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Abstract—It is common for cloud users to require clusters of inter-connected virtual machines (VMs) in a geo-distributed IaaS cloud,
to run their services. Compared to isolated VMs, key challenges on dynamic virtual cluster (VC) provisioning (computation +
communication resources) lie in two folds: (1) optimal placement of VCs and inter-VM traffic routing involve NP-hard problems, which
are non-trivial to solve offline, not to mention if an online efficient algorithm is sought; (2) an efficient pricing mechanism is missing,
which charges a market-driven price for each VC as a whole upon request, while maximizing system efficiency or provider revenue
over the entire span. This paper proposes efficient online auction mechanisms to address the above challenges. We first design
SWMOA, a novel online algorithm for dynamic VC provisioning and pricing, achieving truthfulness, individual rationality, computation
efficiency, and (1 + 2 log µ)-competitiveness in social welfare, where µ is related to the problem size. Next, applying a randomized
reduction technique, we convert the social welfare maximizing auction into a revenue maximizing online auction, PRMOA, achieving
O(log µ)-competitiveness in provider revenue, as well as truthfulness, individual rationality and computation efficiency. We investigate
auction design in different cases of resource cost functions in the system. We validate the efficacy of the mechanisms through solid
theoretical analysis and trace-driven simulations.
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1 INTRODUCTION

W ITH the proliferation of cloud computing, more and
more individuals and businesses are resorting to

cloud platforms for deploying services and running jobs.
Besides purchasing individual virtual machines (VMs), sig-
nificant demands arise on renting a collection of VMs and
network bandwidth in-between, to create a virtual clus-
ter (VC) with an inter-connecting virtual private network.
Prominent examples include cloud CDNs built on top of vir-
tual clusters across geo-distributed cloud data centers, e.g.,
Netflix and Comcast on AWS cloud [1]. Enabling technolo-
gies such as network virtualization have been studied in
the past years [2][3][4][5]. Virtual cluster/network services
have been provided by IaaS providers (e.g., Amazon Virtual
Private Cloud [6]), where a user defines a VC containing
several VMs and the bandwidth demand among them, and
the cloud provider provisions the cluster (or virtual private
cloud) with exclusive resources and bandwidth guarantee.
For example, Comcast is exploiting Amazon VPC to provide
interactive entertainment on demand [7].

The provisioning of a virtual cluster involves VM place-
ment, i.e., assigning each VM to a location (e.g., a data
center), and inter-VM traffic routing, i.e., finding path(s)
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with available bandwidth to send the traffic from one VM
to another. There is not yet an efficient resource allocation
algorithm for VC provisioning even in the offline case with
all user VC requests known, due to the NP hard nature of
the underlying problem. In practice, user requests arrive
dynamically over time; an efficient online algorithm is in
need, which allocates resources for VC provisioning on the
spot, while guaranteeing long-term optimality in resource
utilization and user satisfaction. The focus of recent studies
on VC provisioning (a.k.a. virtual network embedding in
some literature) has been on heuristic offline or online
algorithm design to approximate the optimal solutions, with
no analytical performance guarantee. We provide a detailed
summary of the existing work in Sec. 2.

Moreover, an efficient pricing mechanism is missing, to
charge users for the VCs on the go. The current practice
is to charge an aggregate price of VMs and bandwidth
usage in a virtual cluster, based on the fixed unit prices
of the computation and communication resources [8]. Such
a pricing method lacks market agility to adapt to supply-
and-demand changes, risking the provider’s revenue as
well as social welfare. As a representative market-driven
mechanism, auctions have been studied in cloud computing
[9][10][23][25]. Compared with fixed pricing, an auction
mechanism enables appropriate prices that take real-time
demand and supply into consideration, avoiding overpric-
ing or underpricing and achieving revenue or social welfare
maximization. The existing cloud auctions focus on alloca-
tion of separate VMs [9], or VM bundles which demand
computational resources (CPU, RAM, storage) only (but
not inter-VM bandwidths) [10]. It is in fact common to
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send traffic between VMs in a VC, e.g., large replication
traffic between VMs in a distributed cloud storage system,
requesting bandwidths to be allocated between the VMs as
well.

To the best of our knowledge, online auction of an
entire virtual cluster, including VMs and the network in-
between, has not been studied. The difficulty mainly lies in
the NP-hard nature of the resource allocation problem for
VC provisioning, which hinders exact solutions as typically
needed in designing truthful and social welfare maximizing
auction mechanisms, even in the offline case. The challenge
escalates when we practically target an online auction re-
quiring timely allocation and pricing decisions on the go,
while maximizing social welfare or provider revenue over
the entire system span.

This paper designs efficient and competitive online auc-
tions for on-demand provisioning and pricing of VCs de-
ployed over geo-distributed cloud data centers with linear
or non-linear operational costs. Users arrive dynamically,
specifying potential VCs to deploy with tailor-made VMs
in different data centers, as well as the traffic in between,
at different willingness-to-pay prices. Two online auction
mechanisms are designed for social welfare maximiza-
tion and provider revenue maximization, respectively. The
mechanisms are designed based on an online auction frame-
work which dynamically maintains a cost for each type of
resources in each data center. Based on which payments of
potential VCs are computed, the best VM placement scheme
for each user is selected, and acceptance/rejection decisions
are made. Our detailed contributions are summarized as
follows.

First, in the design of the social welfare maximizing
auction, SWMOA, we set a dynamic unit cost for each type
of computation and communication resources at and across
the data centers, which increases with the depletion of the
corresponding type of resource. We find the best VC provi-
sioning scheme for each user among the schemes indicated
in his bid, which maximizes his utility, by formulating a VC
provisioning linear program (LP). The LP can be reduced
to a minimum cost multicommodity flow problem, which
is efficiently solvable using existing algorithms. We then
compute the overall cost of the obtained VC provisioning
scheme and compare the cost with the willingness-to-pay
from the user. A user is accepted if the VC acquired provides
positive utility. In the case of linear resource costs, we show
that SWMOA achieves truthfulness, individual rationality,
computation efficiency, and (1 + 2 logµ)-competitiveness in
social welfare, where µ is related to the problem size. In
the case of non-linear costs, we also show that our auction
algorithm still achieves truthfulness, individual rationality,
computation efficiency, and O(logµ)-competitiveness in so-
cial welfare.

Second, the revenue maximizing online auction, PRMOA,
is built on the basis of SWMOA. We use SWMOA to first
obtain a tentative VC allocation and a payment for each
user, and then re-examine each tentatively accepted bid
with a randomized boosted payment to improve provider
revenue. The randomized payment is carefully designed to
be still below the user’s corresponding true valuation with
high probability, without the knowledge of the actual true
valuation. In this way, the provider is able to extract almost

the largest possible revenue with high probability. PRMOA
achieves O(logµ)-competitiveness in provider revenue in
case of linear resource costs, as well as truthfulness, indi-
vidual rationality and computation efficiency.

