
2060 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 4, AUGUST 2016

An Online Auction Framework for Dynamic
Resource Provisioning in Cloud Computing

Weijie Shi, Student Member, IEEE, Linquan Zhang, Student Member, IEEE, Chuan Wu, Member, IEEE,
Zongpeng Li, Senior Member, IEEE, and Francis C. M. Lau, Senior Member, IEEE

Abstract—Auction mechanisms have recently attracted substan-
tial attention as an efficient approach to pricing and allocating
resources in cloud computing. This work, to the authors’ knowl-
edge, represents the first online combinatorial auction designed
for the cloud computing paradigm, which is general and expres-
sive enough to both: 1) optimize system efficiency across the tem-
poral domain instead of at an isolated time point; and 2) model dy-
namic provisioning of heterogeneous virtual machine (VM) types
in practice. The final result is an online auction framework that
is truthful, computationally efficient, and guarantees a competi-
tive ratio in social welfare in typical scenarios. The frame-
work consists of three main steps: 1) a tailored primal-dual algo-
rithm that decomposes the long-term optimization into a series of
independent one-shot optimization problems, with a small addi-
tive loss in competitive ratio; 2) a randomized subframework that
applies primal-dual optimization for translating a centralized co-
operative social welfare approximation algorithm into an auction
mechanism, retaining the competitive ratio while adding truthful-
ness; and 3) a primal-dual algorithm for approximating the one-
shot optimization with a ratio close to . We also propose two ex-
tensions: 1) a binary search algorithm that improves the average-
case performance; 2) an improvement to the online auction frame-
work when a minimum budget spending fraction is guaranteed,
which produces a better competitive ratio. The efficacy of the on-
line auction framework is validated through theoretical analysis
and trace-driven simulation studies. We are also in the hope that
the framework can be instructive in auction design for other re-
lated problems.
Index Terms—Cloud computing, combinatorial auction, re-

source allocation, pricing, online algorithms, truthful mechanisms.

I. INTRODUCTION

C LOUD computing has recently emerged as a new com-
puting paradigm that enables prompt and on-demand

access to computing resources. As exemplified in Amazon
EC2 [1] and Microsoft Azure [2], cloud providers invest
substantially into their datacenter infrastructure, providing a
virtually unlimited “sea” of CPU, RAM, and storage resources

Manuscript received June 25, 2014; revised December 01, 2014; February
17, 2015; and May 12, 2015; accepted May 28, 2015; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor U. Ayesta. Date of publication July 01,
2015; date of current version August 16, 2016. This work was supported in part
by a grant from Hong Kong RGC under the contract HKU 718513 and NSERC
Grant 10006298.
W. Shi, C. Wu, and F. C. M. Lau are with the Department of Computer Sci-

ence, The University of Hong Kong, Hong Kong (e-mail: wjshi@cs.hku.hk;
cwu@cs.hku.hk; fcmlau@cs.hku.hk).
L. Zhang and Z. Li are with the Department of Computer Science, Univer-

sity of Calgary, Calgary, AB T2N 1N4, Canada (e-mail: linqzhan@ucalgary.ca;
zongpeng@ucalgary.ca).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TNET.2015.2444657

TABLE I
AMAZON EC2 VM INSTANCES

to cloud users, often assisted by virtualization technologies.
The elastic and on-demand nature of cloud computing assists
cloud users to meet their dynamic and fluctuating demands with
minimal management overhead, while the cloud ecosystem as
a whole achieves economies of scale through cost amortization.
Currently, most cloud providers adopt a fixed-price policy
and charge users a fixed amount per-virtual-machine (VM)
usage. For example, Table I shows the available VM types at
Amazon EC2 and their hourly prices at different datacenters.
Despite their apparent simplicity, fixed-price policies inher-
ently lack market agility and efficiency, failing to rapidly adapt
to real-time demand–supply relation changes. Consequently,
overpricing and underpricing routinely occur, which either
dispel or undercharge the users, jeopardizing overall system
social welfare as well as the providers’ revenue.
Toward effectively discovering the market value of VMs,

