
Cost-Minimizing Preemptive Scheduling of
MapReduce Workloads on Hybrid Clouds

Xuanjia Qiu∗, Wai Leong Yeow†, Chuan Wu∗, Francis C.M. Lau∗

∗Department of Computer Science, The University of Hong Kong, Hong Kong,{xjqiu, cwu, fcmlau}@cs.hku.hk
†Networking Protocols Department, Institute for INFOCOMM Research (I2R), Singapore,{wlyeow@ieee.org}

Abstract—MapReduce has become the dominant programming
model for processing massive amounts of data on cloud platforms.
More and more enterprises are now utilizing hybrid clouds,
consisting of private infrastructure owned by themselves and
public clouds such as Amazon EC2, to process their spiky
MapReduce workloads, which fully utilize their own on-premise
resources while outsourcing the tasks only when needed. With
disparate workloads of different MapReduce tasks, an efficient
scheduling mechanism is in need to enable efficient utilization of
the on-premise resources and to minimize the task outsourcing
cost, while meeting the task completion time requirements as well.
In this paper, a fine-grained model is described to characterize
the scheduling of heterogeneous MapReduce workloads, and an
online algorithm is proposed for joint task admission control into
the private cloud, task outsourcing to the public cloud, and VM
allocation to execute the admitted tasks on the private cloud,
such that the time-averaged task outsourcing cost is minimized
over the long run. The online algorithm features preemptive
scheduling of the tasks, where a task executed partially on the on-
premise infrastructure can be paused and scheduled to run later.
It also achieves desirable properties such as meeting a pre-set
task admission ratio and bounding the worst-case task completion
time, as proven by our rigorous theoretical analysis.

I. I NTRODUCTION

The MapReduce framework [1] and its open source versions
such as Hadoop [2] have become the dominant programming
models for data-intensive and computation-intensive applica-
tions in cloud data centers. In the MapReduce framework, a
job may spawn many small Map and Reducetasksthat can be
executed concurrently on multiple virtual machines, achieving
significant fault tolerance and job completion time reduction.
With the rapid increase of the number of jobs that are coded
based on the MapReduce framework, efficient schedulers for
such workloads on cloud computing resources are becoming
increasingly important.

Although there have been a number of models and solutions
for scheduling MapReduce workloads on cloud platforms
[3][4], we point out the following important aspects that are
in lack of attention by the existing work, as the motivation for
our research:

(1) Temporally spiky workloads: Arrival of MapReduce
jobs is not only non-uniform but even spiky. Instead of
provisioning resources according to the peak-level workload, it
is common for an enterprise to dispatch its workloads acrossa
hybrid cloud, consisting of its own on-premise data center and
a public cloud, as long as moderate job outsourcing cost can be
achieved and job service delay can be guaranteed [5]. It is not

trivial to design a scheduler that can strategically dispatch the
workloads to guarantee long-term cost optimality, especially
when thea priori knowledge about the job arrival pattern
is unknown. Hajjatet al. [6] focus on one-time application
deployment on hybrid clouds, without considering dynamic
arrivals of workloads. Zhanget al. [5] propose an intelligent
algorithm to factor workloads and dynamically determine the
service placement across an on-premise server and a cloud,
without diving into resource scheduling inside a private cloud.

(2) Heterogenous workloads:Different MapReduce jobs
may contain different numbers of Map and Reduce tasks,
which can span several orders of magnitude [7], with highly
heterogenous task running times, which generally follow a
long-tailed distribution [8]. Scheduling with the assumption
that all jobs are the same or all tasks are the same, is not
practical and results in low efficiency. We seek to model
the MapReduce workloads at a fine-grained level,i.e., to
characterize the lifespans and execution sequence of the tasks
in each MapReduce job in details, in order to schedule the
jobs efficiently onto the available cloud resources.

