N

∑

m∈M

∑

j∈N

c
(m)
ji (t)q

(m)
i +

∑

i∈N

∑

m∈M

∆y
(m)
i (t)w

(m)
i] (32)

subject to: (23)(24)(25)(26)(27)(28)(29)(30) and,

for ∀i ∈ N , ∀m ∈ M, ∀t,

∆y
(m)
i (t) ≥ y

(m)
i (t)− y

(m)
i (t− 1)

∆y
(m)
i (t) ≥ 0

0 20 40 60
0

20

40

60

80

Time(minutes)

C
os

t p
er

 m
in

iu
te

 (
$)

V=10000
V=50000
V=100000
V=300000

Fig. 6. Cost with different V (from V = 10000 to 300000,

average costs are 31.6, 27.4, 25.3, 23.2 dollars respec-

tively).

0 20 40 60
0

100

200

300

400

Time (minutes)
A

vg
. s

er
vi

ce
 r

es
po

ns
e

	d
el

ay
 (

se
co

nd
s)

V=10000
V=50000
V=100000
V=300000

Fig. 7. Average service response delay with different V

(from V = 10000 to 300000, average delays are 91.5,

116.6, 137.9, 183.6 seconds respectively).

To derive the optimal solution, we use an open source
tool MOSEK [35]. We find that it is very time consuming
to solve the T-slot lookahead problem in (32) using the
MOSEK solver in our default system scale, even when
we are merely optimizing the decisions in T = 6 time
slots. Therefore, in this set of experiments, we reduce
the total number of files to 100.

Fig. 5 shows that the gap between the costs achieved
by our algorithm and those by the T-slot lookahead
mechanism with known future information, is close.

6.3 Impact of Algorithm Parameters

We next study the impact of important parameters in
our algorithm, on the tradeoff between cost optimality
and service response delays.

6.3.1 Impact of V

Fig. 6 shows that when V increases, the overall op-
erational cost becomes smaller. Fig. 7 reveals that the
average service response delay per request (queueing
delay+round-trip delay) increases with the increase of
V , while Fig. 8 shows the increase of the average of
maximum request queue lengths (i.e., the average of the
maximum lengths that the request queues have ever
reached until each time slot) with the increase of V as
well. These figures clearly show a tradeoff in V ’s setting.
Selecting V = [50000, 100000] can achieve a good trade-
off between cost optimality and service quality.

12

0 20 40 60
0

50

100

Time (minutes)

A
vg

. o
f m

ax
. q

ue
ue

 b
ac

kl
og

s

V=10000
V=50000
V=100000
V=300000

Fig. 8. Average of maximum queue lengths with different

V (from V = 10000 to 300000, average lengths are 9.0,

13.9, 24.6, 34.1 respectively).

0 20 40 60
0

20

40

60

80

Time (minutes)

C
os

t p
er

 m
in

iu
te

 (
$)

W
(m)
j = 30

W
(m)
j = 25

W
(m)
j = 20

W
(m)
j = 15

W
(m)
j = 10

Fig. 9. Cost with different W
(m)
j ’s (from W

(m)
j = 30 to

10, average costs are 21.3, 23.7, 26.1, 28.6, 33.5 dollars

respectively).

0 20 40 60
0

100

200

300

400

500

Time (minutes)

A
vg

. s
er

vi
ce

 r
es

po
ns

e
	d

el
ay

(s
ec

on
ds

)

W
(m)
j = 30

W
(m)
j = 25

W
(m)
j = 20

W
(m)
j = 15

W
(m)
j = 10

Fig. 10. Average service response delay with different

W
(m)
j ’s (from W

(m)
j = 30 to 10, average delays are 231.4,

201.5, 143.9, 72,9, 39.6 seconds respectively).