In the rest of the paper, we discuss related work in Sec. 2
and present the system model in Sec. 3. Sec. 4 presents the
social welfare maximizing online auction, SWMOA, in the
case of linear resource costs. Sec. 5 presents the revenue
maximizing online auction, PRMOA, in the case of linear
resource costs. Sec. 6 extends the model and auction design
to the non-linear operational cost cases. Sec. 7 presents the
trace-driven simulation studies and Sec. 8 concludes the
paper.

2 RELATED WORK

The virtual cluster provisioning (a.k.a. virtual network em-
bedding/mapping) problem has attracted substantial re-
search interest in recent years. Li et al. [11] formulate the
VM placement problem and consider the traffic cost and
physical machine utilization cost. Zhang et al. [12] study
how to map VMs to servers to minimize the failure prob-
ability of the user’s virtual data center (i.e., maximize the
reliability). Heuristic algorithms are proposed to calculate
the failure probability and minimize it efficiently. Ballani et
al. [13] propose a pricing mechanism for VMs based on a
user’s bottleneck resource consumption in VM placement.
Esposito et al. [14] solve the VC mapping problem using
primal and dual decomposition. Chowdhury et al. [15] re-
duce VC mapping to link mapping which is formulated
as an integer programming (IP) program, and solve the
latter whenever a VC request arrives using LP relaxation
and deterministic/randomized rounding. All these work on
offline solutions of VC provisioning.

For handling online VC provisioning, Grandl et al. [16]
present a scheduling algorithm to assign tasks to machines,
which is essentially a multidimensional bin packing algo-
rithm. Even et al. [17] [18] study the online multicommodity-
flow routing problem and the online VC mapping algo-
rithm. Allowing violation of capacity constraints, a near-
optimal online algorithm is proposed. Cai et al. [19] propose
a quadratic IP formulation for the VC provisioning problem.
Compared to these work, we propose the pricing rule to
stimulate users to report their real valuation, and we use
solid theoretical analysis to guarantee the performance of
our algorithms in the worst case.

Auction mechanisms have been widely applied for ef-
ficient resource allocation in various networking systems.
To design a truthful auction with an NP-hard underlying
allocation problem, a useful technique is to first design an
approximation algorithm, and then use the critical bid rule
to decide an appropriate price [20], which is an extension of
the classic VCG technique [21]. Sun et al. [22] adopt this tech-
nique and design a dynamic spectrum auction. Wang et al.
[9] apply the same method, and derive a collusion-resistant
mechanism for cloud computing. Mashayekhy et al. [23]
extend the method to online auctions. Another approach
is to resort to the LP decomposition technique [24]. Zhang
et al. [25] and Shi et al. [10] design truthful auctions for
dynamic VM provisioning using this method. In addition,



3

Zhang et al. [26][27] design VM auctions following differ-
ent approaches, the MIDR algorithm and the primal-dual
framework. Fu et al. [28] apply a core-selecting technique
to the VM provisioning problem, to prevent shill bidding.
None of the existing cloud auctions consider the allocation
of both VM computational resources and inter-VM commu-
nication resources simultaneously, which is necessary when
users request VCs. In VC auctions, the underlying resource
allocation problem is significantly more difficult, involving
both VM placement and traffic routing decisions, calling for
novel online algorithm design.

3 PROBLEM MODEL

3.1 Online VC Auction
Consider an IaaS cloud with P geo-distributed data centers
(DCs). Let [X] denote the integer set {1, 2, . . . , X}, where
X can be different quantities. Data center p ∈ [P ] has
Âtp,r units of type-r computational resources at time t (such
as CPU, RAM and disk), for all r ∈ [R], where R is the
number of computational resource types. The data centers
are inter-connected through S gateway routers, each of
which is located with one data center, and hence S = P .
An illustration of the data center network is given in Fig. 1.
Let E be the set of links connecting gateway routers and
data centers. The bandwidth capacity of link (w1, w2) ∈ E is
d̂tw1,w2

at time t, where w1 and w2 can be either a router in
[S] or a data center in [P ], whose value can vary over time.
Practically, we assume the bandwidth on the link connecting
a data center and its colocated gateway router (e.g., the link
from DC 1 to Router 1 in Fig. 1) is not the bottleneck,
as compared to inter-DC link bandwidth. For example in
the Google data center network given in [29], there are 19
links interconnecting the geo-distributed data centers. The
bandwidth capacity is known if the cloud provider owns
the network in-between its data centers (e.g., the case of
Google data centers), or can be probed by the cloud provider
otherwise. We will first consider a linear cost model: the unit
operational cost of resource r at DC p at time t is op,r , and
the unit operational cost of bandwidth on link (w1, w2) is
ow1,w2

. We will extend our model and auction design to the
non-linear cost function case in Sec. 6.

N users arrive on the fly, and request for virtual clusters
(VCs). User n ∈ [N ] arrives at time T sn , submits a bid to
demand a VC immediately, and releases the VC at time T fn .
Let Tn = T fn − T sn be the usage duration of user n’s VC,
and T = maxn∈[N ]{Tn} denote the largest usage duration
among all users. The VC required by user n includes Vn
tailor-made VMs, and VM v in the VC consumes anv,r units
of type-r computational resource, ∀r ∈ [R]. The bandwidth
demand to send traffic from VM v1 to VM v2 in user n’s VC
is Γnv1,v2 , which occupies inter-datacenter bandwidth when
VM v1 and VM v2 are located in different data centers. User
n can specify several VM placement schemes with different
preferences. One example of different preferences for VM
placement schemes is in the application of CDN, users
prefer that their content is close to the customers for better
service. Let Bn be his set of VM placement schemes. Each
scheme β ∈ Bn specifies the placement of VMs in his VC,
represented by zn,βv,p ∈ {0, 1}, indicating that VM v is placed
in data center p if zn,βv,p = 1 and not if zn,βv,p = 0. Together

VM 1 

VM 2 

VM 3 

VM 4 DC 1 

DC 2 

DC 3 

Router 1 Router 2 

Router 3 

DC 4 

Router 4 

Fig. 1. An example of virtual cluster provisioning.

with each scheme, the user submits a valuation b′n,β , which
is his willingness-to-pay if his VC bid is successful the VMs
are allocated in the data centers specified in scheme β.
Different values of b′n,β ’s indicate his preferences among the
schemes, decided by the need of his workload or services.
For example, if the user is running MapReduce workloads,
he may specify to place all his VMs in a selected datacenter;
if the user is operating an online video service, his VMs
are preferred to be located close to large population of the
service users.

In summary, the bid of user n can be expressed as
(T sn, T

f
n , {anv,r}v∈[Vn],r∈[R], {Γnv1,v2}v1,v2∈[Vn],

{zn,βv,p }β∈Bn,v∈[Vn],p∈[P ], {b′n,β}β∈Bn).
Fig. 1 shows an example of a user requesting a VC of 4 VMs
and plots one VM placement scheme.