(3) Preemptive job execution:Preemption refers to pausing a
running task, checkpointing its status and resuming it later on,
making resource available for another task to run first [9]. As
a task may span multiple time slots, preemption is a necessary
mechanism to guarantee that more urgent jobs,e.g., production
jobs, are not starved, while also allowing the cloud to be used
for less urgent jobs when available,e.g., experimental and
research jobs [7]. On the other hand, different amounts of
workloads may remain after a task is preempted, which adds
complexity to the optimization model for task scheduling. The
Dynamic Priority Scheduler [10] uses preemption to achieve
fairness among users, without guaranteeing the completion
time of each job. Maguluriet al. [11] discuss preemptive
algorithms for job scheduling to achieve optimal throughput
in cloud computing clusters, without theoretically addressing
the job service delays.

(4) Quality-of-service (QoS) guarantee:Two types of QoS
are important for MapReduce task scheduling over a hybrid
cloud. One is the admission rate of the workloads, defined as
the ratio between the amount of workloads admitted into the
system and the amount of workloads users submit. The other
is the maximum allowed completion time of each job (referred
to as themaximum tolerable job completion time), defined to
be the duration from the time when the job is admitted into the



Fig. 1. System Model.

system to the time when it is completed in the private cloud or
outsourced to the public cloud. For example, production jobs
are typically associated with a tight completion time, while
non-production jobs can tolerate more scheduling delay. The
scheduler needs to strategically schedule the incoming jobs,
in order to satisfy a pre-set workload admission ratio, while
completing every admitted job by its completion deadline.

To the best of our knowledge, there are no existing studies
that address all the above four aspects in their MapReduce
scheduler design. Our contributions in this paper are high-
lighted as follows:

⊲ We describe a detailed model to characterize Map and
Reduce tasks with different workloads spanning one or
more time slots, and the execution sequence of the tasks
in a MapReduce job.

⊲ We build an optimization framework for joint task admis-
sion control into the private cloud, task outsourcing to the
public cloud, and VM allocation to execute the admitted
tasks on the private cloud, such that the time-averaged
outsourcing cost is minimized over the long run.

⊲ We design an online algorithm based on the Lyapunov
optimization framework, which features efficient task
preemption, and is proven to meet a pre-set job admission
ratio and bound the worst-case task completion times,
based on our rigorous theoretical analysis.

In the remainder of this paper, we detail the system model
and problem formulation in Sec. II, design algorithms for job-
to-task arrival process conversion and online scheduling in
Sec. III, rigorously prove the guarantee of worst-case task
completion time and cost optimality of the algorithms in
Sec. IV, and conclude the paper in Sec. V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a time-slotted system. In each time slot, users
in the enterprise submit a number of MapReduce jobs to
be processed by the hybrid cloud. Description of each job
contains Map/Reduce tasks in the job and expected completion
time for the job, to be detailed in Sec. II-A. The system
will first convert the completion time requirement of each
MapReduce job to the completion time requirements of Map
and Reduce tasks contained in the job, and then makes

TABLE I
IMPORTANT NOTATION

D′ Max. tolerable completion time for a job
J Set of Map tasks for a job
K Set of Reduce tasks for a job
T m

j Required running time for Map taskj
T r

k
Required running time for Reduce taskk

e(j, k) Binary variable indicating whether Map taskj depends
on Reduce taskk (= 1) or not (= 0)

Dm
j Max. tolerable completion time for Map taskj

Dr
k

Max. tolerable completion time for Reduce taskk

C(t) Outsourcing cost att
M Set of all VM types
D Set of all max. tolerable completion times
L Set of all possible task workloads, measured by the

number of time slots required to complete a task
Amdl(t) No. of tasks of type(m, d, l) submitted by users, att
Amax Upper bound ofAmdl(t),∀m ∈ M, d ∈ D, l ∈ L
Imdl(t) No. of tasks of type(m, d, l) admitted toQmdl, at t

Omdl(t) No. of tasks of type(m, d, l) outsourced to the public
cloud directly without being admitted to task queues, at
t

Qmdl(t) No. of unit workload in task queue for type-(m, d, l)
tasks, att

Dmdl(t) No. of unit workload outsourced to the public cloud from
queueQmdl, at t

Nmdl(t) No. of type-(m, d, l) tasks scheduled to run on VMs of
the private cloud, att.