6.3.2 Impact of ǫ
(m)
j

The parameters ǫ
(m)
j are controlled by preset target

queueing delay bound W
(m)
j ’s. In Fig. 9 and Fig. 10, we

observe that when W
(m)
j decreases, the overall opera-

tional cost increases while the average service response
delay per request decreases. This shows that the value

of W
(m)
j also renders a tradeoff between cost optimality

and service quality. When W
(m)
j is smaller than 20, the

cost increases significantly. Therefore selecting ǫ around
20 would be a good choice.

1000 2000 3000 4000 5000
0

200

400

600

No. of files

B
an

dw
id

th
 (

K
bp

s)

Our dynamic algorithm
IPMW with MWE

Fig. 11. Time-averaged control messaging bandwidth.

1 2 3 4 5
0

100

200

300

No. of data centers in the public cloud

C
P

U
 ti

m
e

(m
s)

Our dynamic algorithm
IPMW with MWE

Fig. 12. Average computation time consumed by the

control center.

1000 2000 3000 4000 5000
0

10

20

30

40

50

No. of files

M
em

or
y

co
ns

um
pt

io
n

(M
B

)

Our dynamic algorithm
IPMW with MWE

Fig. 13. Average memory consumption by the control

center.

6.4 Overhead Comparison

Now we compare the overhead between our dynamic
algorithm and IPMW with MWE, in terms of control
messaging bandwidth, computation time, and memory
consumption respectively. In this section, in order to
see how the overhead grows when the number of
files grows, we proportionally shrink down the size of
each file, in order to accommodate more files with our
bandwidth-limited Linode VMs.

6.4.1 Control Messaging Bandwidth

Fig. 11 shows that IPMW with MWE consumes less
bandwidth for control messaging than our dynamic
algorithm, and the overhead of both grows linearly
with the number of files. We analyze the reason by
decomposing the control messages into the following

13

categories: (1) HTTP requests from users to the portal,
(2) URL redirection, (3) commands for file replication,
and (4) requests for files from the public cloud to the
private cloud.

In terms of (1) and (2), both algorithms generate
similar numbers of messages. In terms of (3) and (4),
our algorithm generates more messages, because our
algorithm makes use of the elasticity of clouds to flexibly
migrate files so as to minimize the operational cost.
However, we notice that increased control messaging
overhead only constitutes less than 0.05% of bandwidth
consumption of the whole system, which is negligible.

6.4.2 Computation Time

Fig. 12 plots the CPU time consumed when the control
center runs the respective scheduling algorithm once
in each time slot. It shows that when the number of
data centers increases, the CPU time by both algorithms
grows, but our algorithm consumes less CPU time than
IPMW with MWE. This is because the computation
time of our dynamic algorithm is O(|N |2|M |) while the
computation time of IPMW with MWE Algorithm is
O(|N |!|N ||M |).

6.4.3 Memory Consumption

Fig. 13 illustrates the memory consumption of the con-
trol center. It shows that the memory consumed by
both algorithms grows linearly with the number of
files, and our algorithm consumes slightly less memory
than IPMW with MWE. Memory consumption mainly
consists of space for storing temporary results for the
scheduling decisions, and space for the queues. Both
algorithms have queues to buffer the requests. Although
our dynamic algorithm has more queues (except request
queues, it has virtual queues), each virtual queue is only
represented by a single real number, with negligible
memory consumption. Our algorithm incurs smaller av-
erage queue backlogs, and hence smaller overall memory
consumption.

7 CONCLUSION

This paper investigates optimal migration of a content
distribution service to a hybrid cloud consisting of a
private cloud and public geo-distributed cloud services.
We propose a generic optimization framework based
on Lyapunov optimization theory, and design a dy-
namic, joint content placement and request distribution
algorithm, which minimizes the operational cost of the
application with QoS guarantees. We theoretically show
that our algorithm approaches the optimality achieved
by a mechanism with known information in the future
T time slots by a small gap, no matter what the re-
quest arrival pattern is. Our prototype-based evaluation
verifies our theoretical findings. We intend to extend
the framework to specific content distribution services
with detailed requirements, such as video-on-demand
services or social media applications, in our ongoing
work.