The cloud provider acts as the auctioneer. Upon arrival
of a user’s bid, the provider immediately responds with
whether to serve this user, which VM placement scheme
to be adopted, and what price to charge this user for.
The decision variables include the following: (i) yn,β ∈
{0, 1},∀n ∈ [N ], β ∈ Bn, indicating whether user n’s
request is accepted according to his placement scheme β
(yn,β = 1) and not otherwise (yn,β = 0). At most one
VM placement scheme can be accepted for each bid. (ii)
b̃′n,∀n ∈ [N ], payment of user n if his bid is accepted. (iii)
fnv1,v2,w1,w2

,∀n ∈ [N ], v1, v2 ∈ [Vn], (w1, w2) ∈ E, indicating
the routing traffic on each link, which will be illustrated in
detail in Sec. 3.2.

3.2 Goals of Mechanism Design
Our online auction design targets the following proper-
ties. (i) Truthfulness and individual rationality: The auction
mechanism is truthful if for any user n, bidding a different
valuation other than b′n,β does not increase his utility, which
is the difference between his valuation and his payment
b′n,β− b̃′n. Truthfulness ensures that selfish buyers are stimu-
lated to reveal their true valuations of the VCs they demand,
simplifying the bidding strategy and the auction design.
Individual rationality requires that any user’s utility is non-
negative. (ii) Computation efficiency: The mechanism should
run in polynomial time, in order to be practically applied in
an online fashion. (iii) Competitive in social welfare or provider
revenue: The provider’s revenue equals the total payment
from all users in the online auction,

∑
n∈[N ] b̃

′
n, less the

total operational cost on DCs. Since the provider’s revenue
and the users’ payment part in the aggregate user utility
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(
∑
n∈[N ],β∈Bn b

′
n,βyn,β −

∑
n∈[N ] b̃

′
n) cancel each other, the

social welfare is the total valuation of accepted users, i.e.,∑
n∈[N ],β∈Bn bn,βyn,β , less the total operational cost. Let

Sonline denote the social welfare achieved under an online
mechanism, and Sopt be the offline optimum social welfare.
An online mechanism is c-competitive in social welfare if
the ratio of Sopt/Sonline is upper-bounded by c for any
input instance. On the other hand, Let Ronline be the total
provider revenue obtained under the online auction. An on-
line auction is c-competitive in provider revenue if the ratio
between the offline optimal social welfare and the provider
revenue achieved by the online auction, Sopt/Ronline, is
upper-bounded by c for any input instance. Here comparing
to Sopt instead of the offline revenue in computing the
competitive ratio in revenue is a general practice, since the
optimal truthful auction generating largest revenue cannot
be identified [30]. We also note that in fact no truthful
auction can achieve a revenue at the amount of Sopt, which
is only achievable when the users bid true valuations and
the provider always charges users according to their bid
prices. However, the latter leads to untruthful bidding, and
hence a contradiction.

We next formulate the offline VC provisioning and
winner determination problem, supposing all bids within
system span are known and truthful bidding is guaranteed.
The objective in (1) indicates social welfare maximization,
whose optimal value is Sopt. It can be easily changed to
revenue maximization by replacing the social welfare with
the provider’s revenue.

maximize
∑

n∈[N],β∈Bn

b
′
n,βyn,β −

∑
n∈[N],v∈[Vn],p∈[P ],r∈[R]

z
n
v,pa

n
v,rop,rTn−∑

n∈[N],v1,v2∈[Vn],(w1,w2)∈E

f
n
v1,v2,w1,w2

ow1,w2
Tn

(1)

s.t. znv,p =
∑
β∈Bn

yn,βz
n,β
v,p ∀n ∈ [N ], v ∈ [Vn], p ∈ [P ] (1a)

∑
β∈Bn

yn,β ≤ 1 ∀n ∈ [N ] (1b)

∑
n∈Nt

∑
v∈[Vn]

z
n
v,pa

n
v,r ≤ Â

t
p,r ∀p ∈ [P ], r ∈ [R], t ∈ [T ] (1c)

∑
w:(p,w)∈E

f
n
v1,v2,p,w

= Γ
n
v1,v2

z
n
v1,p

∀p ∈ [P ], n ∈ [N ], v1, v2 ∈ [Vn] (1d)

∑
w:(w,p)∈E

f
n
v1,v2,w,p

= Γ
n
v1,v2

z
n
v2,p

∀p ∈ [P ], n ∈ [N ], v1, v2 ∈ [Vn] (1e)

∑
w:(w,ν)∈E

f
n
v1,v2,w,ν

=
∑

w:(ν,w)∈E

f
n
v1,v2,ν,w

∀n ∈ [N ], v1, v2 ∈ [Vn], ν ∈ [S] (1f)∑
n∈Nt

∑
v1,v2∈[Vn]

f
n
v1,v2,w1,w2

≤ d̂tw1,w2
∀(w1, w2) ∈ E, t ∈ [T ] (1g)

yn,β ∈ {0, 1} ∀n ∈ [N ], β ∈ Bn (1h)

f
n
v1,v2,w1,w2

≥ 0 ∀n ∈ [N ], v1, v2 ∈ [Vn], (w1, w2) ∈ E (1i)

Here znv,p is an auxiliary variable defined in the first con-
straint (1a), representing if data center p is selected to host
VM v in user n’s VC, which is 1 if user n’s bid is accepted,
one VM placement scheme is picked, and v is placed in
p according to this scheme, and 0 otherwise. fnv1,v2,w1,w2

represents the allocated bandwidth on link (w1, w2) for the
traffic flow from VM v1 to VM v2 in user n’s VC. Let Nt
be the set of active users at time t, whose VCs are in use
at t: Nt = {n|t ∈ [T sn, T

f
n ]}. Constraint (1b) guarantees that

at most one scheme is accepted for each user. Constraint

(1c) requires that at any time the allocated computational
resources at each data center do not exceed their respective
capacity. Constraints (1d) (1e) and (1f) model routing of user
n’s traffic flow from VM v1 to VM v2. We allow multi-
path routing of each inter-VM flow. An illustration of two
paths taken by the flow from VM 3 to VM 4 is given in
Fig. 1. Constraints (1d) specifies that at the data center p
where v1 of user n is placed (znv1,p = 1), the total out-
bound bandwidth from data center p allocated for user
n’s flow from v1 to v2 (LHS of (1d)) should equal his
specified bandwidth demand (Γnv1,v2 ). Similarly, constraint
(1e) specifies the total in-bound bandwidth at data center p
equal to the bandwidth demand Γnv1,v2 if v2 is placed at data
center p. Constraint (1f) is the flow conservation constraint
at each router for user n’s flow from v1 to v2. Since routers
are intermediate nodes, in-bound and out-bound flow rates
should be equal. Constraint (1g) requires that the aggregated
bandwidth allocated on each link in E does not exceed the
link capacity.

The objective function of (1) is maximizing the social
welfare, which is the total user valuation less the total
operational cost. The offline optimization problem in (1) is
a mixed integer linear program and can be proven NP-hard
by a reduction to the knapsack problem. The proof is given
in Appendix ??.