Nmdl(t
−) No. of leftover type-(m, d, l) tasks, att.

Kmdl(t) Backlog of virtual queue for guaranteeing the admission
ratio of type-(m, d, l) tasks, att

Zmdl(t) Backlog of virtual queue for guaranteeing worst-case
completion time of type-(m, d, l) tasks, att

α Pre-set admission ratio of tasks

admission control decisions,i.e., either enqueueing the tasks
into appropriate task queues to be potentially handled by
the on-premise data center, dispatching tasks to the public
cloud, or rejecting the job. For tasks in the task queues, the
system further decides whether to schedule their executionon
VMs in the on-premise data center, or outsource them to the
public cloud, in order to minimize the outsourcing cost while
guaranteeing all the QoS requirements. An illustration of the
system is given in Fig. 1.

We address the following two problems: (1) Given the
scheduling is carried out at the task level rather than the job
level, how should the input job completion deadline require-
ment be converted to individual tasks’ completion deadlines
for efficient scheduling? (2) How should the system schedule
the tasks strategically to achieve minimized outsourcing cost
while satisfying all the QoS requirements? We model these
problems as follows. Key notation is summarized in Table I
for ease of reference.

A. Job-to-task Completion Deadline Conversion

The system receives job submissions from users, in the
sequence ofHi, i = 1, 2, 3, .... Since we are going to restrict
the discussion in this sub-section within the scope of one job,
we drop the subscript that distinguishes the jobs, for simplicity
of the notation. Each job can be represented by a 6-tuple
< J,K,D′, Tm, T r, E >, which is defined as follows:

• J is the set of Map tasks.K is the set of Reduce tasks.
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Fig. 2. An illustration of the MapReduce job model.

• D′ is the user-specified maximum tolerable completion
time for the job.

• Tm
j ,∀j ∈ J , andT r

k ,∀k ∈ K, are sets of workloads of
all the Map tasks and all the Reduce tasks, respectively.
The workload of a task is characterized by the number
of required time slots to complete the task on a VM of
the required type.

• E is a set of binary variables that describe the dependency
between any Map taskTm

j ,∀j ∈ J , and any Reduce task
T r

k ,∀k ∈ K. The dependency relationship is determined
by the partition functions that assign keys of intermediate
pairs to the Reduce nodes. Reduce taskT r

k is dependent
on Map taskTm

j if Tm
j generates an intermediate key-

value pair whose key is in the specified key range of
T r

k . In that situation,T r
k cannot be started untilTm

j has
been completed, and we havee(j, k) = 1; otherwise,
e(j, k) = 0.

This general job model, as illustrated in Fig. 2, applies
to any categories of applications running on the MapReduce
platforms. The parameters in a job descriptor can be specified
by the user who submits the job, or obtained by profiling [12].

Our optimal scheduling algorithm works at the task level
instead of the job level, in order to achieve more efficient
resource utilization. To this end, the system needs to convert
the job submission process into task submission processes,
as well as decides the maximum tolerable completion time
requirements for tasks in a MapReduce job based on that
of the job. LetDm

j ,∀j ∈ J , and Dr
k,∀k ∈ K, denote the

maximum tolerable completion time for each Map task and for
each Reduce task, respectively. The set of feasible completion
times for the tasks should satisfy the following constraints:

max
j∈J,k∈K

e(j, k)(Dm
j + Dr

k) ≤ D′, (1)

T m
j ≤ Dm

j , ∀j ∈ J,

T r
k ≤ Dr

k, ∀k ∈ K.

(1) means that the sum of the tolerable completion times of any
Map task and any Reduce task with dependency in between
should not exceed the tolerable completion time of the job.

We will detail the algorithm that derives the set of feasible
task completion times and task submission times in Sec. III-A.
Each task can then be characterized by a3-tuple (m, d, l):
m ∈ M is the type of VMs the task requires to use;d ∈ D is
the maximum tolerable completion time for the task,i.e., the
duration from the time slot when the task is enqueued to the
time slot when the task is completed;l ∈ L is the required
running time of the task. Here,M, D andL are the sets of

all possible VM types, all possible tolerable completion times,
and all possible running times, respectively. The latter two are
in the units of time slots in our system. The tasks submitted
in the same time slott and with the same 3-tuple(m, d, l)
produce a task arrival process with arrival rateAmdl(t) in t.
We suppose the arrival rates are upper bounded byAmax.

