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Abstract—MapReduce has become the dominant programming trivial to design a scheduler that can strategically dispdhe
model for processing massive amounts of data on C|0U‘d platforms \workloads to guarantee long-term cost optimality, esplgcia
More and more enterprises are now utilizing hybrid clouds, when thea priori knowledge about the job arrival pattern

consisting of private infrastructure owned by themselves and . . . N
public clouds such as Amazon EC2, to process their spiky 'S unknown. Hajjatet al. [6] focus on one-time application

MapReduce workloads, which fully utilize their own on-premise  deployment on hybrid clouds, without considering dynamic
resources while outsourcing the tasks only when needed. With arrivals of workloads. Zhangt al. [5] propose an intelligent

disparate workloads of different MapReduce tasks, an efficient algorithm to factor workloads and dynamically determine th
scheduling mechanism is in need to enable efficient utilization of service placement across an on-premise server and a cloud,

the on-premise resources and to minimize the task outsourcing ithout diving int heduling insid .
cost, while meeting the task completion time requirements as well. without diving into resource scheduling inside a privatud.

In this paper, a fine-grained model is described to characterize ~ (2) Heterogenous workloadsDifferent MapReduce jobs
the scheduling of heterogeneous MapReduce workloads, and anmay contain different numbers of Map and Reduce tasks,
onIine_aIgorithm is proposed for _joint task admi_ssion control into  which can span several orders of magnitude [7], with highly
the private cloud, task outsourcing to the public cloud, and VM - haterogenous task running times, which generally follow a
allocation to execute the admitted tasks on the private .clc_Jud, | -tailed distributi 81. Scheduli ith th cont
such that the time-averaged task outsourcing cost is minimized ong a'_e istribution [8]. Scheduling wi e assump_
over the long run. The online algorithm features preemptive that all jobs are the same or all tasks are the same, is not
scheduling of the tasks, where a task executed partially on the on- practical and results in low efficiency. We seek to model
premise infrastructure can be paused and scheduled to run later. the MapReduce workloads at a fine-grained leved, to
It also achieves desirable properties such as meeting a pre-setqp 4 actarize the lifespans and execution sequence of ske ta
task admission ratio and bounding the worst-case task completion . N .
time, as proven by our rigorous theoretical analysis. in each_ MapReduce job m_detalls, in order to schedule the
jobs efficiently onto the available cloud resources.
|. INTRODUCTION (3) Preemptive job executiofPreemption refers to pausing a

The MapReduce framework [1] and its open source versiongining task, checkpointing its status and resuming it laig
such as Hadoop [2] have become the dominant programmimgking resource available for another task to run first [4. A
models for data-intensive and computation-intensive iappl a task may span multiple time slots, preemption is a necgssar
tions in cloud data centers. In the MapReduce framework,ngchanism to guarantee that more urgent jets, production
job may spawn many small Map and Reduasksthat can be jobs, are not starved, while also allowing the cloud to beduse
executed concurrently on multiple virtual machines, aghig for less urgent jobs when available,g, experimental and
significant fault tolerance and job completion time reduati research jobs [7]. On the other hand, different amounts of
With the rapid increase of the number of jobs that are codearkloads may remain after a task is preempted, which adds
based on the MapReduce framework, efficient schedulers fmmplexity to the optimization model for task schedulingeT
such workloads on cloud computing resources are becomingnamic Priority Scheduler [10] uses preemption to achieve
increasingly important. fairness among users, without guaranteeing the completion

Although there have been a number of models and soluticttee of each job. Maguluriet al. [11] discuss preemptive
for scheduling MapReduce workloads on cloud platformagorithms for job scheduling to achieve optimal throughpu
[3][4], we point out the following important aspects thatarin cloud computing clusters, without theoretically addirg
in lack of attention by the existing work, as the motivation f the job service delays.
our research: (4) Quality-of-service (QoS) guarante@wo types of QoS

(1) Temporally spiky workloads: Arrival of MapReduce are important for MapReduce task scheduling over a hybrid
jobs is not only non-uniform but even spiky. Instead ofloud. One is the admission rate of the workloads, defined as
provisioning resources according to the peak-level wattjét the ratio between the amount of workloads admitted into the
is common for an enterprise to dispatch its workloads acossystem and the amount of workloads users submit. The other
hybrid cloud, consisting of its own on-premise data centel ais the maximum allowed completion time of each job (referred
a public cloud, as long as moderate job outsourcing cost eantb as themaximum tolerable job completion tilalefined to
achieved and job service delay can be guaranteed [5]. Ittis @ the duration from the time when the job is admitted into the