ACKNOWLEDGMENT

The research was supported in part by a grant from
Hong Kong RGC under the contract HKU 717812E.

APPENDIX A
PROOF OF THEOREM 1

A.1 Proving Q
(m)
j (t) ≤ Q

(m)
j

max
, ∀j ∈ N , ∀m ∈ M, ∀t

Proof: We prove it by induction.
Induction Basis: According to the assumption of our

model, we have Q
(m)
j (0) = 0 ≤ Q

(m)
j

max
, ∀j ∈ N , ∀m ∈

M.
Induction steps: We assume that Q

(m)
j (t) ≤ Q

(m)
j

max

and then we show Q
(m)
j (t+ 1) ≤ Q

(m)
j

max
.

If Q
(m)
j (t) ≤ V (v(m)pĩ+w

(m)

ĩ
+q

(m)

ĩ
), then Q

(m)
j (t+1) ≤

V (v(m)pĩ + w
(m)

ĩ
+ q

(m)

ĩ
) +Amax = Q

(m)
j

max
.

If Q
(m)
j (t) > V (v(m)pĩ+w

(m)

ĩ
+q

(m)

ĩ
), then according the

definition of ĩ, we have α− ejĩ > 0. Therefore η
(m)

jĩ
(t) >

φ
(m)

ĩ
(t). According the solution to 17), we have y

(m)

ĩ
(t) =

1 and c
(m)

jĩ
(t) = µmax.

Q
(m)
j (t+ 1) = max[Q

(m)
j (t)− s

(m)
j (t)−

∑

i∈N

c
(m)
ji (t), 0] + a

(m)
j

≤ Q
(m)
j (t)− s

(m)
j (t)−

∑

i∈N

c
(m)
ji (t) + a

(m)
j

≤ Q
(m)
j (t)− c

(m)

jĩ
(t) + a

(m)
j

= Q
(m)
j (t)− µmax + a

(m)
j

≤ Q
(m)
j (t)− µmax +Amax

< Q
(m)
j (t)

This means that the length of Q
(m)
j can not increase in

time slot t+ 1. Therefore, Q
(m)
j (t+ 1) < Q

(m)
j

max
.

A.2 Proving Z
(m)
j (t) ≤ Z

(m)
j

max
, ∀j ∈ N , ∀m ∈ M, ∀t

Proof: We prove it by induction.
Induction Basis: According to the assumption, we

have Z
(m)
j (0) = 0 ≤ Z

(m)
j

max
.

Induction Steps: We assume that Z
(m)
j (t) ≤ Z

(m)
j

max
,

and then we show Z
(m)
j (t+ 1) ≤ Z

(m)
j

max
.

If Z
(m)
j (t) ≤ V (v(m)pĩ + w

(m)

ĩ
+ q

(m)

ĩ
), then according

to (12), Z
(m)
j (t + 1) ≤ V (v(m)pĩ + w

(m)

ĩ
+ q

(m)

ĩ
) + ǫ

(m)
j =

Z
(m)
j

max
.

If Z
(m)
j (t) > V (v(m)pĩ + w

(m)

ĩ
+ q

(m)

ĩ
), there are two

cases, which we are going to discuss respectively:

Case (1). When Q
(m)
j (t) > 0: We have η

(m)

jĩ
(t) >

φ
(m)

ĩ
(t). According the solution to (17), we have c

(m)

jĩ
(t) =

µmax. Then

Z
(m)
j (t+ 1) = max[Z

(m)
j (t) + ǫ

(m)
j − s

(m)
j (t)−

∑

i∈N

c
(m)
ji (t), 0]

≤ Z
(m)
j (t) + ǫ

(m)
j − s

(m)
j (t)−

∑

i∈N

c
(m)
ji (t)

≤ Z
(m)
j (t) + ǫ

(m)
j − µmax

< Z
(m)
j (t) ≤ Z

(m)
j

max

14

Case (2). When Q
(m)
j (t) = 0: According (12), Z

(m)
j (t+

1) = max[Z
(m)
j (t)− µmax, 0] ≤ Z

(m)
j (t) ≤ Z

(m)
j

max
.