auction mechanisms have been at the focal point of recent
literature on cloud resource allocation and pricing [3], [4].
Spot Instance [5] is a first-step attempt to apply the auction
mechanism on Amazon EC2, which was enhanced by sub-
sequent work [4], [6]. A series of recent work further study
auction mechanism design in cloud markets from different
perspectives [7]–[9]. Unfortunately, all existing designs either
consider one-round auctions only or model VMs as type-obliv-
ious commodities and fail to account for the providers’ ability
to dynamically assemble VMs.
Cloud Auctions Should Be Online:Real-world cloud resource

transactions happen either when customer demands arrive or
cloud resources become available, and hence are modeled more
naturally by an online auction that incorporates the time dimen-
sion. Most cloud computing customers, enterprise or individual,
are on a preallocated budget for a given time period (e.g., a year
or a month like that in an ad-auction [10]). Thus, a customer’s
purchase desire drastically declines over time, which needs to be
considered for a practical auction mechanism. However, most
existing cloud auctions focus on a single-round auction only and
ignore such temporal correlation in decision making [8].

1063-6692 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

SHI et al.: AN ONLINE AUCTION FRAMEWORK FOR DYNAMIC RESOURCE PROVISIONING IN CLOUD COMPUTING 2061

Cloud Auctions Should Be Combinatorial: A cloud com-
puting job in practice often demands a bundle of heterogeneous
VM instances for its successful execution, and hence a cloud
auction is naturally a combinatorial auction. For example, a
social game application that consists of a front-end Web server
layer, a load-balancing layer, and a back-end data storage
layer is best served by a combination of VMs that are in-
tended for communication-intensive, computation-intensive,
and storage-intensive tasks, respectively. Such combinatorial
VM auctions represent a dramatic departure of most existing
VM auction designs that assume VMs are type-oblivious
commodities, in that all VMs are essentially of the same type,
and hence are substitutable or substitutable up to a simple
multiplicative factor. Embracing heterogeneous VM types in
the model further brings about the opportunity of considering
dynamic resource provisioning: Decisions on VM assembling,
which organizes the CPU, RAM, and Disk resource pools into
typed VM instances, are no longer made randomly a priori [3],
but made dynamically upon receiving user bids. Dynamic re-
source provisioning enables higher efficiency in cloud resource
utilization, higher seller revenue for the provider, and higher
social welfare for the entire cloud system.
This work generalizes and subsumes existing literature on

cloud auctions by designing the first online combinatorial auc-
tion in which VMs of heterogeneous types are allocated in mul-
tiple consecutive time-slots. The final result is an online auc-
tion framework that simultaneously guarantees the following
properties.
1) Truthfulness, the holy grail of auction mechanism design.

It ensures that economically-motivated selfish buyers are
automatically elicited to reveal their true valuations of the
VMs they demand, in the bids submitted. This simplifies
analysis of the resulting auction in theory and increases the
predicability of auction outcomes in practice.

2) Combinatorial auctions, supporting heterogeneous VM
types located at different datacenters. Besides hetero-
geneity in their types, another dimension of VM diversity
may arise due to their geographical locations (assuming
multiple datacenters). A combinatorial auction is hence
necessary.

3) Dynamic resource provisioning. The number of instances
of each VM type is not predefined, but dynamically ad-
justed as part of the auction mechanism, tailored to real-
time user demand.

4) Online auction: In commercial cloud platforms, auctions
are executed repeatedly and the prices change termly. Each
user is subject to a practical budget limitation for a given
time period. Our online auction models a long-time auction
over multiple rounds that are coupled together by customer
budgets. A competitive ratio of is guaran-
teed in typical scenarios, i.e., our online auction achieves
a long-term social welfare that is at least a 1/3.30 fraction
of the offline optimum.

Our proposed online auction framework consists of three
main modules: A) translating online optimization into a series
of one-round optimization problems; B) translating an approx-
imation algorithm for one-round optimization into a truthful
auction; and C) designing an effective approximation algorithm
for one-round optimization.