TABLE |

Admitted IMPORTANT NOTATION
tasks, Ima(t) |«
Task queue, Qmai(t) VMs i i i
L D’ Max. tolerable completion time for a job
J Set of Map tasks for a job
Job-to-Task Scheduling - tToafkﬁ zf]h\?ﬁﬂus'ed K Set of Reduce tasks for a job
H ul 3 - . -
Delay Conversion Nt " Required running time for Map task
7 Required running time for Reduce task
Submitted Private cloud e(j, k) Binary variable indicating whether Map tagkdepends
h process o
jobs by tasks Ama( on Reduce task (= 1) or not (= 0)
users Tasks outsourced to D™ Max. tolerable completion time for Map tagk
public clouds, Omai(t) Tasks outsourced to v —
public clouds, Dmai(t) Dy Max. tolerable completion time for Reduce talsk
Rejected jobs C(t) Outsourcing cost at
M Set of all VM types
D Set of all max. tolerable completion times
L Set of all possible task workloads, measured by the

Fig. 1. System Model. - .
number of time slots required to complete a task

Amai(t) No. of tasks of typgm, d, ) submitted by users, dt
) o ) _ Amaz Upper bound of4,,,4; (¢),Vm € M,d € D,l € L
system to the time when it is completed in the private cloud of 7,,,4: (%) No. of tasks of typem, d, 1) admitted t0Q,, 4, att

outsourced to the public cloud. For example, productiors job| Omai(t) | No. of tasks of type(m, d, [) outsourced to the publid
cloud directly without being admitted to task queues,| at

are typically associated with a tight completion time, whil ‘
non-production jobs can tolerate more scheduling delag Th Q... () | No. of unit workioad in task queue for tyger, d,[)
scheduler needs to strategically schedule the incoming, joly tasks, at

. . s - i | Dmar(t) No. of unit workload outsourced to the public cloud from
in order to satisfy a pre-set workload admission ratio, @nhil queueQ, ., att

completing every admitted job by its completion deadline. [N, | No. of type{m, d, ) tasks scheduled to run on VMs df
To the best of our knowledge, there are no existing studigs __| the private cloud, at.
that address all the above four aspects in their MapRedu‘%mdl(t ) | No. of leftover typetm, d, |) tasks, at. :
. . . . . . mdi (t) Backlog of virtual queue for guaranteeing the admissjon
scheduler design. Our contributions in this paper are high- ratio of type{m, d, 1) tasks, att
lighted as follows: Zrmai (t) Backlog of virtual queue for guaranteeing worst-cgse
. . . n completion time of type4n, d, ) tasks, att
> We describe a Qetallled model to characterlzg Map ane; Bre-set admission ratio of asks
Reduce tasks with different workloads spanning one or
more time slots, and the execution sequence of the tasks

in a MapReduce job. admission control decisiongg., either enqueueing the tasks
> We build an optimization framework for joint task admisjntg appropriate task queues to be potentially handled by
sion control into the private cloud, task outsourcing to thge on-premise data center, dispatching tasks to the public
public cloud, and VM allocation to execute the admittegd|oyd, or rejecting the job. For tasks in the task queues, the
tasks on the private cloud, such that the time-averagggkstem further decides whether to schedule their execotion
outsourcing cost is minimized over the long run. VMs in the on-premise data center, or outsource them to the
> We design an online algorithm based on the Lyapungypiic cloud, in order to minimize the outsourcing cost hil
optimization framework, which features efficient tasly,aranteeing all the QoS requirements. An illustrationhef t
preemption, and is proven to meet a pre-set job admissi%tem is given in Fig. 1.
ratio and boun_d the Worst-ca_se task cqmpletion times,\we address the following two problems: (1) Given the
based on our rigorous theoretical analysis. scheduling is carried out at the task level rather than the jo
In the remainder of this paper, we detail the system modelel, how should the input job completion deadline require
and problem formulation in Sec. Il, design algorithms fds-jo ment be converted to individual tasks’ completion deadline
to-task arrival process conversion and online scheduling for efficient scheduling? (2) How should the system schedule