APPENDIX B
PROOF OF THEOREM 2

Proof: Suppose a
(m)
j (t0) requests arrive at queue

Q
(m)
j at time slot t0. We prove these requests can depart

the queue by time t0 +W
(m)
j by contradiction.

If these requests haven’t left the queue by t0+W
(m)
j , it

must be that Q
(m)
j (t) > 0 for all t ∈ {t0+1, ..., t0+W

(m)
j }.

Then for all t ∈ {t0 + 1, ..., t0 +W
(m)
j } we have:

Z
(m)
j (t+ 1) = max[Z

(m)
j (t) + ǫ

(m)
j − s

(m)
j (t)−

∑

i∈N

c
(m)
ji (t), 0].

Therefore we have

Z
(m)
j (t+ 1) ≥ Z

(m)
j (t) + ǫ

(m)
j − s

(m)
j (t)−

∑

i∈N

c
(m)
ji (t).

Summing up the above over t ∈ {t0+1, ..., t0+W
(m)
j }

yields:

Z
(m)
j (t0 +W

(m)
j + 1)− Z

(m)
j (t0 + 1)

≥ ǫ
(m)
j W

(m)
j −

t0+W
(m)
j∑

t=t0+1

[s
(m)
j (t) +

∑

i∈N

c
(m)
ji (t)].

Because Z
(m)
j (t0+W

(m)
j +1) ≤ Z

(m)
j

max
and Z

(m)
j (t0+1) ≥

0, we have:

t0+W
(m)
j∑

t=t0+1

[s
(m)
j (t) +

∑

i∈N

c
(m)
ji (t)] ≥ ǫ

(m)
j W

(m)
j − Z

(m)
j

max

On the other side, because we assume that not all
a
(m)
j (t0) requests depart by the time t0+W

(m)
j , we have:

t0+W
(m)
j∑

t=t0+1

[s
(m)
j (t) +

∑

i∈N

c
(m)
ji (t)] < Q

(m)
j (t0 + 1) ≤ Q

(m)
j

max
.

Therefore we have Q
(m)
j

max
> ǫ

(m)
j W

(m)
j − Z

(m)
j

max
, i.e.,

W
(m)
j <

Q
(m)
j

max
+Z

(m)
j

max

ǫ
(m)
j

. This contradicts the definition

of W
(m)
j .

Therefore, any request that arrived at time t0 will be

dispatched by time slot t0 +W
(m)
j .

APPENDIX C
PROOF OF THEOREM 3

Define T-slot Drift as ∆T (Θ(t)) = L(Θ(t+ T))− L(Θ(t)).

Based on Lemma 4.11 in [12] , we have

Lemma 1: (T-slot Drift) With our dynamic algorithm,
for all t, all Θ(t), and for any integer T > 0 we have:

∆T (Θ(t)) + V

t+T−1∑

τ=t

M(τ) ≤

BT
2+

∑

m∈M

∑

j∈N

Q
(m)
j (t)

t+T−1∑

τ=t

(a
(m)
j (τ)−s

(m)
j

∗
(τ)−

∑

i

c
(m)
ji

∗
(τ))

+G(t)(
∑

j∈N

∑

m∈M

t+T−1∑

τ=t

(
∑

i∈N

c
(m)
ji

∗
(τ)eji + s

(m)
j

∗
(τ)dj)

− α
∑

j∈N

∑

m∈M

(
∑

i∈N

c
(m)
ji

∗
(τ) + s

(m)
j

∗
(τ)))

+
∑

m∈M

∑

j∈N

Z
(m)
j (t)

t+T−1∑

τ=t

(1
{Q

(m)
j

(τ)>0}
(ǫ

(m)
j − s

(m)
j

∗
(τ)

−
∑

i∈N

c
(m)
ji

∗
(τ))− 1

{Q
(m)
j

(τ)=0}
µmax)