Theorem 1. The offline optimization problem (1) is NP-hard.

Hence, it is very challenging even to solve the VC provi-
sioning problem in an offline fashion, with all information
known.

3.3 Preliminaries for Online Mechanism Design
To design an efficient online auction, we introduce a few
concepts which will be useful later. We regard each compu-
tational resource at each data center and the bandwidth on
each link as different resources. Thus there are M = PR+E
types of resources in total (here E = |E|), i.e., PR types
of computational resources at different data centers and E
bandwidth resources on different links. We use r(n,m, t) to
denote the amount of type m resource consumed by user n
at time t, which is a value depending on VM placement and
traffic routing decisions made for the user’s bid. For exam-
ple, let m correspond to computational resource r at data
center p. If the bid is accepted and one or more VMs are al-
located in data center p, then the amount of resource m con-
sumed by user n in a t ∈ Tn is: r(n,m, t) =

∑
v∈[Vn] z

n
v,pa

n
v,r.

If m denotes the bandwidth resource on link (w1, w2) ∈ E,
then the bandwidth consumed on the link by the user
during Tn is: r(n,m, t) =

∑
v1,v2∈[Vn] f

n
v1,v2,w1,w2

.
For ease of presentation, we normalize the scale of

the capacity of each type of resource, so that the total
capacity of resource m at each time t is equal to 1, i.e.,,
Âtp,r = 1, d̂tw1,w2

= 1,∀p ∈ [P ], r ∈ [R], (w1, w2) ∈ E. We
then divide all the demands of resource r(n,m, t) by Âtp,r or
d̂tw1,w2

, respectively. Then the resource constraints (1c) and
(1g) require that

∑
n∈[N ] r(n,m, t) ≤ 1, for all m ∈ [M ] and

t in [T ]. For example, if a user needs 2 VMs in one DC, and
each VM uses 4 CPUs, then the amount of CPU resource
consumed by this user in this DC is 8. If there are totally 320
CPUs in that DC, then r(n,m, t) = 1/40 after normalization.
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Such normalization does not change the resource allocation
result.

Notice that the total operational cost brought by a user
n’s β scheme can be easily calculated, which is o(n, β) =∑
m∈[M ],t∈Tn r(n,m, t)Tnom, where om is the unit opera-

tional cost of type m. We define the net valuation of user
n’s scheme β to be his valuation less operational cost:
bn,β = b′n,β − o(n, β). Then the total social welfare equals
the total net valuation of accepted users.

We make two assumptions. First, a user’s net valuation
is approximately proportional to the amount of resources
his VC requires, i.e., the per unit per time slot valuation is
bounded: 1 ≤ bn,β

Mr(n,m,t)Tn
≤ F1, where F1 is a positive

value, ∀n,m, t and r(n,m, t) 6= 0. We also assume that the
ratio between the highest and lowest valuations is bounded:
maxn∈[N],β∈Bn{bn,β}
minn∈[N],β∈Bn{bn,β}

≤ F2, where F2 is a positive value. Let
F = max{F1, F2} and we will use F as the upper bound for
both of the above inequalities in the following. Second, there
is an upper bound on the amount of resources required by
each VC in each time slot at each data center or link, i.e.,
r(n,m, t) ≤ 1

log µ where µ = 2MTF + 1, which implies
that the resource demand of each individual user is small
as compared to the total capacity of each data center. Here
µ (related to F ) is an important parameter to appear in
our competitive ratios. We summarize important notation
in Table 1, for ease of reference.

TABLE 1
Key Notation

N # of users [X] integer set {1, . . . , X}
P # of data centers b̃′n user n’s payment
M M = PR+ |E| Tn duration of user n’s VC

R # of computational resource types
T sn arriving time of user n
T fn departure time of user n
T maxn{Tn}
b′n,β user n’s valuation if scheme β is accepted
Bn user n’s set of VM placement schemes

r(n,m, t) demand of resource m at t by user n
λm(t, n) load factor of resource m at t before user n

F constant related to valuation variation
µ 2MTF + 1

cm(t, n) cost of resource m at t before user n
C(n, β) total cost for scheme β of user n
Vn # of VMs in user n’s VC
anv,r amount of resource r required by VM v of

user n
Γnv,v′ traffic from VM v to VM v′ of user n
op,r unit operational cost of resource r on DC p
ow1,w2 unit operational cost of link (w1, w2)
yn,β scheme β of user n is accepted or not
zn,βv,p VM v is assigned to data center p or not in β

of user n
E set of links

d̂tw1,w2
bandwidth capacity of link (w1, w2) at time t

Âtp,r capacity of type r resource at DC p at time t
fnv1,v2,w1,w2

traffic from v1 to v2 of user n on link (w1, w2)

4 SOCIAL WELFARE MAXIMIZING ONLINE AUC-
TION

We now design a social welfare maximizing online mecha-
nism, SWMOA.
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Fig. 2. An example of the virtual unit cost function cm(t, n), where µ =
13.5.

Main Idea. At a high level, our strategy of finding a com-
petitive VC allocation solution for problem (1) is to maintain
a dynamic virtual unit cost cm(t, n) for each type of resource
m at each time slot t ∈ [T ] (containing future time slots
with resource reservation), before user n arrives. For any
VM placement scheme β of the user, we calculate a total
virtual cost C(n, β) based on the unit costs and the amount
of resources the scheme consumes. Scheme β is a candidate
to be accepted if its cost is smaller than its net valuation:
C(n, β) ≤ bn,β .

The virtual unit cost cm(t, n) is designed to increase
when the remaining available amount of resource m at
time t depletes. Thus a higher virtual cost indicates that
type of resource is scarce. As a result, the cost of a VC is
higher if it consumes resources in shortage, reducing the
likelihood that it is chosen by the online algorithm. On
the other hand, by comparing the total cost with the net
valuation of the VC, the online mechanism can pick users
with higher net valuation compared with the amount of
resources consumed.

We define the load factor (before user n arrives) of re-
source m for each time t ∈ [T ] to be the amount of already
allocated (reserved) resources in the respective time slot
before user n arrives: λm(t, n) =

∑
n′<n,n′∈[N ] r(n

′,m, t),
where n′ < n indicates that user n′ arrives earlier than
user n. We define the virtual unit cost of resource m at
time t, computed before user n arrives (i.e., before counting
in resource consumption of user n in each time slot), as
follows:

cm(t, n) = µλm(t,n) − 1, ∀t ∈ [T ], n ∈ [N ],m ∈ [M ]. (2)

cm(t, n) is designed to increase exponentially with the
increase of consumed resources. This allows the user to
consume resources freely when resources are abundant,
since the cost is close to 0 when λm(t, n) is small. However
when the load factor is close to 1, the cost increases fast to a
value large enough to forbid the user to use the resource in
shortage. The idea of the unit cost formula comes from the
study of packing/covering LPs [31]. We show an example
of the virtual unit cost function in Fig. 2.