Sec. lll, rigorously prove the guarantee of worst-case tatihe tasks strategically to achieve minimized outsourciost c
completion time and cost optimality of the algorithms iwhile satisfying all the QoS requirements? We model these
Sec. IV, and conclude the paper in Sec. V. problems as follows. Key notation is summarized in Table |

for ease of reference.
Il. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a time-slotted system. In each time slot, uséis Job-to-task Completion Deadline Conversion

in the enterprise submit a number of MapReduce jobs toThe system receives job submissions from users, in the
be processed by the hybrid cloud. Description of each jgigquence ofi;, i =1,2,3,.... Since we are going to restrict
contains Map/Reduce tasks in the job and expected completfBe discussion in this sub-section within the scope of obe jo
time for the job, to be detailed in Sec. II-A. The systene drop the subscript that distinguishes the jobs, for suitpl

will first convert the completion time requirement of eaclf the notation. Each job can be represented by a 6-tuple
MapReduce job to the completion time requirements of Map /; &, D', T™,T", E >, which is defined as follows:

and Reduce tasks contained in the job, and then makes J is the set of Map taskds is the set of Reduce tasks.



all possible VM types, all possible tolerable completionds,

<> Map task and all possible running times, respectively. The lattey ane

in the units of time slots in our system. The tasks submitted
7 E Reduce task in the same time §I0t and with t.he same 3-tuplem,'d,l)
produce a task arrival process with arrival ratg,(t) in t.

Dependency, We suppose the arrival rates are upper boundedt .
—— el Kt pp pp Y.

B. Queueing Model and Control Decisions

Fig. 2. An illustration of the MapReduce job model. Tasks that are submitted to the system are queued before
they are scheduled to run. Especially, tasks with the same
« D' is the user-specified maximum tolerable completiofin: d,!) are enqueued in queu@,,a, Vm € M, Vd € D,
time for the job. Vvl € L. Each element in a task queue represents one unit of
« Tj",Vj € J, andT},Vk € K, are sets of workloads of task workload,.e., the workload corresponding to one-time-

all the Map tasks and all the Reduce tasks, respective}Qt €xecution of the task on a type-virtual machine. When
The workload of a task is characterized by the numbé@r task is enqueued int@,,q, [ elements are appended to
of required time slots to complete the task on a VM dhe tail of the queue; when a task is scheduled to run on its
the required type. required VM for one time slot, an element belonging to that
« Eis aset of binary variables that describe the dependeriépk departs from the queue; when a decision has been made
between any Map task", Vj € .J, and any Reduce taskfor outsourcing a task ir,,q, all the remaining elements
Ty ,Vk € K. The dependency relationship is determine@ssociated with that task are removed from the queue. We
by the partition functions that assign keys of intermediaéenote the backlog of task que@g, att asQma(t), which
pairs to the Reduce nodes. Reduce taskis dependent indicates the number of elementse( the number of unit
on Map taskT™ if T7" generates an intermediate keyworkload) in the queue.
value pair whose key is in the specified key range of We formulate decision variables in our scheduling frame-
Ty In that situationT}; cannot be started unti’” has Work as follows:
been completed, and we havéj, k) = 1; otherwise, 1) Task admission or outsourcing upon arrivéf time slot
e(j,k) = 0. t, I,a(t) tasks among thel,, (¢) arrived tasks are admitted
This general job model, as illustrated in Fig. 2, applie§t© qUeUeQa, by appendind!,.(t) elements at the end of
to any categories of applications running on the MapRedul¥ queueOy.q(t) newly arrived tasks are outsourced to run
platforms. The parameters in a job descriptor can be specifi§ the public cloud, and the resty,q(t) — Lmai(t) — Omai(t)
by the user who submits the job, or obtained by profiling [12{aSks are rejected. o
Our optimal scheduling algorithm works at the task level 2) Task outsourcing after admissioAt time slott, Dpai(t)
instead of the job level, in order to achieve more efficieMnits of workloads at the head of the que,a are out-
resource utilization. To this end, the system needs to gonvéourced to the public cloud. Thess,q () units of workloads
the job submission process into task submission procesdB8y span a number of tasks at the head of the queue, which
as well as decides the maximum tolerable completion tinfé€ Partially completed or not scheduled for running atefly
requirements for tasks in a MapReduce job based on tff outsourced workload, on-demand VMs from the public
of the job. LetD™ Vj € J, and DI, Vk € K, denote the cloud are rent to run them immediately without occurring any
- J b 1 9 1
maximum tolerable completion time for each Map task and férther defay. _ _ o
each Reduce task, respectively. The set of feasible coimplet 3) Task scheduling on the private cloudt the beginning
times for the tasks should satisfy the following constiint Of time slotZ, Nyai(t) VMs of type m are scheduled to run

max_e(j,k)(DI" + D}) < D, o tasks of type(m,d,l). Npna(t~) is the numbe.r of Ieft?over
JeSREK T type{m, d,l) tasks observed at the start of time siopti.e,