+ V

t+T−1∑

τ=t

(
∑

m∈M

∑

j∈N

∑

i∈N

c
(m)
ji

∗
(τ)q

(m)
i

+
∑

m∈M

∑

j∈N

∑

i∈N

v
(m)

s
(m)
j

∗
(τ)h

+
∑

m∈M

∑

j∈N

v
(m)

y
(m)
i

∗
(τ)pj

+
∑

m∈M

∑

j∈N

[y
(m)
i

∗
(τ)− y

(m)
i

∗
(τ − 1)]+w

(m)
j),

where s
(m)
j

∗

(τ), c
(m)
ji

∗

(τ), and y
(m)
i

∗

(τ), ∀i, j ∈ N ,m ∈
M, are any alternative decisions that can be made in
time slot τ within the feasible set.

Proof of Theorem 3: Because s
(m)
j

∗

(τ), c
(m)
ji

∗

(τ), and

y
(m)
i

∗

(τ), ∀i, j ∈ N ,m ∈ M, are any alternative de-
cisions that can be made in time slot τ within the
feasible set, apparently, s

(m)
j

∗

(τ), c
(m)
ji

∗

(τ), and y
(m)
i

∗

(τ),
∀i, j ∈ N ,m ∈ M, can be the optimal solution of the
problem with information of T time slots into future that
minimizes Eqn. (22). Then, combining with Lemma 1, we
derive

∆T (Θ(t)) + V

t+T−1∑

τ=t

M(τ) ≤ BT
2 + V

t+T−1∑

τ=t

M
∗(τ).

Considering the total K frames and summing the
above over k ∈ {0, ...,K − 1} and then dividing the sum
by V KT , we get

L(Θ(KT))− L(Θ(0))

V KT
+

1

KT

KT−1∑

t=0

M(t) ≤
BT

V
+

1

K

K−1∑

k=0

M̂k.

Rearranging the terms in the above inequality, and
noting that L(Θ(KT)) ≥ 0 and L(Θ(0)) = 0, we derive

1

KT

KT−1∑

τ=0

M(t) ≤
1

K

K−1∑

k=0

M̂k +
BT

V
. �

15

APPENDIX D
DERIVATION OF (14)

∆(Θ(t))

= E{
1

2

∑

m∈M

∑

j∈N

[Q
(m)
j (t+ 1)2 −Q

(m)
j (t)2] +

1

2
[G(t+ 1)2 −G(t)2]

+
1

2

∑

m∈M

∑

j∈N

[Z
(m)
j (t+ 1)2 − Z

(m)
j (t)2]|[Q(t),G(t),Z(t)]}

=
1

2

∑

m∈M

∑

j∈N

[Q
(m)
j (t+ 1)2 −Q

(m)
j (t)2] +

1

2
[G(t+ 1)2 −G(t)2]

+
1

2

∑

m∈M

∑

j∈N

[Z
(m)
j (t+ 1)2 − Z

(m)
j (t)2]

(33)

We have

1

2

∑

m∈M

∑

j∈N

[Q
(m)
j (t+ 1)2 −Q

(m)
j (t)2]

=
1

2

∑

m∈M

∑

j∈N

[(max[Q
(m)
j (t)− s

(m)
j (t)−

∑

i∈N

c
(m)
ji (t), 0] + a

(m)
j (t))2

−Q
(m)
j (t)2]

≤
1

2

∑

m∈M

∑

j∈N

[(s
(m)
j (t) +

∑

i∈N

c
(m)
ji (t))2 + a

(m)
j (t)2]

+
∑

m∈M

∑

j∈N

Q
(m)
j (t)[a

(m)
j (t)− s

(m)
j (t)−

∑

i∈N

c
(m)
ji (t)]

≤
1

2
[|M||N |(b+Nµmax)

2 +A2
max]

+
∑

m∈M

∑

j∈N

Q
(m)
j (t)[a

(m)
j (t)− s

(m)
j (t)−

∑

i∈N

c
(m)
ji (t)],

(34)

and

1

2
[G(t+ 1)2 −G(t)2]