We define the total cost that user n incurs if his scheme β
is accepted as the sum of the costs of all resources consumed:

C(n, β) =
∑

m∈[M ]

∑
t∈Tn

cm(t, n)r(n,m, t), ∀n ∈ [N ], β ∈ Bn. (3)

The mechanism accepts a user if there exists a scheme
β with cost less than its net valuation. If there are more
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than one schemes satisfying the condition, we choose the
one with the largest user utility: bn,β − C(n, β), which is
the scheme maximizing user’s utility under truthful bidding
when we set the payment to be b̃′n = C(n, β) + o(n, β).

Cost Computation. The total cost C(n, β) for each VM
placement scheme β includes the cost of computation re-
sources and the cost of bandwidth consumption. Suppose
cr,p(t, n) denote the virtual unit cost for resource r in
data center p at time t. The total cost of computational
resource is

∑
t∈Tn

∑
r∈[R]

∑
p∈[P ]

∑
v∈[Vn] cr,p(t, n)av,rz

n
v,p.

The bandwidth cost differs depending on the routing plan
of flows among VMs in user n’s VC. We find the best traffic
routing plan for VM placement scheme β, that minimizes
the total bandwidth cost, by solving the LP (4).

The LP identifies the best routing paths and bandwidth
allocation for flows among VMs in user n’s VC (decided
by fnv1,v2,w1,w2

’s), when the VMs are placed in data centers
according to scheme β. Here cw1,w2(t, n) represents the
virtual unit cost for bandwidth on link (w1, w2) at time
t, before user n submits his bid.

∑
v1,v2∈[Vn] f

n
v1,v2,w1,w2

is
the overall bandwidth consumed on link (w1, w2) by flows
among user n’s VMs. pv1 and pv2 represent the assigned
data center for VM v1 and VM v2, respectively. Constraints
(4a) and (4b) ensure that the total out-bound/in-bound
traffic from pv1/to pv2 equals the traffic demand from v1

to v2. Constraint (4c) is the flow conservation constraint.
Solving (4) gives us the optimal routing as well as the
minimum total bandwidth cost under scheme β. In fact, (4)
is a minimum cost multi-commodity flow problem which
allows fractional flows, and can be solved using efficient
algorithms [32] in O((E + V 2

n )P ) time.

minimize
∑

(w1,w2)∈E

∑
t∈Tn

(cw1,w2
(t, n)

∑
v1,v2∈[Vn]

f
n
v1,v2,w1,w2

) (4)

∑
w:(pv1 ,w)∈E

f
n
v1,v2,pv1 ,w

= Γ
n
v1,v2

∀v1, v2 ∈ [Vn] (4a)

∑
w:(w,pv2

)∈E

f
n
v1,v2,w,pv2

= Γ
n
v1,v2

∀v1, v2 ∈ [Vn] (4b)

∑
w:(w,ν)∈E

f
n
v1,v2,w,ν

=
∑

w:(ν,w)∈E

f
n
v1,v2,ν,w

∀v1, v2 ∈ [Vn], ν ∈ [S] (4c)

f
n
v1,v2,w1,w2

≥ 0 ∀(w1, w2) ∈ E, v1, v2 ∈ [Vn] (4d)

Online Auction. The social welfare maximizing online auc-
tion is summarized in Alg. 1. Upon receiving a new user’s
bid, we calculate the minimum total cost for each scheme β
by solving (4). We choose the scheme β∗ with largest user
utility and accept the user if his utility is positive. Then
we upgrade the virtual unit costs. We present properties
achieved by SWMOA in Thm. 2, with proof given in Ap-
pendix ??. Especially, the payment of each winning user is
computed based on virtual unit resource costs before count-
ing in resources required by the user. Such independence
of payments from the bids guarantees truthfulness of the
mechanism.

Theorem 2. The online auction mechanism SWMOA (Alg. 1)
is truthful and individually rational, never violates the resource
constraints, runs in O((E + V 2

n )PB) time in each round, and
achieves a (1 + 2 logµ)-competitive ratio in social welfare, where
B = maxn∈[N ] |Bn| is the largest number of schemes submitted
by any user.

Algorithm 1 Social Welfare Maximization Online Auction
SWMOA

1: if user n ∈ [N ] arrives then
2: for all schemes β ∈ B do
3: Solve the minimum cost multi-commodity flow

problem (4) and find optimal routing
4: Compute the total cost C(n, β)
5: Calculate the utility bn,β − C(n, β) of scheme β
6: end for
7: Let β∗ be the scheme with maximal utility
8: if C(n, β∗) ≤ bn,β∗ then
9: Accept user n with scheme β∗, i.e., set yn,β∗ = 1,
yn,β = 0,∀β 6= β∗

10: Charge user n the payment b̃′n = C(n, β∗) +
o(n, β)

11: Update unit costs cm(t, n+ 1) according to (2)
12: else
13: Reject user n, i.e., set yn,β = 0,∀β ∈ Bn
14: end if
15: end if

Dynamic Routing. Unlike VMs which are not easy to be
migrated among DCs, routing plans can be dynamically
adjusted. An intuitive improvement of the online auction
SWMOA is to adjust the routing plan after each user’s
departure, and find a new routing plan with the lowest flow
cost for each existing user. This can be done by solving the
multi-commodity flow problem (4) for each user again. By
decreasing the traffic on bottleneck links in the network, we
may possibly decrease the users’ payment, while improving
the social welfare. But in some cases, which are easy to
construct, routing adjustment cannot increase the total social
welfare. For example, if only one user arrives during the
whole time span, then any adjustment cannot improve the
social welfare. So we cannot assert that the competitive ratio,
which represents the worst-case performance of the online
algorithm, can be improved under dynamic routing. We will
verify the effect of dynamic routing in the simulations.

5 REVENUE MAXIMIZING ONLINE AUCTION

We next design a revenue maximizing online auction
PRMOA, inspired by a randomized reduction technique
[30].
Main Idea. We use SWMOA to first obtain a tentative VC
allocation and a payment for each user, and then re-examine
each tentatively accepted bid with a randomized boosted
payment to improve revenue. The randomized boosted
payment is carefully designed to be still below the user’s
corresponding true valuation with high probability, without
the knowledge of the true valuation.