;" < Dj*,vj € J, tasks that were scheduled to run on typevMs before time

Ty < Dy, Vk € K. slot t, and have not yet been completed until the end of time

(1) means that the sum of the tolerable completion timespf aslot t — 1. Whent = 1, we setN,,q4(t~) = 0.

Map task and any Reduce task with dependency in betweenf N,,4i(t) > Nna(t7), it denotes that allN,,q(t™)
should not exceed the tolerable completion time of the job.left-over tasks continue running on their occupied VMs in
We will detail the algorithm that derives the set of feasibléme slott, and N,,,q(t) — Nyuai(t7) typesn VMs are newly

task completion times and task submission times in Sed.lll-allocated to run the nexV,, 4 (t) — N,,q;(t~) waiting tasks in
Each task can then be characterized bg-mple (m,d,l): queueQma- If Npar(t) < Npmar(t7), only N,,q(t) among

m € M is the type of VMs the task requires to ugec D is the N,,q(t~) left-over tasks can continue running, and the
the maximum tolerable completion time for the task, the other N, (t7) — N, (t) left-over tasks are preempted. We
duration from the time slot when the task is enqueued to theaintain thefirst-come-first-served (FCF)rinciple at the
time slot when the task is completede L is the required task level,i.e,, between any two running tasks, the one arrived
running time of the task. HereM, D and L are the sets of earlier at the queue has higher priority to continue running



In time slott, one unit of workload for each of th&,,.ai(t)  our objective is to minimize the time-averaged outsourcing
head-of-the-queue tasks is removed from quélgus, i.€., costin the long term as follows:

Npmai(t) elements are removed fro@,,q;. We note that since

each task is represented by multiple adjacent elementsein th min  lim - ;C(t) ®)
qgueue, the removed elements belong to different tasks, andubject to: . B
may not be neighboring elements. Essentially, we mainten t lim 2zt=0Uma(®) + Oma(t)
FCFS principle at the task level only, while it is not necesga T—oo >ieo Amar(t) -
FCFS at the level of elements. An illustration of this quegei vm e M,de D,lc L, ©)
model is given in Fig. 3. Devising a scheduling algorithm DD Nuait) < N Vm e MVt € [0,T), @)
with guarantee of worst-case completion time under such a debliel
; : : Imai(t) + Omai(t) < Apar(t),
gueueing model is challenging.
Vm e M,de D,l € L,t e 0,T], ®)
Dpai(t) < Dgf,Vm e M,d € D,l € L,t € [0,T], 9)
At time siot x. w1 Dyai(t) € 2T U0,¥m € M,de D,l € L,t € [0,T], (10)
[e[e[e[o]o[p]c]c] Imai(t) € ZTU0,Ym € M,d€ D,l € L,t € [0,T], (11)
m2 Omai(t) € ZT U0,vm e M,d e D,l € L,t € [0,T], (12)
Tasks running on Npai(t) € ZtUu0,Yyme M,de D,l e L,t€[0,T]. (13)
virtual machines .
Here, N/°! is the total number of type: VMs , and D"
At time slot x+1, B is preempted, Ais . . . . .
completed: © VM 1 is maximum units of outsourced workloads. (6) is to specify
[Ee[Eelole] <[] ©VM2 the admission ratio requirement. (7) shows that the number o
scheduled tasks for each type of VM should not exceed the
D Unit workload of partially Unit workload of tasks that have total number of VMs of that type in the private cloud
completed tasks not yet been scheduled )
Fig. 3. An illustration of the task queueing model: A—E regmtstask I11. THE ONLINE SCHEDULING ALGORITHM

indices.
The update of queué,,q; is as follows:

Qmai(t +1) = max[Qmai (t) — Nonar(t)
*Dmdl(t)vo} +lImdl(t),Vm eM,deD,leL. 2)

We next detail the algorithm for converting job submission
sequence into task submission sequences, and then design
the dynamic scheduling algorithm based on the Lyapunov
optimization framework.