First, we formulate a linear integer program that characterizes
the long-term social welfare optimization problem in the cloud
market for VMs and formulate the dual LP of its LP relaxation
(without the integer constraints). A tailored primal-dual algo-
rithm iteratively adjusts a dual variable corresponding to each
customer’s budget, acting as a shadow price that signals how
“tight” the latter is. A series of one-round combinatorial VM
auctions are then executed under a fixed shadow price vector.
Such primal-dual decoupling of the auction rounds admits a
rather intuitive interpretation: The algorithm strikes to avoid
prematurely depleting a user’s budget, and gives higher priority
to cloud customers with low budget pressures during each auc-
tion round. As a result, we prove that the decomposition intro-
duces an additive loss to the competitive ratio bounded by .
Second, for each one-round combinatorial auction problem,

we employ a randomized auction subframework, which ex-
ploits the underlying packing property of one-round social
welfare maximization and translates any centralized cooper-
ative approximation algorithm into an auction, inheriting the
same approximation ratio while adding truthfulness. At the
core of this translation is a primal-dual optimization-based
decomposition technique that decomposes an optimal frac-
tional solution to one-round social welfare maximization into a
convex combination of integral solutions, recently developed
in the literature of theoretical computer science [11] and suc-
cessfully applied in the literature of computer networking [12].
We also propose a new binary search-based technique to find
the minimum feasible scale-down ratio in the fractional so-
lution decomposition and thereby improve the average-case
performance of the online auction algorithm.
Third, we design a specific approximation algorithm for one-

round VM allocation by applying iterative primal-dual solution
updates followed by dual fitting. The resulting algorithm is poly-
nomial-time computable and guarantees an approximation ratio
that approaches in practical scenarios. Combining all three

modules together, the overall competitive ratio of the resulting
online auction framework is bounded by in typ-
ical scenarios. We hope that the online auction framework pro-
posed in this work, as well as its three components, may shed
light to the design of auction mechanisms in related problem
settings.
What’s more, we further propose an improvement to the

online auction framework in the case that a minimum budget
spending fraction is guaranteed. The improved online auction
algorithm uses a new method to adjust the dual variables
corresponding to users’ budgets over time and achieves a better
competitive ratio.
The rest of the paper is organized as follows: We discuss re-

lated work in Section II, define the problemmodel in Section III,
present the online algorithm framework and the auction algo-
rithm in Sections IV and V, discuss an improvement of the on-
line auction framework in Section VI, present simulations in
Section VII, and conclude the paper in Section VIII.

II. RELATED WORK

Auctions have been extensively studied for resource alloca-
tion in computing and network systems, which simultaneously
target bidding truthfulness and economic efficiency. Classic ap-
plications of auctions are found in a wide range of research

2062 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 4, AUGUST 2016

areas, such as network bandwidth allocation [13], wireless spec-
trum allocation [12], and wireless crowdsourcing [14].
The celebrated VCG mechanism [15] is a well-known type

of auction. It is essentially the only type of auction that simul-
taneously guarantees both truthfulness and absolute economic
efficiency (social welfare maximization), through calculating
the optimal allocation and a carefully designed pricing rule.
However, when the underlying allocation problem is NP-hard,
which is common for combinatorial auctions [16], VCG be-
comes computationally infeasible. When polynomial-time ap-
proximation algorithms are applied to solving the underlying
allocation problem, VCG loses its truthfulness property [17].
One usually needs to custom design a payment rule to work in
concert with the approximation algorithm at hand to achieve
truthfulness; for example, this can be done by exploiting the
concept of critical bids [18]. Another relatively new alternative
is to resort to the LP decomposition technique [11], as done in
this work, which is universally applicable to problems with a
packing or covering structure.
Recently, a series of auction mechanisms are designed for

VM allocation in cloud computing. Wang et al. [6] apply the
critical value method, and derive a mechanism that is collusion-
resistant, an important property in practice. Yet their work, like
many others, considers only one-round auctions; and their algo-
rithm has a competitive ratio , where is the number of
VM instances. Mashayekhy et al. [19] propose an online mech-
anism for resource allocation in clouds, also based on the crit-
ical value method, but omit a theoretical performance analysis.
Shanmuganathan et al. [20] introduce the concept of bundles in
VM allocation. Zhang et al. [8] are among the first to study dy-
namic VM provisioning and design a truthful single-round auc-
tion using the LP decomposition method. However, our work is
more advanced than theirs in two aspects: 1) We consider the
problem over a period of time, instead of just one round, and
serve cloud users in an online manner. Our mechanism more
closely resembles a real-world cloud market in practice. 2) We
not only apply but also propose improvements to the decom-
posing method, which can improve the performance of the on-
line auction in practice.
Extending single-round truthful auctions into online auctions