=
1

2
[(max[G(t) +

∑

j∈N

∑

m∈M

(s
(m)
j (t)dj +

∑

i∈N

c
(m)
ji (t)eji)

− α
∑

j∈N

∑

m∈M

(s
(m)
j (t) +

∑

i∈N

c
(m)
ji (t)), 0])2 −G(t)2]

≤
1

2
[
∑

j∈N

∑

m∈M

(s
(m)
j (t)dj +

∑

i∈N

c
(m)
ji (t)eji)]

2

+
1

2
α2[

∑

j∈N

∑

m∈M

(s
(m)
j (t) +

∑

i∈N

c
(m)
ji (t))]2

+G(t)[
∑

j∈N

∑

m∈M

(
∑

i∈N

c
(m)
ji (t)eji + s

(m)
j (t)dj)

≤
1

2
(|M||N |2µmaxemax + bdmax)

2 +
1

2
α2(|M||N |2µmax + b)2

+G(t)[
∑

j∈N

∑

m∈M

(
∑

i∈N

c
(m)
ji (t)eji + s

(m)
j (t)dj),

(35)

and

1

2

∑

m∈M

∑

j∈N

[Z
(m)
j (t+ 1)2 − Z

(m)
j (t)2]

=
1

2

∑

m∈M

∑

j∈N

[(max[Z
(m)
j (t) + 1

{Q
(m)
j

(t)>0}
(ǫ

(m)
j − s

(m)
j (t)

−
∑

i∈N

c
(m)
ji (t))− 1

{Q
(m)
j

(t)=0}
µmax, 0])

2 − Z
(m)
j (t)2]

≤
1

2
[1

{Q
(m)
j

(t)>0}
(ǫ

(m)
j − s

(m)
j (t)−

∑

i∈N

c
(m)
ji (t))− 1

{Q
(m)
j

(t)=0}
µmax]

2

+
∑

m∈M

∑

j∈N

Z
(m)
j (t)[1

{Q
(m)
j

(t)>0}
(ǫ

(m)
j − s

(m)
j (t)−

∑

i∈N

c
(m)
ji (t))

− 1
{Q

(m)
j

=0}
µmax]

≤
1

2
|M||N |[ǫ2max + (b+Nµmax)

2]

+
∑

m∈M

∑

j∈N

Z
(m)
j (t)[1

{Q
(m)
j

(t)>0}
(ǫ

(m)
j − s

(m)
j (t)−

∑

i∈N

c
(m)
ji (t))

− 1
{Q

(m)
j

=0}
µmax].

(36)

We define a constant B = 1
2 |M||N |[A2

max + ǫ2max +
2(b + Nµmax)

2] + + 1
2 (|M||N |2µmaxemax + bdmax)

2 +
1
2α

2(|M||N |2µmax + b)2, where dmax = max{dj |j ∈ N},

emax = max{eji|j ∈ N , i ∈ N}, and ǫmax = max{ǫ
(m)
j |j ∈

N ,m ∈ M}. Combining (34)(35)(36) together, we have

∆(Θ(t))

≤ B +
∑

m∈M

∑

j∈N

Q
(m)
j (t)[a

(m)
j (t)− s

(m)
j (t)−

∑

i∈N

c
(m)
ji (t)]

+G(t)[
∑

j∈N

∑

m∈M

(
∑

i∈N

c
(m)
ji (t)eji + s

(m)
j (t)dj)

− α
∑

j∈N

∑

m∈M

(
∑

i∈N

c
(m)
ji (t) + s

(m)
j (t))] +

∑

m∈M

∑

j∈N

Z
(m)
j (t)

[1
{Q

(m)
j

(t)>0}
(ǫ

(m)
j − s

(m)
j (t)−

∑

i∈N

c
(m)
ji (t))− 1

{Q
(m)
j

=0}
µmax]

Therefore, we get

∆(Θ(t)) + VM(t)