We note thaty, 4 (t) and D, 4 (t) are in the number of unit

i L A. C ting Job Submission S to Task Submissi
task workload, while the other quantitie$, s (¢), Lna(t), onverting Job submission sequence fo fask submission

. Processes
Omai(t) and N,,4;(t) are in the number of tasks. ) ) ) o
For each submitted job, we need to decide the submission
C. Quality-of-Service Constraints time and maximum tolerable completion time for each of

_The first QoS metric under consideration is the task admifie Map and Reduce tasks contained in the job, in order to
sion ratio, which is the ratio between the number of pm@ssﬁenerate the task arrival proceds,q (£).

tasks (including outsourced tasks and scheduled taskshand . ‘ . L.
numbér of sut?mitted tasks. The task admission ratiohin theAlthough there exist many feasible solutions satisfying th

system should be no smaller than a given thres et by constraints in (1), we seek to derive a simple and efficieltso
t hould b ller th thresho(det b traint 1 ktod o] d efficielok
the enterprlse)l,.e.,ZT Lt (®) + O (8)) tion method, which provably achieves performance optityali
Jim tzoz”;dl " (Sdl > o 3 together with our scheduling algorithm, as follows.
=0 Tl For each Reduce task € K, find the Map task that has

The other QoS requirement is to guarantee the worst-cage maximum required running time among all the Map tasks
completion times of tasks admitted into the queusss, the that taskk depends oni.e., select
tasks are processed within a specified maximum tolerable j' = argmax {e(j, k)T]"}. (14)

. . . . . - JjeET

completion time. Instead of modeling this constraint ey,
we treat it as a property of our proposed scheduling algorith
which will be proved by rigorous analysis in Sec. IV.

Hence, the slack time to allow timely scheduling of Map task
j’ and Reduce task k i’ — T7' — T;’. We allocate one half
of this slack time to the scheduling of Reduce taslkand set

D. Outsourcing Cost Minimization its maximum tolerable completion time as

. L : D' T —1Ty
Since the on-premise infrastructure is constructed and al- Dy =T 4 — 3 "k
ways maintained by the enterprise regardless of the wadlkloa _ 2 ) )
our scheduling algorithm focuses on the minimization of thaUPPose this MapReduce job is submittedeatThe submis-

task outsourcing cost, which is the payment to the pubffion time of Reduce task k is set fe, + D" — Dy ].
cloud, over the long run. Lefi(m) denote the charge by After deciding the submission time and maximum tolerable

the public cloud for processing a unit of task workload on §°MPletion time of each of the Reduce tasks using the above
typesn VM. The overall outsourcing cost in time slotis method, we then decide the submission time and tolerabke tim
of each of the Map tasks. For Map tagk J, the maximum
c(t) = 1Omar(t) + Dypar (t))H(m). 4 . ) ) .
® ;MdeZDleZL( al® ) m) @ tolerable completion time is computed as the job’s tolexabl

(15



completion time minus the largest tolerable completionetim pgased on the Lyapunov optimization framework [13], we
among those of all the Reduce tasks depending on Map tagkive a dynamic algorithm that observes queue®it) in

Jr i€, DJ"=D'— Dy, wherek' = argmaxe(j, k)Dj. (16) each time slott and makes control decisions ah,q(t),
The submission time of each Map task is set to the same@sai(t), Dmai(t), Nmai(t), Vm € M,d € D,l € L,
that of the job,i.e, . that minimize the RHS (Right-Hand-Side) of (19), such that

The above method guarantees that a Reduce task will @ot upper bound for the time-averaged outsourcing cost is
be enqueued until all of its dependent Map tasks have bewmimized. Except the constant terms, RHS of (19) can be
completed. As this conversion method is deterministic, whelecomposed into three parts, which we seek to minimize
the arrival process of the jobs is ergodic, the task arrivedspectively in each time slot as follows.

processes into the system are also ergodic. 1) Admission controlWe solve the following optimization
B. Solving the Online Scheduling Problem problem to derivel,,q () andOy,a(t), for eachm € M, d e
D leL:

We apply the Lyapunov Optimization framework [13][14]
to design an online algorithm to solve problem (5). min Jonar (£)[@mar (£) = Kmar()] + Omar(O)[VH(m) — Kmar(1)]