in a straightforward way usually breaks the truthfulness prop-
erty [21]. The lack of future information brings a key challenge
in pursuing truthfulness. For example, the VCG auction does not
directly work in the online setting since the optimal allocation
for the future cannot be calculated, even given unlimited com-
putational resources. A known technique for achieving truth-
fulness in online auctions is based on the concept of a supply
curve [22], as applied by Zhang et al. [4] in their design of an
online cloud auction algorithm. The bidding language and the
user characteristic proposed in their work are novel and cap-
ture the heterogeneous demands in cloud market. However, they
only consider a single type of VM, significantly simplifying
the underlying social welfare maximization. In absence of mul-
tiple VM types, their model naturally ignores the dynamic pro-
visioning problem. Wang et al. propose an online auction for
cloud markets [9], and their model also focuses on one type of
VM only.
Many resource allocation algorithms have been pro-

posed in cloud computing scenarios with different focuses.
Alicherry et al. [23] consider network load when allocating

VMs in a distributed cloud system. Maguluri et al. [24] tackle
the randomness of arriving workloads and solve optimization
problems for load balancing and VM scheduling. Xu et al. [25]
summarize the recent attempts in managing performance over-
head in clouds. Lin et al. [26], [27] study the energy efficiency
in VM provisioning. VM migration overhead [28] and energy
consumption [29] are also important practical issues in VM
provisioning. In addition, data traffic commonly exists between
VMs. Guo et al. [30] focus on traffic variation issues in the
underlying datacenter networks and solve the VM placement
problem with traffic awareness. These aspects are not fully
covered in the current paper, and will be investigated in our
future work.

III. PROBLEM MODEL

A. Cloud System
We consider a cloud spanning geographically distributed

datacenters, each with a pool of types of resources including
CPU, RAM, and disk storage that can be dynamically assem-
bled into different types of VMs for lease to cloud users.
Let denote the integer set . Each VM of type

is constituted by units of type- resource, for all
. There are users of the cloud system, which request

VMs of different types to execute their jobs. The cloud provider
acts as the auctioneer and leases VMs to the users through auc-
tions. The system runs in a time-slotted fashion within a span
of , where is a potentially large number. We sup-
pose the available amounts of resources at each datacenter are
time-varying, i.e., there are units of type- resource in dat-
acenter at time , whose value may change from one
time-slot to another.1 In each time-slot, one round of the auc-
tions is carried out, where the cloud provider decides the VM
allocation for the current time-slot based on user bids. The terms
time-slot and round are used interchangeably.
The cloud users are bidders in the auctions, each sub-

mitting a bid containing optional bundles in each round. A
bundle consists of a list of desired quantities of VMs of dif-
ferent types, as well as the bidder’s valuation for the bundle.
Specifically, let denote the number of type- VMs in
datacenter that user specifies in its th bundle in time-slot ,
and be its valuation for this th bundle in . The th bundle
in the bid of user in the auction at is described by a
-tuple of elements , and . The cases where

a user may join and leave (intermittent bidding) or may bid a
smaller number of bundles than are all subsumed by our bid
model by allowing empty bundles in the bids.
In each round, upon receiving users’ bids, the cloud provider

computes its resource allocation and produces the auction re-
sults, , where if user wins bundle
and 0 otherwise, as well as its payment for acquiring VMs
in its winning bundle. We assume that a user can win at most
one bundle among its optional bundles in each round of the
auctions (given that any need for combining two or more bun-
dles can be expressed as a separate bundle already). In addition,
the VM demands in each bundle cannot be supplied partially,

1The varying amounts of resources may be caused by removal or addition
of servers, due to failure and recovery, or potential reservation or release of
resources for special purposes, e.g., as part of a hybrid cloud of an enterprise.

SHI et al.: AN ONLINE AUCTION FRAMEWORK FOR DYNAMIC RESOURCE PROVISIONING IN CLOUD COMPUTING 2063

TABLE II
NOTATION

i.e., the cloud provider either provides all the required VMs in
a bundle to the bidder or rejects the bundle.
Let denote the utility function of user in time-slot ,

which is decided by its valuations of the bundles and its payment
at . We will present the concrete form of the utility function in
Section V. We assume user has a total budget , which is
a bound of its overall payment in the auctions throughout the
system span under consideration, e.g., a preallocated budget
for VM rental over a month or a year, which is assumed to be
public information. A user’s valuations in its bids are indepen-
dent from its current budget level, while its current budget level
will be taken into consideration at the cloud provider when al-
locating resources.
We list important notation in this paper in Table II.