≤ B +
∑

m∈M

∑

j∈N

Q
(m)
j (t)[a

(m)
j (t)− s

(m)
j (t)−

∑

i∈N

c
(m)
ji (t)]

+G(t)[
∑

j∈N

∑

m∈M

(
∑

i∈N

c
(m)
ji (t)eji + s

(m)
j (t)dj)

− α
∑

j∈N

∑

m∈M

(
∑

i∈N

c
(m)
ji (t) + s

(m)
j (t))] +

∑

m∈M

∑

j∈N

Z
(m)
j (t)

[1
{Q

(m)
j

(t)>0}
(ǫ

(m)
j − s

(m)
j (t)−

∑

i∈N

c
(m)
ji (t))− 1

{Q
(m)
j

=0}
µmax]

+ V [
∑

m∈M

∑

j∈N

∑

i∈N

c
(m)
ji (t)q

(m)
i +

∑

m∈M

∑

j∈N

v(m)s
(m)
j (t)h

+
∑

m∈M

∑

j∈N

v(m)y
(m)
i (t)pi

+
∑

m∈M

∑

i∈N

[y
(m)
i (t)− y

(m)
i (t− 1)]+w

(m)
i]

= B −
∑

m∈M

∑

j∈N

s
(m)
j (t)[Q

(m)
j (t) + (α− dj)G(t)

+ 1
{Q

(m)
j

(t)>0}
Z

(m)
j (t)− v(m)V h]−

∑

m∈M

∑

j∈N

∑

i∈N

c
(m)
ji (t)

[Q
(m)
j (t) + (α− eji)G(t) + 1

{Q
(m)
j

(t)>0}
Z

(m)
j (t)− V q

(m)
i]

+ V
∑

m∈M

∑

i∈N

[v(m)y
(m)
i (t)pi + [y

(m)
i (t)− y

(m)
i (t− 1)]+w

(m)
i]

+
∑

m∈M

∑

j∈N

Z
(m)
j (t)[1

{Q
(m)
j

(t)>0}
ǫ
(m)
j − 1

{Q
(m)
j

=0}
µmax]

+
∑

m∈M

∑

j∈N

Q
(m)
j (t)a

(m)
j (t).

16

REFERENCES

[1] Amazon CloudFront, http://aws.amazon.com/cloudfront/.
[2] Microsoft Azure, http://www.microsoft.com/windowsazure/.
[3] Google App Engine, http://code.google.com/appengine/.
[4] Dropbox, http://www.dropbox.com/.
[5] Microsoft Office Web Apps, http://office.microsoft.com/en-

us/web-apps/.
[6] Google docs, http://docs.google.com/.
[7] M. Hajjat, X. Sun, Y. E. Sung, D. Maltz, and S. Rao, “Cloudward

Bound: Planning for Beneficial Migration of Enterprise Applica-
tions to the Cloud,” in Proc. of IEEE SIGCOMM, August 2010.

[8] H. Zhang, G. Jiang, K. Yoshihira, H. Chen, and A. Saxena,
“Intelligent Workload Factoring for a Hybrid Cloud Computing
Model,” in Proc. of the International Workshop on Cloud Services
(IWCS 2009), June 2009.

[9] H. Li, L. Zhong, J. Liu, B. Li, and K. Xu, “Cost-effective Partial
Migration of VoD Services to Content Clouds,” in Proc. of IEEE
CLOUD, July 2011.

[10] X. Cheng and J. Liu, “Load-Balanced Migration of Social Media
to Content Clouds,” in Proc. of NOSSDAV, June 2011.

[11] L. Georgiadis, M. J. Neely, and L. Tassiulas, “Resource allocation
and cross-layer control in wireless networks,” Foundations and
Trends in Networking, vol. 1, no. 1, pp. 1–149, 2006.

[12] M. J. Neely, Stochastic Network Optimization with Application to
Communication and Queueing Systems. Morgan & Claypool, 2010.