B. Queueing Model and Control Decisions

Tasks that are submitted to the system are queued before
they are scheduled to run. Especially, tasks with the same
(m, d, l) are enqueued in queueQmdl, ∀m ∈ M, ∀d ∈ D,
∀l ∈ L. Each element in a task queue represents one unit of
task workload,i.e., the workload corresponding to one-time-
slot execution of the task on a type-m virtual machine. When
a task is enqueued intoQmdl, l elements are appended to
the tail of the queue; when a task is scheduled to run on its
required VM for one time slot, an element belonging to that
task departs from the queue; when a decision has been made
for outsourcing a task inQmdl, all the remaining elements
associated with that task are removed from the queue. We
denote the backlog of task queueQmdl at t asQmdl(t), which
indicates the number of elements (i.e., the number of unit
workload) in the queue.

We formulate decision variables in our scheduling frame-
work as follows:

1) Task admission or outsourcing upon arrival:In time slot
t, Imdl(t) tasks among theAmdl(t) arrived tasks are admitted
into queueQmdl, by appendinglImdl(t) elements at the end of
the queue.Omdl(t) newly arrived tasks are outsourced to run
in the public cloud, and the restAmdl(t)− Imdl(t)−Omdl(t)
tasks are rejected.

2) Task outsourcing after admission:At time slott, Dmdl(t)
units of workloads at the head of the queueQmdl are out-
sourced to the public cloud. TheseDmdl(t) units of workloads
may span a number of tasks at the head of the queue, which
are partially completed or not scheduled for running at all yet.
For outsourced workload, on-demand VMs from the public
cloud are rent to run them immediately without occurring any
further delay.

3) Task scheduling on the private cloud:At the beginning
of time slot t, Nmdl(t) VMs of type m are scheduled to run
tasks of type(m, d, l). Nmdl(t

−) is the number of left-over
type-(m, d, l) tasks observed at the start of time slott, i.e.,
tasks that were scheduled to run on type-m VMs before time
slot t, and have not yet been completed until the end of time
slot t − 1. Whent = 1, we setNmdl(t

−) = 0.
If Nmdl(t) ≥ Nmdl(t

−), it denotes that allNmdl(t
−)

left-over tasks continue running on their occupied VMs in
time slot t, andNmdl(t)−Nmdl(t

−) type-m VMs are newly
allocated to run the nextNmdl(t)−Nmdl(t

−) waiting tasks in
queueQmdl. If Nmdl(t) < Nmdl(t

−), only Nmdl(t) among
the Nmdl(t

−) left-over tasks can continue running, and the
otherNmdl(t

−) − Nmdl(t) left-over tasks are preempted. We
maintain thefirst-come-first-served (FCFS)principle at the
task level,i.e., between any two running tasks, the one arrived
earlier at the queue has higher priority to continue running.
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In time slott, one unit of workload for each of theNmdl(t)
head-of-the-queue tasks is removed from queueQmdl, i.e.,
Nmdl(t) elements are removed fromQmdl. We note that since
each task is represented by multiple adjacent elements in the
queue, the removed elements belong to different tasks, and
may not be neighboring elements. Essentially, we maintain the
FCFS principle at the task level only, while it is not necessarily
FCFS at the level of elements. An illustration of this queueing
model is given in Fig. 3. Devising a scheduling algorithm
with guarantee of worst-case completion time under such a
queueing model is challenging.

Fig. 3. An illustration of the task queueing model: A—E represent task
indices.

The update of queueQmdl is as follows:
Qmdl(t + 1) = max[Qmdl(t) − Nmdl(t)

−Dmdl(t), 0] + l Imdl(t), ∀m ∈ M, d ∈ D, l ∈ L. (2)

We note thatQmdl(t) andDmdl(t) are in the number of unit
task workload, while the other quantitiesAmdl(t), Imdl(t),
Omdl(t) andNmdl(t) are in the number of tasks.