B. Online Auction Problem
We aim to design an online auction mechanism to be carried

out by the cloud provider, which guides resource allocation in
the cloud system in a round-by-round fashion through multiple
consecutive rounds. The auction design targets the following
properties.
1) Truthfulness (Definition 1): Bidding true valuations is a

dominant strategy at the users, and consequently, both bid-
ding strategies and auction design are simplified.

2) Individual rationality: Each bidder obtains a nonnegative
utility by participating in the auction in any time-slot, i.e.,

.
3) Social welfare maximization: The social welfare in our

system is the sum of the cloud provider’s revenue,
, and all the users’ utility gain,

, which equals
aggregated user valuation of the winning bundles (under

truthful bidding), .
Users’ payment and the provider’s revenue cancel out
each other.

Definition 1 (Truthfulness): The auction mechanism is
truthful if for any user at any time , declaring a bid
that truthfully reveals its requirements of VM quantities,

, and its valuations of bundles , al-
ways maximizes its expected utility, regardless of other users’
bids.
We first formulate an offline social welfare optimization

problem that provides the “ideal” optimal allocation strate-
gies for the cloud provider to address users’ VM demands in
the entire system lifespan , assuming bids are truthful. Let

be the amount of type- resource
at datacenter required in user ’s th bundle

maximize (1)

s.t.

Constraint (1a) specifies that each user can win at most one
bundle each round. Constraint (1b) is the budget constraint at
each user. Constraint (1c) limits the overall demand for each
type of resource in the winning bundles by the amount available.
Introducing dual variable vectors , and to constraints

(1a), (1b), and (1c) respectively, and ignoring the binary variable
constraint (1d) temporarily, we can formulate the dual of the
resulting linear program to be used in the primal-dual algorithm
design in Section IV

(2)
s.t.

(2a)
(2b)

To derive an optimal solution to (1), complete knowledge
about the system over its entire lifespan is needed, which
is apparently not practical. In a dynamic cloud system, the
provider should allocate resources on the fly, based on the cur-
rent amount of available resources, ’s, and users’ bidding
bundles including resource demands ’s and valuations

’s, which are not known a priori. We seek to design an
online auction mechanism for real-time resource allocation,
which also guarantees truthful bidding. We achieve the goals
in two steps. First, in Section IV, we assume that a truthful
auction mechanism to be carried out in each time-slot is known
and guarantees an approximation ratio , and we propose an
online algorithm framework that produces a competitive ratio
of as compared to the offline optimum.

2064 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 4, AUGUST 2016

Algorithm 1 The Online Algorithm Framework

for all do

if
otherwise

Run . Let be the set of winning users, and
be the index of their corresponding winning bundle, for

. Define for .

end for

Second, in Section V, we design a single-round randomized
auction, which achieves the approximation ratio of as well as
individual rationality and truthfulness.

IV. ONLINE ALGORITHM FRAMEWORK

We design an online algorithm framework as shown
in Algorithm 1, which solves the offline optimization problem
(1) and its dual (2), using a subroutine running at each
time-slot. We next discuss the one-round resource allocation
problem to be solved by , as well as the design rationale
of the online algorithm framework.

A. One-Round Resource Allocation
Assuming truthful bids are known, the one-round social wel-

fare maximization problem at time is as follows, which in-
cludes the constraints from the offline optimization problem (1)
related to the current time-slot, and excludes the user budget
constraints (dealt with in the online algorithm framework in-
stead). , a reduced valuation of user for bundle from
the actual valuation adjusted according to the level of its
remaining budget, is used in the objective function. The ratio-
nale will be detailed in Section IV-B. Given , the cloud
provider’s current resource supplies ’s, and users’ resource
demands ’s, the one-round optimization problem decides
the optimal resource allocation at

maximize (3)

s.t. (3a)

(3b)

(3c)

Adopting the same dual variables as in the dual of (1) and
omitting constraint (3c), we formulate the dual of LP (3)

minimize (4)

s.t.