Obviously, the ideal payment which maximizes the rev-
enue is a value just below the user’s true valuation. How-
ever, a straightforward payment rule, e.g., 90% of the user’s
bid price, breaks the truthfulness of the mechanism, since
users can gain more from under-reporting their valuation.
The payment has to be independent of the users’ bids in or-
der to guarantee truthfulness. So the principle of designing
a revenue maximization auction is to set the payment close
to the valuation but without knowing the valuation in the
decision process.
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Recall the payment decision process of SWMOA: We
calculate the cost for a scheme C(β, n), accept and charge
the user b̃′n = C(n, β) + o(n, β) if his net valuation for this
scheme is larger than C(β, n). We use the original threshold
C(n, β) as a foundation, and add a randomized value δ
on it: b̃′n = C(β, n) + δ + o(n, β). Setting δ is the key in
achieving revenue competitiveness. If δ is too small, not
enough revenue is extracted. On the other hand, if δ is too
large, the payment may exceed the valuation, forcing our
auction mechanism to reject the user, which brings great
loss to the revenue. In order to upper-bound the occurrence
probability of either cases, we let δ = 0 with probability
1/2, which means that our algorithm will be exactly the
same as SWMOA, both in allocation and payment, with
probability 1/2. With the other half probability, we try to
set the payment as close to the valuation as possible, using
a power-of-2 rule: Let δ = 2ibmin with probability 1

2 logF ,
for i = 1, 2, . . . , logF , where bmin = minn∈[N ],β∈[Bn] bn,β
is the minimal valuation among all users. This guarantees
that with probability 1

2 logF , the payment is at least half
of the valuation but still less than the valuation: bn,β/2 ≤
b̃n ≤ bn,β , which is the ideal payment we want for revenue
competitiveness – this will be verified in our proof of Thm. 3.

Another point worth noting is, since we increase the
payment b̃′n, some users will be rejected in PRMOA, while
accepted in SWMOA. In those cases, we still update the
virtual unit costs as if these users were accepted. That is, the
virtual unit costs are updated just like running SWMOA,
no matter whether a user is actually accepted by PRMOA
or not. In this way, we guarantee that the costs of the
user schemes are always the same as in SWMOA, which
is needed to show the competitiveness of our mechanism.
Online Auction. The online auction is summarized in
Alg. 2, with properties given in Thm. 3. The proof of Thm. 3
is given in Appendix ??.

Algorithm 2 Provider Revenue Maximization Online Auc-
tion PRMOA

1: if user n ∈ [N ] arrives then
2: Set δ = 0 with probability 1/2, and δ = 2ibmin with

probability 1
2 logF , for i = 1, 2, . . . , logF

3: for all schemes β ∈ B do
4: Solve the minimum cost multi-commodity flow

problem (4) and find optimal routing
5: Compute the total cost C(n, β)
6: Calculate the utility bn,β − C(n, β)
7: end for
8: Let scheme β∗ be the scheme with maximal utility
9: if C(n, β∗) ≤ bn,β∗ then

10: Update unit costs cm(t, n + 1) according to (2),
supposing user n is accepted

11: end if
12: Set payment b̃n = C(n, β∗) + δ + o(n, β)
13: if b̃n ≤ bn,β∗ then
14: Accept user n with scheme β∗. Charge the pay-

ment b̃′n.
15: else
16: Reject user n
17: end if
18: end if

Theorem 3. The online auction mechanism PRMOA (Alg. 2)
is truthful and individually rational, never violates the resource
constraints, and achieves a O(logµ)-competitive ratio in provider
revenue in expectation in polynomial time.

6 THE CASE OF NONLINEAR OPERATIONAL COST

In this section, we extend the model from linear operational
costs to non-linear costs, which are more representative
in some scenarios. For example, when Dynamic Voltage
Frequency Scaling (DVFS) [33], which adjusts the voltage of
a CPU to conserve power consumption, is in place, the cost
of CPU, reflecting the power consumption of CPU usage, is
typically non-linear [34]. To deal with such more complex
cost functions, we adopt the Fenchel duality method [35]
to find a competitive online auction, which is similar to
SWMOA. The advantage of applying Fenchel duality is
that it gives us the conjugate form of the nonlinear cost
functions, allowing us to obtain appropriate pricing design
under nonlinear costs.

6.1 Problem Formulation
First we formulate the VC provisioning problem under
nonlinear costs in a slightly different way for simplifying
problem presentation. Suppose there are in total R types
of resources in the system, including all computational
resources at different DCs and bandwidth on all links. We
define a bundle to be a VC placement scheme with a fixed
routing plan. Recall that a scheme is a user specification of
placement of VMs. Under a scheme, the cloud provider can
adopt different routing plans resulting in different resource
usage on links. So a scheme contains an infinite number of
bundles. This is just for simplicity of presentation, and we
will show in the algorithm design that we can find the de-
sired bundle from many bundles using a multi-commodity
flow algorithm in polynomial time. Suppose N users bid
for VCs, and user n’s bundle β requires dn,β,r(t) units of
resource r at time t, for all r and t, and has valuation bn,β .
The operational cost function of resource r is defined as:

fr(yr(t)) =

{
hryr(t)

1+νr yr(t) ∈ [0, Cr]

+∞ yr(t) > Cr
(5)

where Cr is the capacity of resource r, yr(t) is the amount
of resource used at time t, and hr, νr are positive constants.
The cost is super-linear with the increase of yr(t), and
becomes infinite when yr(t) exceeds the capacity. Now we
formulate the social welfare maximization problem:

maximize
∑
n∈[N ]

∑
β∈B

bn,βxn,β −
∑
t∈[T ]

∑
r∈[R]

fr(yr(t)) (6)

s.t.
∑
β∈B

xn,β ≤ 1 ∀n ∈ [N ] (6a)∑
n∈[N ]

∑
β∈B

dn,β,r(t)xn,β ≤ yr(t) ∀r ∈ [R], t ∈ [T ] (6b)

xn,β ∈ {0, 1}, yr(t) > 0 ∀n ∈ [N ], r ∈ [R], t ∈ [T ], β ∈ B (6c)

where xn,β = 1 represents that user n is served with bundle
β. The dual of the problem (6) is:
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minimize
∑
n∈[N ]

un +
∑
t∈[T ]

∑
r∈[R]

f∗r (pr(t)) (7)

s.t. un ≥ bn,β −
∑
t∈[T ]

∑
r∈[R]

dn,β,r(t)pr(t) ∀n ∈ [N ], β ∈ B(7a)

un ≥ 0, pr(t) ≥ 0 ∀n ∈ [N ], r ∈ [R], t ∈ [T ](7b)

where un and pr(t) are dual variables associated with con-
straint (6a) and (6b), and f∗r (pr(t)) is the Fenchel conjugate
[35] of the cost function, whose exact form is:

f∗r (pr(t)) =

{
(pr(t)/(1 + νr))

(1+νr)/νr νr
(hr)1/νr

y0r(t) ≤ Cr
Crpr(t)− hrC1+νr

r y0r(t) > Cr
(8)

where y0
r(t) = ( pr(t)

hr(1+νr) )1/νr .
Compared with the model in Sec. 3.1, the formulation

here is more concise since we replace the concept of schemes
by bundles, and use uniform subscripts r to refer to both
computational and bandwidth resources.