[13] ——, “Energy optimal control for time varying wireless net-
works,” IEEE Tran. on Information Theory, no. 7, pp. 2915–2934,
July 2006.

[14] M. M. Amble, P. Parag, S. Shakkottai, and L. Ying, “Content-
Aware Caching and Traffic Management in Content Distribution
Networks,” in Proc. of IEEE INFOCOM, April 2011.

[15] M. J. Neely and L. Golubchik, “Utility Optimization for Dynamic
Peer-to-Peer Networks with Tit-For-Tat Constraints,” in Proc. of
IEEE INFOCOM, April 2011.

[16] M. Pathan, J. Broberg, and R. Buyya, “Maximizing Utility for Con-
tent Delivery Clouds,” in Proc. of the 10th International Conference
on Web Information Systems Engineering, 2009.

[17] F. Chen, K. Guo, J. Lin, and T. L. Porta, “Intra-cloud Lightning:
Building CDNs in the Cloud,” in Proc. of IEEE INFOCOM, 2012.

[18] H. Li, W. Huang, C. W. abd Z. Li, and F. C. Lau, “Utility-
Maximizing Data Dissemination in Socially Selfish Cognitive Ra-
dio Networks,” in Proc. of IEEE International Conference on Mobile
Ad-hoc and Sensor Systems (IEEE MASS 2011), Oct 2011.

[19] S. T. Maguluri, R. Srikant, and L. Ying, “Stochastic Models of
Load Balancing and Scheduling in Cloud Computing Clusters,”
in Proc. of IEEE INFOCOM, 2012.

[20] S. Ren, Y. He, and F. Xu, “Provably-Efficient Job Scheduling for
Energy and Fairness in Geographically Distributed Data Centers,”
in Proc. of IEEE ICDCS, 2012.

[21] N. Laoutaris, G. Smaragdakis, K. Oikonomou, I. Stavrakakis,
and A. Bestavros, “Distributed Placement of Service Facilities in
Large-Scale Networks,” in Proc. of IEEE INFOCOM, 2007.

[22] J. Leblet, Z. Li, G. Simon, and D. Yuan, “Optimal Network
Location in Distributed Virtualized Data-Centers,” Computer Com-
munications, no. 16, pp. 1968–1979, 2011.

[23] S. H. Owen and M. S. Daskin, “Strategic Facility Location: A
Review,” pp. 423–447, 1998.

[24] M. Charikar, S. Guha, E. Tardos, and D. B. Shmoys, “A constant-
factor approximation algorithm for the k-median problem,” in
Proc. of the 31st Annual ACM Symposium on Theory of Computing
(STOC’99), 1999.

[25] Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2/.
[26] Amazon Simple Storage Service, http://aws.amazon.com/s3/.
[27] M. J. Neely, “Opportunistic Scheduling with Worst Case Delay

Guarantees in Single and Multi-Hop Networks,” in Proc. of IEEE
INFOCOM, 2011.

[28] Linode,, https://www.linode.com.
[29] X. Cheng, J. Liu, and C. Dale, “Understanding the Characteristics

of Internet Short Video Sharing: A YouTube-Based Measurement
Study,” IEEE Transactions on Multimedia, vol. 15, no. 5, pp. 1184–
1194, 2013.

[30] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web
Caching and Zipf-like Distributions: Evidence and Implications,”
in Prof. of IEEE INFOCOM, 1999.

[31] SoftLayer, http://www.softlayer.com.
[32] Layered Tech, http://www.layeredtech.com/.

[33] X. Xing, J. Dang, S. Mishra, and X. Liu, “A Highly Scalable
Bandwidth Estimation of Commercial Hotspot Access Points,” in
Proc. of IEEE INFOCOM, 2011.

[34] R. Kuschnig, I. Koer, and H. Hellwagner, “Improving Internet
Video Streaming Performance by Parallel TCP-based Request-
Response Streams,” in Proc. of CCNC, Jan. 2010.

[35] MOSEK, http://www.mosek.com/.