C. Quality-of-Service Constraints
The first QoS metric under consideration is the task admis-

sion ratio, which is the ratio between the number of processed
tasks (including outsourced tasks and scheduled tasks) andthe
number of submitted tasks. The task admission ratio in the
system should be no smaller than a given thresholdα (set by
the enterprise),i.e.,

lim
T→∞

PT
t=0(Imdl(t) + Omdl(t))

PT
t=0 Amdl(t)

≥ α. (3)

The other QoS requirement is to guarantee the worst-case
completion times of tasks admitted into the queues,i.e., the
tasks are processed within a specified maximum tolerable
completion time. Instead of modeling this constraint explicitly,
we treat it as a property of our proposed scheduling algorithm,
which will be proved by rigorous analysis in Sec. IV.

D. Outsourcing Cost Minimization

Since the on-premise infrastructure is constructed and al-
ways maintained by the enterprise regardless of the workloads,
our scheduling algorithm focuses on the minimization of the
task outsourcing cost, which is the payment to the public
cloud, over the long run. LetH(m) denote the charge by
the public cloud for processing a unit of task workload on a
type-m VM. The overall outsourcing cost in time slott is

C(t) =
X

m∈M

X

d∈D

X

l∈L

(l Omdl(t) + Dmdl(t))H(m). (4)

Our objective is to minimize the time-averaged outsourcing
cost in the long term as follows:

min lim
T→∞

1

T

T
X

t=0

C(t) (5)

subject to:

lim
T→∞

PT
t=0(Imdl(t) + Omdl(t))

PT
t=0 Amdl(t)

≥ α,

∀m ∈ M, d ∈ D, l ∈ L, (6)
X

d∈D

X

l∈L

Nmdl(t) ≤ Ntot
m , ∀m ∈ M, ∀t ∈ [0, T ], (7)

Imdl(t) + Omdl(t) ≤ Amdl(t),

∀m ∈ M, d ∈ D, l ∈ L, t ∈ [0, T ], (8)

Dmdl(t) ≤ Dmax
mdl , ∀m ∈ M, d ∈ D, l ∈ L, t ∈ [0, T ], (9)

Dmdl(t) ∈ Z+ ∪ 0, ∀m ∈ M, d ∈ D, l ∈ L, t ∈ [0, T ], (10)

Imdl(t) ∈ Z+ ∪ 0, ∀m ∈ M, d ∈ D, l ∈ L, t ∈ [0, T ], (11)

Omdl(t) ∈ Z+ ∪ 0, ∀m ∈ M, d ∈ D, l ∈ L, t ∈ [0, T ], (12)

Nmdl(t) ∈ Z+ ∪ 0, ∀m ∈ M, d ∈ D, l ∈ L, t ∈ [0, T ]. (13)

Here,N tot
m is the total number of type-m VMs , andDmax

mdl

is maximum units of outsourced workloads. (6) is to specify
the admission ratio requirement. (7) shows that the number of
scheduled tasks for each type of VM should not exceed the
total number of VMs of that type in the private cloud.

III. T HE ONLINE SCHEDULING ALGORITHM

We next detail the algorithm for converting job submission
sequence into task submission sequences, and then design
the dynamic scheduling algorithm based on the Lyapunov
optimization framework.

A. Converting Job Submission Sequence to Task Submission
Processes

For each submitted job, we need to decide the submission
time and maximum tolerable completion time for each of
the Map and Reduce tasks contained in the job, in order to
generate the task arrival processAmdl(t).

Although there exist many feasible solutions satisfying the
constraints in (1), we seek to derive a simple and efficient solu-
tion method, which provably achieves performance optimality
together with our scheduling algorithm, as follows.