(4a)

(4b)

The primal problem (3) is a special case of the multidimen-
sional multiple-choice 0–1 knapsack problem [31], which is
both NP-hard and, more strongly, has no fully polynomial-time
approximation schemes unless [32]. What we will
pursue in is an auction mechanism, which not only guar-
antees individual rationality and truthfulness, but also employs
a primal-dual approximation algorithm that solves problems (3)
and (4) to decide resource allocation in polynomial time with a
small approximation ratio. We delay the discussion of the auc-
tion mechanism to Section V, but first utilize its properties when
analyzing our online algorithm framework. We will show that
given a competitive ratio achieved by the one-round auction
mechanism, our online algorithm framework achieves a good
competitive ratio.

B. Online Algorithm
When a good approximation algorithm for one-round re-

source allocation is in place, the difficulty of designing an
online algorithm lies in achieving a good competitive ratio,
defined as the maximum ratio between the offline optimal
social welfare derived by solving (1) exactly and the social
welfare produced by the online algorithm. The budget limits
the bundles a user can acquire over the rounds of auctions,
leading to different amounts of overall social welfare when the
budget is spent in different rounds. The intuition we follow
in designing the online algorithm is that inefficiency in social
welfare may appear when a user’s budget runs out at an early
stage since its future bids become invalid after its budget
depletion, narrowing down possible future allocation decisions
at the provider, prohibiting larger social welfare. The ideal
scenario is that each user’s budget can last for all the rounds
of auctions, making it possible for the cloud provider to explore
the best resource allocation strategies over the entire span to
approach the best overall social welfare.
Under this intuition, we should be cautious when winning a

bundle suddenly exhausts a user’s remaining budget. Our main
idea in the online algorithm in Algorithm 1 is to associate the
resource allocation in each round with the users’ remaining
budgets. We introduce an auxiliary variable for each user

, whose value starts at 0, increases with the decrease
of the remaining budget of the user, and reaches 1 when the
budget is exhausted. Instead of the actual valuation of
each bundle, is used in the one-round
resource allocation as in (3), such that the bid from
a user with a smaller remaining budget will be evaluated
less at the cloud provider, leading to a lower chance of ac-
quiring a bundle. A user’s budget lasts for a longer period of
time as a result. is updated after each round of resource
allocation in Algorithm 1, where .

, which is the max-
imum ratio between the valuation of any bundle and the
corresponding user’s budget. We consider , given
that users typically do not put a large proportion of their total
budget on one bundle in one round. The increment of is
carefully computed (see proof of Theorem 1), such that the
budget constraint (1b) is guaranteed over the rounds of online
auctions. We set dual variable in the offline dual problem
(2), associated with constraint (1b), to the value of the auxiliary

SHI et al.: AN ONLINE AUCTION FRAMEWORK FOR DYNAMIC RESOURCE PROVISIONING IN CLOUD COMPUTING 2065

variable after rounds . In this way, the adjustment
of in each round can be understood as the adjustment of
the dual variable toward an optimal solution to the offline
dual problem (2).
The performance of our online algorithm in Algorithm 1 is

stated in Theorem 1, with a detailed proof in Appendix A.
Theorem 1: If we have an auction mechanism in that

carries out resource allocation in each round to produce feasible
solutions for (3) and (4), and guarantees (hence the
competitive ratio of the auction algorithm is also), is

-competitive for optimization (1). Here,
is the objective value of the one-

round resource allocation problem in (3), and
is the dual objective value in (4).

We note that when , the competitive ratio ap-
proaches , i.e., the long-term online optimization frame-
work incurs only an additive loss of in competitive ratio, as
compared to the one-round allocation algorithm.

V. RANDOMIZED AUCTION MECHANISM

We now present a randomized auction mechanism
that efficiently allocates resources according to users’ bids
in each time-slot and guarantees individual rationality and
truthfulness. The auction mechanism in each round allocates
resources according to the one-round resource allocation
problem in (3) and decides the payments from the winning
bidders. The classic Vickrey–Clarke–Groves (VCG) mecha-
nism [15] is a potential candidate for our auction design, which
assigns items (VM bundles in our case) to bidders in a socially
optimal manner by solving a corresponding resource allocation
problem, charges each winner the externality it exerts on other
bidders, and ensures that the optimal strategy for a bidder is to
bid its true valuations. However, our allocation problem in (3)
is NP-hard, and hence a VCG mechanism becomes computa-
tionally infeasible. We therefore resort to a fractional version of
the VCG auction for achieving both computational efficiency
(polynomial-time complexity) and economic efficiency [social
welfare maximization in (3)], by applying the VCG mechanism
to the LP relaxation of the integer program (3). The fractional
VCG mechanism produces fractional bundle allocation results,
which are not practically applicable. We further employ a
primal-dual optimization-based decomposition technique that
decomposes such an optimal fractional solution into a convex
combination of integral solutions, and then design a random-
ized auction that randomly picks one from the integral solutions
as the bundle allocation result in each round and retains the
nice properties of a fractional VCG auction. We detail the
fractional VCG auction, the decomposition technique, and the
randomized auction design in Sections V-A–V-C.