6.2 VC Allocation
We find the allocation of VCs, i.e., the values of xn,β ’s,
using the KKT conditions. The KKT conditions indicate that
xn,β = 0 unless constraint (7a) is tight for n and β. Thus, we
let un be the maximal of 0 and the right hand side (RHS) of
constraint (7a):

un , max{0,max
β∈B
{bn,β −

∑
t∈[T ],r∈[R]

dn,β,r(t)pr(t)}} (9)

Subsequently, we let xn,β = 0, i.e., the provider does not
serve user n, when un = 0. Otherwise we serve bundle β
(xn,β = 1) that maximizes the RHS. The rational of the usage
of KKT conditions here is as follows: we can consider pr(t)
as the marginal price of resources (similar as the cm(t, n) in
SWMOA). Then the second term of the RHS becomes the
total payment of bundle β, which user n should pay for the
requested resources, i.e., p̂n,β ,

∑
t∈[T ],r∈[R] dn,β,r(t)pr(t).

So the RHS is the utility of bundle β if it would be served.
Then the above method maximizes each user’s utility, which
leads to truthfulness and social welfare maximization.

6.3 Payment Design

To design the payment of each user, we only need to
design the marginal price pr(t) at any amount of allo-
cated resources yr(t). The marginal price should cover the
operational cost. So intuitively, under the offline setting,
the marginal price is equal to the marginal operational
cost: f ′r(yr(t)). However, in the online setting, the provider
can only see the current demand. Therefore, our strategy
is to predict the final total demand to be δr times the
current demand, where δr = max{2, (1 + νr)

1/νr}. The
corresponding marginal price is: pr(t) = f ′r(δryr(t)). If
the predicted demand δryr(t) is larger than the capacity
Cr, then we need to set a threshold price to filter out
low valuation bids. We use the state-of-the-art technique
in online auctions [36], and let the marginal price increase
exponentially with demand: pr(t) = f ′r(Cr) exp(θr(yr(t) −

Cr/δr)), where θr = max{ δrνrCr
, δr
Cr(δr−1) ln( Ur

hr(1+νr)Cνrr
)},

and Ur = maxn,β{ bn,β∑
t dn,r,β(t)}. We show in Appendix ??

that this price function guarantees competitiveness of the
online auction. In summary, the marginal price function is
defined as:

pr(t) =

{
f ′r(δryr(t)) yr(t)δr ≤ Cr
f ′r(Cr) exp(θr(yr(t)− Cr/δr)) yr(t)δr > Cr

(10)

Directed by the discussions above, we present the online
algorithm in Alg. 3. Upon arrival of each user, we find the
bundle with largest utility by enumerating all schemes. For
each scheme, we solve the multi-commodity flow problem
to find the routing plan with the lowest payment. Then we
accept the user if there is a bundle with positive utility, and
update the allocation of resources and marginal prices. The
proof of Thm. 4 is given in Appendix ??.

Algorithm 3 Online Auction for Nonlinear Operational
Costs

1: if user n ∈ [N ] arrives then
2: Find the bundle β with the largest utility: bn,β− p̂n,β ,

by solving the multi-commodity flow problem (4) for
each VM scheme.

3: Set the value of un according to (9)
4: if un = 0 then
5: Reject user n, i.e., set xn,β = 0, ∀β ∈ B
6: else
7: Serve user n with bundle β, i.e., set xn,β = 1, and
xn,β′ = 0,∀β′ 6= β

8: Charge payment p̂n,β
9: Update the value of yr(t), pr(t)

10: end if
11: end if

Theorem 4. The online auction mechanism Alg. 3 is truthful
and individually rational, never violates the resource constraints,
runs in polynomial time in each round, and achieves O(logµ)-
competitive ratio in social welfare.

Finally, we can still apply the revenue maximizing tech-
nique introduced in Sec. 5 to design a revenue maximizing
online auction for the non-linear operational cost case based
on Alg. 3, since the basic process of Alg. 3 is the same with
SWMOA. We omit the auction design to avoid duplication.

7 PERFORMANCE EVALUATION

We evaluate our online auction mechanisms based on trace-
driven simulations using data collected from the Google
cluster [37], and run our mechanisms on a server machine in
our server cluster. We translate each job containing multiple
tasks, each demanding different amounts of resources, in the
Google cluster data into a VC request with VMs of different
resource compositions. We generate 5 to 10 schemes for
each user. Each scheme indicates a VC request. To generate
a VC request for a user, we randomly choose a job from
the Google trace data, and decide the number of VMs and
their resource composition according to the tasks the job
contains and their respective resource demand. The VMs
are placed at randomly chosen data centers in each scheme.
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There are R = 3 types of computational resources: CPU
(number of CPU cores), RAM and disk (hard disk space).
We simulate P = 12 data centers inter-connected following
the topology of Google data center network [29]. The default
system span is T = 100. Users arrive following a Poisson
distribution with parameter λ = 50, and their VC usage
durations are randomly chosen within [5, 10]. The amount
of resources consumed by a VM anv,r is set according to
the resource demand of the corresponding task in Google
cluster data. The bandwidth demand between VMs Γnv,v′ is
randomly generated within a range [0, 1]. The overall re-
source capacities, Â, d̂, are set to be approximately [0.2, 0.5]
fraction of the respective overall user resource demand, and
randomly distributed onto data centers and links. This is
to create a highly competitive environment to evaluate the
performance of our online mechanisms. The operational cost
of resources in the linear cost model is randomly generated
within range [0.03, 0.1]. The valuation bn,β is uniformly ran-
domly chosen within the interval decided by the constant F ,
whose default value is 10. We repeat each experiment for 50
times to obtain the average results.

7.1 Evaluation of SWMOA
We first compare our online algorithm SWMOA, Alg. 1,
with the offline optimum. We calculate the offline optimal
social welfare by solving (1) exactly, and divide it by the
social welfare achieved by SWMOA to obtain the performance
ratio (i.e., offline/online social welfare ratio as used in our
figures), under different numbers of users and different
values of F . Recall that the parameter µ in our theoretical
competitive ratio is related to F , i.e., µ = 2MTF + 1. Fig. 3
shows the ratio is smaller for a larger number of users N .
This is because the more users in the system, the less impact
a bad decision for a previous user has on later users. In
contrast, less users make it more difficult to achieve optimal
allocation since each decision involves more resources. We
can also see that for larger values of F , the performance
ratio is larger. The theoretical competitive ratio, O(MTF ),
implies such a result. Larger F represents a larger range
of user valuation. In online resource allocation, serving one
user means that we may need to reject some user in the fu-
ture, whose valuation may be much higher when F is larger,
leading to low competitiveness of the online mechanism.
Fig. 4 shows that the ratio is larger when the number of data
centers P is larger, which is consistent with our theoretical
competitive ratio as well, since M = PR + |E|. Intuitively,
more data centers make the allocation harder since more
different types of resources need to be considered.

We now evaluate the online algorithm SWMOA under
other simulation settings. Different from the default setting
where the overall resource capacities Â, d̂ are set to be
k ∈ [0.2, 0.5] times of the respective overall user resource
demand, we further evaluate SWMOA under k ∈ [0.05, 0.3]
and k ∈ [0.8, 1.2], respectively. Fig. 5 shows that with
smaller resource capacities (the case of k ∈ [0.05, 0.3]), the
performance of SWMOA is not affected. When the resource
capacities are about the overall user demands (the case of
k ∈ [0.8, 1.2]), the performance of SWMOA is near optimal,
since the majority of user demands can be satisfied.