For each Reduce taskk ∈ K, find the Map task that has
the maximum required running time among all the Map tasks
that taskk depends on,i.e., select

j′ = arg max
j∈J

{e(j, k)T m
j }. (14)

Hence, the slack time to allow timely scheduling of Map task
j’ and Reduce task k isD′ − Tm

j′ − T r
k . We allocate one half

of this slack time to the scheduling of Reduce taskk, and set
its maximum tolerable completion time as

Dr
k = T r

k +
D′ − T m

j′
− T r

k

2
. (15)

Suppose this MapReduce job is submitted att0. The submis-
sion time of Reduce task k is set to⌈t0 + D′ − Dr

k⌉.
After deciding the submission time and maximum tolerable

completion time of each of the Reduce tasks using the above
method, we then decide the submission time and tolerable time
of each of the Map tasks. For Map taskj ∈ J , the maximum
tolerable completion time is computed as the job’s tolerable
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completion time minus the largest tolerable completion time
among those of all the Reduce tasks depending on Map task
j, i.e., Dm

j = D′ − Dr
k′ , wherek′ = arg max

k∈K
e(j, k)Dr

k. (16)

The submission time of each Map task is set to the same as
that of the job,i.e., t0.

The above method guarantees that a Reduce task will not
be enqueued until all of its dependent Map tasks have been
completed. As this conversion method is deterministic, when
the arrival process of the jobs is ergodic, the task arrival
processes into the system are also ergodic.

B. Solving the Online Scheduling Problem

We apply the Lyapunov Optimization framework [13][14]
to design an online algorithm to solve problem (5).

To guarantee the satisfaction of admission ratio constraints
in (6), we associate a virtual queueKmdl with each task
queueQmdl(∀m ∈ M, d ∈ D, l ∈ L), with initial backlog
Kmdl(0) = 0 and queue update
Kmdl(t+1) = max[Kmdl(t)+αl Amdl(t)−l Imdl(t)−l Omdl(t), 0].

(17)
To bound the worst-case completion time for each task, we

apply theǫ-persistent servicetechnique [14] to build a virtual
queueZmdl associated with each task queueQmdl, ∀m ∈
M, d ∈ D, l ∈ L, with initial backlogZmdl(0) = 0:

Zmdl(t + 1) = max[Zmdl(t) + 1{Qmdl(t)>0}(ǫmdl − Nmdl(t)

− Dmdl(t)) − 1{Qmdl(t)=0}Ntot
m , 0]. (18)

Here ǫmdl is a pre-defined constant whose value is related to
the desired worst-case completion timed of tasks in queue
Qmdl. We will reveal their relationship in Sec. IV-B.

Let Θ(t) = [Q(t),Z(t),K(t)] denote a vector consisting
of all queues in our system, whereQ(t) = {Qmdl(t),∀m ∈
M, d ∈ D, l ∈ L}, Zmdl(t) = {Zmdl(t),∀m ∈ M, d ∈ D, l ∈
L}, Kmdl(t) = {Kmdl(t),∀m ∈ M, d ∈ D, l ∈ L}. Define
the Lyapunov function as

L(Θ(t)) =
1

2

X

m∈M

X

d∈D

X

l∈L

[Qmdl(t)
2 + Zmdl(t)

2 + Kmdl(t)
2].

The one-slot conditional drift-plus-penalty is

∆(Θ(t)) + V C(t)

≤ B1 + Zmdl(t)(1{Qmdl(t)>0}ǫmdl − 1{Qmdl(t)=0}Ntot
m )

+
X

m∈M

X

d∈D

X

l∈L

l Imdl(t)[Qmdl(t) − Kmdl(t)]

+
X

m∈M

X

d∈D

X

l∈L

l Omdl(t)[V H(m) − Kmdl(t)]

+
X

m∈M

X

d∈D

X

l∈L

[Dmdl(t)(V H(m) − Qmdl(t)

− 1{Qmdl(t)>0}Zmdl(t))] −
X

m∈M

X

d∈D

X

l∈L

Nmdl(t)(Qmdl(t)

+ 1{Qmdl(t)>0}Zmdl(t)), (19)

whereV is a controlling constant the purpose of which will
be detailed in Sec. IV, andB1 is a constant as follows:

B1 =
X

m∈M

X

d∈D

X

l∈L

(Dmax
mdl )2 + 2

X

m∈M

Ntot
m (

X

d∈D

X

l∈L

Dmax
mdl )