To guarantee the satisfaction of admission ratio congtrain Subject to: constraints (8)(11)(12). 1)
in (6), we associate a virtual queus,,; with each task (21.). is a linear optimization problem. We observe the
queueQ,.a(¥m € M,d € D,l € L), with initial backlog Coefficients of the two variables,,,(t) and Omal(t), i.e,
K’mdl(o) =0 and queue update del(t)_K’mdl (t) andVH(m)_Kmdl(t)a in (21)1 and derive
Kot (t41) = max|[Kpnar (£)+0d Apar ()~ Lnar ()~ Opmar(£), 0], the following solutions:

amn Case (1)If del(t)_KnLdl(t) >0 andVH(m)_Kmdl (t) <

To bound the worst-case completion time for each task, wethe solution isI* () =0 and 0%, ;,(t) = Apai(1);
apply thee-persistent servicéechnique [14] to build a virtual Case (2):If Q,nai(t) — Kmai(t) < 0 andV H(m)—Kpq(t) >
queue Z,,q associated with each task quedg.a, Ym € 0, the solution isl?, , (t) = Ama(t) and O}, 4 (t) = 0;

M,d € D,l € L, with initial backlog Z,,,4;(0) = 0: Case (3):f Quai(t)—Kpmai(t) > 0andV H(m)— K (t) >
Zmar(t +1) = max[Zmar(t) + 1{Q,, 4 (1) >0} (émar — Nmar(t) 0, the solution isl}, ;,(t) = 0 and O}, ;(t) = 0;
— Dinar(t)) = 1{q,, 1 (ty=0} N2, 0]. (18) Case (4): When Qa(t) — Kpnai(t) < 0 and VH(m) —

Here e,,q; is a pre-defined constant whose value is related fomai(t) < 0, if Quai(t) — Kmai(t) < VH(m) — Kna(1),

the desired worst-case completion tirdeof tasks in queue 1€+ @mai(t) < VH(m), the solution isI7 ;(t) = Amai(t)

Qmai- We will reveal their relationship in Sec. IV-B. and Oy, ;(t) = 0; otherwise, the solution ig; ; () = 0 and
Let ©(t) = [Q(t), Z(t), K(t)] denote a vector consistingOma(t) = Amai(t)- _ o

of all queues in our system, whe@(t) = {Qma(t),Vm _2) In—qqeue task outsourcmg_We solve the following linear

M,deD,l €L}, Zma(t) = {Zma(t),Ym e M,d e D,l ¢ Minimization problem to deriveD,,q(t), for eachm €

LY, Kpai(t) = {Kma(t),¥Ym € M,d € D,l € L}. Define M,d €D, €Lt

the Lyapunov function as min Diar (£)(VH (M) = Qmai(t) — 1{Q,.0 (>0 Zmai(t)) (22)
1 Subject to: constraints (9)(10).
LOW =5 > > 2 [Qma)® + Zma®)® + Kma (7] Thej solution to problt(erL( (2)2) is
meMdeDIel .
The one-slot conditional drift-plus-penalty is D: (1) = (1)3 Iftr\]/H(m) > Qumar () + 1{Q,, a1 (>0} Zma (t)
m e otherwise
AB®)+Ve) ot In our system, if part of the workloads of a task in a task
< Bi+ Zinar(O)(1{Q,01 (4 >0} emdt = 1{Q a1 (1)=0) N queue is to be outsourced, all the remaining units of woddoa
+ 30 D> Hna®)[Q@mar(t) = Kmar()] of the task should be outsourced together. Hence, we set
meMdeDLEL D, (t) to be D%, . (t) plus the smallest number of elements
+ > > > 10ma®VH(mM) — Kpa(t) that can cover complete tasks. The increment is smaller than
meMAePIcr l,i.€, Dya(t) < D) + 1.
+ 20 20 D Dna®(VH(m) = Qumar(t) 3) VM allocation for in-queue taskswWe derive N,,4(t),

meMddeDIeL 0 . .. A
for eachm € M, by solving the following maximization
~LQua®>0 Zma @) = 3 3> Nmar®(@ma®  proplem:

meMdeDIeLl

+ 1{del(t)>0}Zmdl(t))7 (29) max Z Z Ninat () (Qmar (t) + 1{de,(t)>0}Zmdl(t)) (23)
deDlel
whereV is a controlling constant the purpose of which will Subject to: constraints (13)(7).
be detailed in Sec. IV, and; is a constant as follows: AS Qumai(t) +1{q,..()>0y Zmai(t) is always non-negative,
Bi= Y Y > (Dpan)?+2 > N> Dman) to maximize (23), we simply need to find
meMdeD leL meM deDleL {d' 1"} = argmae p yc 2 Qmar(t) + 14q,, 1 (1)>0} Zmar (1)), (24)
+DIL) > N+ 3 D0 > max{(l— )% e’} (Amaa)®  and then seN* ., = N and N7,y = 0,¥d £ d',1 £ I
meM mEMAEDIEL md'l’ m mdl ’ ’ ’
+ D0 30> max{el,u, (N + DIGE)?Y. (20) The above dynamic algorithm can be implemented by a
mEMAED LEL controller module in the enterprise as follows: At the begig



of each time slott, the controller receives submitted jobs
and converts them into task arrivals at the current and éutur
time slots. Then the controller solves the three optimizati
problems (21)(22)(23) to decide the optimal values of antrwhere By is the constant defined in (20).

variables on task admission, outsourcing and VM allocation The theorem shows that the performance of our dynamic
and schedules the tasks accordingly. Especially for intguelgorithm can approach the optimal cost of the augmented
task outsourcing and VM allocation, the controller first-ouProblem within a constant gap, which decreases with the
sources tasks that are covered By, elements at the headincrease of V. Meanwhile, from (26) we see worst-case

of each queu®),,;, and then schedules the neXi,.q(t) in-  Packlogs grow linearly i/”. Therefore,V’ can be adjusted to
queue tasks to run on VMs. At the end of the time slot, trchieve a desired tradeoff between the outsourcing cost and

the actual completion time.
V. CONCLUSION

This paper proposes a fine-grained model to characterize
The proof of all lemmas and theorems in this section caRe scheduling of heterogeneous MapReduce workloads over a

be found in our technical report [15]. hybrid cloud, and an online algorithm for joint task admissi

A. Strong Stability of Queues control, task outsourcing and VM allocation. Based on the
Lemma 1:(Strong Stability of Queues) Our algorithm guarLyapunov optimization framework, we show that the online

antees in all time slots, algorithm can achieve close-to-minimal time-averaged tas

outsourcing cost over the long run, with guarantee of task

c* géﬁ-l-%-i-\D\Zl > H(m),

leL meMmM

(30)

controller updates the status of all queues.

IV. PERFORMANCEANALYSIS

Kma(t) < KMeF = VH | Amaa, 25 o . o
0 (t;nil(cg)’n;z :";i/lH( )+(Z)++ O)ézA Ezei admission ratio and worst-case task completion time. As on-
Al = Smdl. = " At maz, going work, we are implementing the algorithm in practical
Zmal(t) < ZGF = VH(m) + emar- (27)

As Lemma 1 shows the strong stability of queue (17),
inequality (6) is always satisfied,e., the pre-set admission
ratio is guaranteed. 1
B. Guarantee of Worst-Case Task Completion Time 2l

Theorem 1:(Guarantee of Worst-Case Completion Time)[3]

The worst-case completion times of all tasks admitted int?4]
queueq),,q are upper bounded by the constant

Upoat = [(1 +DQna + Zﬁsﬁ, 28) [5]
€mdl
where Q97 and Z774¢ are upper bounds of),.q(t) and [g
Zma(t) defined in (26) and (27).
This shows that we can set,; as 71
_ L+ DQTET + Zhar’
€Emdl = )
d
such that the completion times of tasks@n,4 are no larger 8]

than the maximum tolerable completion time dbf

C. Optimality of Time-averaged Outsourcing Cost

For simplification of notation, we useX to represent [1[?,]]
limy_oo £ S50 E(X(2)).

Lemma 2:(Existence of Optimal Stationary, Randomize
Policy): For any ergodic job arrival process, there exists
stationary randomized control polieythat chooses,, 4 (t) €
[OvAmaw]v Omdl(t) S [O)ATVL(LIE]! del(t) S [OaNtOt]r that

11
a]

[12]
m
solve problem (5) augmented with the following constraints
€mdl < Nl + Dmai, Vm € M,d € D,l € D, (29) [13]

with optimal time-averaged outsourcing casf, only if the (14

new problem is feasible.

Theorem 2:(Optimality of Outsourcing Cost): The time-[15]
averaged outsourcing cost achieved by our dynamic algorith
(denoted ag” hereafter) is within a constant gap from the
cost of any stationary randomized control policy that solve
problem (5) augmented with constraint (2.,

systems to further evaluate its performance.
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