A. Fractional VCG Auction

In the fractional VCG auction, the auctioneer solves
the LP relaxation of (3) by relaxing constraint (3c) to

, to decide the bundle allocation in
. Let denote the resulting optimal
fraction allocation, where . To compute the

VCG payment from a winner, the auctioneer solves the LP
relaxation again with the winner excluded from the allo-
cation. Let denote the social welfare achieved when
winner is excluded. The payment of winner , is:

.
The utility function of bidder in a VCG auction is typ-

ically defined as the difference between its valuation and its
payment. In our online auction framework, a user’s utility in
each round should be related not only to its valuation and pay-
ment, but also to its remaining budget: Intuitively, smaller utility
gain is appreciated if a user won a bundle when its remaining
budget is small, and larger otherwise. We characterize this prop-
erty using a utility function

(5)

This utility function is consistent with the social welfare calcu-
lation in the one-round allocation problem (3). Thus, a user’s
budget can potentially last longer, enabling later acquirement
of better bundles with the same consumption of budget (i.e., the
same payment), contributing to social welfare efficiency over
all rounds of auctions.
We show in Theorem 2 that under this utility function, bid-

ding true valuations is the best strategy for each user in the frac-
tional VCG auction. A nonnegative utility is guaranteed for each
bidder, based on VCG auction theory [15].
Theorem 2: The fractional VCG auction that produces

fractional allocation , and payments
, is truthful and individual rational.

The detailed proof can be found in Appendix B.

B. Decomposing the Fractional Solution

Since fractional VM bundles are impractical in real-world
cloud systems, we next decompose the fractional solution
into a combination of integer solutions, which will be used
by our randomized auction mechanism. We apply the LP
duality-based decomposition technique [11]. The goal of the
decomposition is to find and a set of integer solutions

(is an index set), to the one-round resource
allocation problem (3), such that , and

. The randomized auction in each round can
choose the integer solution with probability , achieving
a good competitive ratio in social welfare in expectation, as
compared to that achieved by the optimal integer solution to
(3). However, there in fact does not exist a convex combination
of integer solutions, , that equals the fraction
solution , because otherwise the expected social welfare
achieved by these integer solutions equals that achieved by
the fractional solution, which apparently contradicts with the
fact that the fractional solution achieves a higher social welfare
than any integer solution. Therefore, to achieve a feasible
decomposition, we need to scale down the optimal fractional
solution by a certain factor. According to [11], if there exists an
approximation algorithm that solves the one-round allocation
problem (3) with an approximation ratio of and guarantees

(where and are the objective function values of the
primal problem (3) and dual (4), respectively), we can use as

2066 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 4, AUGUST 2016

Algorithm 2 A Primal-Dual Algorithm to Solve One-round
Allocation Problem (3)

while AND do
for all do

end for

for all do

end for
end while

the scaling factor, and rest assured that a feasible solution to
the following decomposition problem exists:

minimize (6)

s.t. (6a)

(6b)
(6c)

We give a simple numerical example to illustrate the decom-
position. Suppose there are two users and two types of VMs.
The fractional solution is (0.3, 0.7, 1, 0.7), representing that the
first (second) user receives 0.3 (1) unit of VM 1 and 0.7 (0.7)
unit of VM 2, respectively. It can be decomposed into two in-
teger solutions: (1, 0, 1, 0) and (0, 1, 1, 1), with corresponding
probabilities 0.3 and 0.7. However, in fact we cannot find any
combination of integer solutions satisfying the one-round con-
straints in (3) (i.e., the integer solutions are not feasible) since
the optimal fractional solution should be better than any feasible
integer solution. Therefore, we have to divide the fractional so-
lution by a factor before decomposing it.
We next present a primal-dual algorithm that solves (3) with