Next we compare SWMOA with a heuristic adaptive
algorithm TV-VNE in [38], by comparing the social welfare

ratio they each achieve when comparing to the offline opti-
mum. We cannot find any auction algorithms designed for
DC provisioning. We can only find TV-VNE with a similar
model. The design idea of TV-VNE is to provision VCs
according to the amount of consumed resources and always
try to find a load-balancing allocation. The core technique
used by TV-VNE is a heuristic weighted function which
achieves a tradeoff between the computational resource
usage and the bandwidth usage. When a new user request
arrives, TV-VNE chooses an allocation and routing plan
which maximizes this function, which intends to balance
the usage of all data centers and link bandwidths. This
idea is similar to our online algorithm in some sense, but
in a heuristic way. Fig. 6 shows that our algorithm con-
sistently outperforms TV-VNE. We further observe that the
performance of TV-VNE does not improve much for larger
N , reflecting that its heuristic allocation cannot efficiently
adjust resource utilization with the increase of users. In
contrast, SWMOA performs better when the number of user
is large, which makes it more suitable for cloud systems at
a large scale. In Fig. 7, we prepare two special scenarios:
computation intensive (CI-Case) and bandwidth intensive
(BI-Case). In the computation intensive case, computation
resource demands of VCs are 2 times larger than the default
setting. In the bandwidth intensive scenario, bandwidth
demands are 2 times larger than the default. We see that
SWMOA outperforms TV-VNE in all cases. The advantages
in the special cases are larger than in the default case,
implying that our algorithm better handles extreme VC
requests by dynamically adjusting to user demands.

7.2 Evaluation of PRMOA
We first compare PRMOA in Alg. 2 with the offline opti-
mum. We divide the offline optimal social welfare by the
revenue achieved with PRMOA to calculate the performance
ratio. Fig. 8 shows the performance of PRMOA under dif-
ferent values of F . The trends are similar with those for
SWMOA: largerN , smaller F bring better performance. This
is not a coincidence because PRMOA uses SWMOA as its
foundation, and in half of the time adopts the same payment
and allocation. In the other half of the time, the success of
the attempt to “guess” user’s valuation only depends on the
random variation, and is not affected by these parameters.

Next we compare the provider revenue achieved by
PRMOA and TV-VNE. However, TV-VNE is just a VC provi-
sioning algorithm without pricing. Fortunately, it is easy to
design a payment for it according to the “unit virtual cost”
used in the TV-VNE algorithm, which is the only payment
rule making the mechanism truthful. Fig. 9 shows that
PRMOA performs better in all scenarios. The advantages are
even larger than what we show when comparing SWMOA
with TV-VNE. This validates the efficiency of our algorithm
specifically optimized for chasing high revenue.

7.3 Evaluation of Dynamic Routing
We evaluate the performance of dynamic routing adjust-
ment presented in Sec. 4. In Fig. 10 we can see that the
performance improvement is small. Because this intuitive
improvement only optimizes the bandwidth resource allo-
cation, but does not change the allocation of computational
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Fig. 3. Performance of SWMOA under different
values of F
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Fig. 4. Performance of SWMOA under different
values of P
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Fig. 5. Performance of SWMOA under different
resource capacities

300 400 500 600 700
2

2.5

3

3.5

4

Number of users (N)

O
ffl

in
e/

O
nl

in
e 

S
oc

ia
l W

el
fa

re
 R

at
io

 

 

SWMOA,F=6
TV−VNE,F=6
SWMOA,F=8
TV−VNE,F=8

Fig. 6. Comparison between SWMOA and TV-
VNE
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Fig. 7. Comparison between SWMOA and TV-
VNE under special scenarios
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Fig. 8. Performance of PRMOA under different
values of F
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Fig. 9. Comparison between PRMOA and TV-
VNE
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Fig. 10. Performance of dynamic routing (DR)
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Fig. 11. Performance of SWMOA under
quadratic costs
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Fig. 12. Performance of SWMOA under cubic costs
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Fig. 13. Performance of SWMOA under larger cost coefficients

resources. Since a VC request needs both types of resources,
improvement only on bandwidth does not improve the sys-

tem as a whole much when the bottleneck of provisioning
more VCs lies in the computational resources.
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7.4 Evaluation of the Non-Linear Cost Function Case

We evaluate the performance of the online auction designed
for non-linear operational costs in Sec. 6. We first use νr = 1
(quadratic cost), and then νr = 2 (cubic cost), with results
given in Fig. 11 and Fig. 12, respectively. Coefficients hr
in the cost functions are randomly generated within range
[0.03, 0.1]. In general, the performance under non-linear
costs is not as good as the performance under linear costs.
This is consistent with the intuition that non-linear cost
functions are harder to deal with in online optimization.
Other features are all the same with SWMOA, since the
underlying algorithm is a similar process with SWMOA.

Next, we change the range of coefficients hr to [0.2, 0.4],
and Fig. 13 shows the corresponding performance under
quadratic cost functions. We observe that the range of
these coefficients does not affect the performance of our
algorithm.

7.5 Evaluation of Running Time

We evaluate the running time of our online algorithm
SWMOA in Alg. 1 on a server machine (with 16 cores Intel
Xeon E2-2650 CPU, 80 GB RAM and 500 GB hard disk).
Note that SWMOA runs in an online fashion to handle
each user’s request upon its arrival. Table 2 shows the
average running time of SWMOA to handle a user’s request
when the total number of users in the system differs. The
results indicate that our online algorithm can be executed
on common servers fast enough for practical usage.

TABLE 2
Running time of SWMOA

N Running Time per User (milliseconds)
10000 0.698
20000 0.6675
30000 0.6433
100000 0.6753
200000 0.7051
300000 0.6857
1000000 0.4327

8 CONCLUSION

This paper presents efficient and competitive online auction
mechanisms for on-demand provisioning and pricing of
virtual clusters, taking both computational resources and
communication resources into consideration. In the case of
linear resource costs, we first design an online social wel-
fare maximizing auction, SWMOA, which sets a carefully
designed virtual unit cost for each type of resources on
the go, and decides winners and bid-independent payments
based on the total resource cost. We then design a revenue
maximizing online auction, PRMOA, which runs SWMOA
as a basis, and boosts payments following a carefully
designed random distribution, to pursue higher revenue.
The mechanisms are truthful, individually rational, time-
efficient, and guarantee a (2 logµ + 1) competitive ratio in
social welfare and a O(logµ) competitive ratio in provider
revenue in expectation, respectively. We further extend our
auction design to the non-linear operational cost cases, and

show similar competitive ratios can be achieved. Our ex-
tensive simulation studies validate our theoretical analysis,
and show good performance of our mechanisms in various
scenarios.
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