+ |D||L|
X

m∈M

(Ntot
m )2 +

X

m∈M

X

d∈D

X

l∈L

max{(1 − α)2, α2}(Amax)2

+
X

m∈M

X

d∈D

X

l∈L

max{ǫ2mdl, (N
tot
m + Dmax

mdl )2}. (20)

Based on the Lyapunov optimization framework [13], we
derive a dynamic algorithm that observes queues inΘ(t) in
each time slott and makes control decisions onImdl(t),
Omdl(t), Dmdl(t), Nmdl(t), ∀m ∈ M, d ∈ D, l ∈ L,
that minimize the RHS (Right-Hand-Side) of (19), such that
an upper bound for the time-averaged outsourcing cost is
minimized. Except the constant terms, RHS of (19) can be
decomposed into three parts, which we seek to minimize
respectively in each time slot as follows.

1) Admission control: We solve the following optimization
problem to deriveImdl(t) andOmdl(t), for eachm ∈ M, d ∈
D, l ∈ L:
min Imdl(t)[Qmdl(t) − Kmdl(t)] + Omdl(t)[V H(m) − Kmdl(t)]

(21)Subject to: constraints (8)(11)(12).
(21) is a linear optimization problem. We observe the

coefficients of the two variablesImdl(t) and Omdl(t), i.e.,
Qmdl(t)−Kmdl(t) andV H(m)−Kmdl(t), in (21), and derive
the following solutions:
Case (1):If Qmdl(t)−Kmdl(t) ≥ 0 andV H(m)−Kmdl(t) <

0, the solution isI∗mdl(t) = 0 andO∗
mdl(t) = Amdl(t);

Case (2):If Qmdl(t)−Kmdl(t) < 0 andV H(m)−Kmdl(t) ≥
0, the solution isI∗mdl(t) = Amdl(t) andO∗

mdl(t) = 0;
Case (3):If Qmdl(t)−Kmdl(t) ≥ 0 andV H(m)−Kmdl(t) ≥
0, the solution isI∗mdl(t) = 0 andO∗

mdl(t) = 0;
Case (4): When Qmdl(t) − Kmdl(t) < 0 and V H(m) −
Kmdl(t) < 0, if Qmdl(t) − Kmdl(t) < V H(m) − Kmdl(t),
i.e., Qmdl(t) < V H(m), the solution isI∗mdl(t) = Amdl(t)
andO∗

mdl(t) = 0; otherwise, the solution isI∗mdl(t) = 0 and
O∗

mdl(t) = Amdl(t).
2) In-queue task outsourcing: We solve the following linear

minimization problem to deriveDmdl(t), for each m ∈
M, d ∈ D, l ∈ L:

min Dmdl(t)(V H(m) − Qmdl(t) − 1{Qmdl(t)>0}Zmdl(t)) (22)
Subject to: constraints (9)(10).
The solution to problem (22) is

D∗
mdl(t) =



0 if V H(m) ≥ Qmdl(t) + 1{Qmdl(t)>0}Zmdl(t)
Dmax

mdl
otherwise

In our system, if part of the workloads of a task in a task
queue is to be outsourced, all the remaining units of workloads
of the task should be outsourced together. Hence, we set
Dmdl(t) to beD∗

mdl(t) plus the smallest number of elements
that can cover complete tasks. The increment is smaller than
l, i.e., Dmdl(t) < D∗

mdl(t) + l.
3) VM allocation for in-queue tasks: We derive Nmdl(t),

for each m ∈ M, by solving the following maximization
problem:

max
X

d∈D

X

l∈L

Nmdl(t)(Qmdl(t) + 1{Qmdl(t)>0}Zmdl(t)) (23)

Subject to: constraints (13)(7).
As Qmdl(t) + 1{Qmdl(t)>0}Zmdl(t) is always non-negative,

to maximize (23), we simply need to find
{d′, l′} = argmaxd∈D,l∈LQmdl(t) + 1{Qmdl(t)>0}Zmdl(t)), (24)

and then setN∗
md′l′ = N tot

m andN∗
mdl = 0, ∀d 6= d′, l 6= l′.

The above dynamic algorithm can be implemented by a
controller module in the enterprise as follows: At the beginning
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of each time slott, the controller receives submitted jobs
and converts them into task arrivals at the current and future
time slots. Then the controller solves the three optimization
problems (21)(22)(23) to decide the optimal values of control
variables on task admission, outsourcing and VM allocation,
and schedules the tasks accordingly. Especially for in-queue
task outsourcing and VM allocation, the controller first out-
sources tasks that are covered byDmdl elements at the head
of each queueQmdl, and then schedules the nextNmdl(t) in-
queue tasks to run on VMs. At the end of the time slot, the
controller updates the status of all queues.

IV. PERFORMANCEANALYSIS

The proof of all lemmas and theorems in this section can
be found in our technical report [15].

A. Strong Stability of Queues

Lemma 1: (Strong Stability of Queues) Our algorithm guar-
antees in all time slots,

Kmdl(t) ≤ Kmax
mdl = V H(m) + αl Amax, (25)

Qmdl(t) ≤ Qmax
mdl = V H(m) + (1 + α)l Amax, (26)

Zmdl(t) ≤ Zmax
mdl = V H(m) + ǫmdl. (27)

As Lemma 1 shows the strong stability of queue (17),
inequality (6) is always satisfied,i.e., the pre-set admission
ratio is guaranteed.

B. Guarantee of Worst-Case Task Completion Time

Theorem 1:(Guarantee of Worst-Case Completion Time)
The worst-case completion times of all tasks admitted into
queueQmdl are upper bounded by the constant

Umdl = ⌈
(1 + l)Qmax

mdl
+ Zmax

mdl

ǫmdl

⌉, (28)

where Qmax
mdl and Zmax

mdl are upper bounds ofQmdl(t) and
Zmdl(t) defined in (26) and (27).

This shows that we can setǫmdl as

ǫmdl =
(1 + l)Qmax

mdl
+ Zmax

mdl

d
,

such that the completion times of tasks inQmdl are no larger
than the maximum tolerable completion time ofd.

C. Optimality of Time-averaged Outsourcing Cost

For simplification of notation, we useX to represent
limT→∞

1
T

∑T

t=0 E(X(t)).
Lemma 2: (Existence of Optimal Stationary, Randomized

Policy): For any ergodic job arrival process, there exists a
stationary randomized control policyπ that choosesImdl(t) ∈
[0, Amax], Omdl(t) ∈ [0, Amax], Nmdl(t) ∈ [0, N tot

m ], that
solve problem (5) augmented with the following constraints:

ǫmdl ≤ Nmdl + Dmdl, ∀m ∈ M, d ∈ D, l ∈ D, (29)

with optimal time-averaged outsourcing costC
π
, only if the

new problem is feasible.
Theorem 2:(Optimality of Outsourcing Cost): The time-

averaged outsourcing cost achieved by our dynamic algorithm
(denoted asC

∗
hereafter) is within a constant gap from the

cost of any stationary randomized control policy that solve
problem (5) augmented with constraint (29),i.e.,

C
∗
≤ C

π
+

B1

V
+ |D|

X

l∈L

l
X

m∈M

H(m), (30)

whereB1 is the constant defined in (20).
The theorem shows that the performance of our dynamic

algorithm can approach the optimal cost of the augmented
problem within a constant gap, which decreases with the
increase ofV . Meanwhile, from (26) we see worst-case
backlogs grow linearly inV . Therefore,V can be adjusted to
achieve a desired tradeoff between the outsourcing cost and
the actual completion time.

V. CONCLUSION

This paper proposes a fine-grained model to characterize
the scheduling of heterogeneous MapReduce workloads over a
hybrid cloud, and an online algorithm for joint task admission
control, task outsourcing and VM allocation. Based on the
Lyapunov optimization framework, we show that the online
algorithm can achieve close-to-minimal time-averaged task
outsourcing cost over the long run, with guarantee of task
admission ratio and worst-case task completion time. As on-
going work, we are implementing the algorithm in practical
systems to further evaluate its performance.
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