an approximation ratio , and then discuss how to solve the
decomposition problem (6) to obtain and .
1) Primal-Dual Algorithm for One-Round Resource Alloca-

tion: Algorithm 2 is our primal-dual approximation algorithm
to the NP-hard allocation problem (3).
is the maximum amount of type- resource at datacenter re-
quired by any bundle in .
is the minimum ratio between the total amount of available re-
source of a type and the amount of the resource required by one
bundle. In practice, the resource pool is substantially larger than
a single user’s demand, and hence . The main idea of
the algorithm is to introduce an auxiliary variable for each
type of resource [which is the dual variable associated with con-
straint (3b)], acting as the unit price in allocation decision. The
unit price is updated according to the remaining amount of
this type of resource. The algorithm evaluates each bundle ac-
cording to the unit prices and the amount of required resources

and always chooses the user with a higher bid on a lower valued
bundle as the winner.
Theorem 3: Algorithm 2 computes feasible

primal and dual solutions for (3) and (4) and guar-
antees (and defined in Theorem 1),

with . The
approximation ratio of Algorithm 2 is also .
The proof of the theorem is given in Appendix C. Here,

is the maximum ratio between the overall demands for any type
of resource in any two bundles in a user’s bid in . When
are small constants and the provider’s resource pool is relatively
large compared to users’ resource demands in the bundles,
tends to . If further , or each user bids a
single bundle, tends to .
2) Decomposition With LP Duality-Based Technique: To

solve the decomposition problem (6), we can first find all the
possible integer solutions to (3) using some exhaustive
search method, and then directly solve (6) to derive the de-
composition coefficients ’s. However, this method has an
exponential-time complexity since there are an exponential
number of possible integer solutions , and hence an ex-
ponential number of variables in LP (6). We therefore resort
to its dual, formulated in (7), where dual variables and
associate with primal constraints (6a) and (6b), respectively

maximize (7)

s.t. (7a)

(7b)
Even though the dual (7) has an exponential number of con-
straints, the ellipsoid method can be applied to solve it in poly-
nomial time. The ellipsoid method obtains an optimal dual so-
lution using a polynomial number of separating hyperplanes.
Algorithm 2 acts as a key component of a separation oracle for
generating these separating hyperplanes, and a feasible integer
solution to (3) can be derived each time a separating hyperplane
is generated [11]. Hence, a polynomial number of candidate in-
teger solutions ’s are produced through the process of the
ellipsoid method, and the primal problem (6) can be reduced to
a linear program with a polynomial number of variables (’s)
corresponding to these integer solutions. Then, we can solve the
reduced primal problem in polynomial time. The correctness of
the above decomposition method is given in Lemma 1, with
detailed proof and the construction of the separation oracle in
Appendix D.
Lemma 1: The decomposition method correctly obtains a

polynomial number of integer solutions to the one-
round allocation problem (3) and the probabilities ,
which solve (6), in polynomial time.

C. Randomized Auction
Algorithm 3 gives our randomized auction to be carried out

in each round of the online algorithm in Algorithm 1. It selects
an integer solution produced by the decomposition method
with probability . The payment from a winning bidder sat-
isfies two conditions: 1) The expectation of the payment should
be equal to the scale-down fractional payment,

, in order to remain truthfulness. 2) The payment

SHI et al.: AN ONLINE AUCTION FRAMEWORK FOR DYNAMIC RESOURCE PROVISIONING IN CLOUD COMPUTING 2067

Algorithm 3 One-Round Randomized Auction in

1: Solve LP relaxation of (3), with
. Denote the fractional

solution by .
2: Calculate the fractional payment by VCG

payment rule.
3: Solve the pair of primal-dual decomposition LPs in (6)

and (7) using the ellipsoid method, using Algorithm 2
as a separation oracle, and derive a polynomial number
of integer solutions to (3), , and the
corresponding decomposition coefficients .

4: Choose with probability

5:

should be no larger than ’s valuation of its winning bundle
in order to guarantee individual rationality.

The following theorem provides the properties achieved by
the randomized auction, with proof in Appendix E.
Theorem 4: runs in polynomial time and is truthful,

individual rational, and -competitive.
Our online auction results when we plug in the one-round

randomized auction into the online algorithm frame-
work in Algorithm 1. The competitive ratio of the
online auction can be derived readily from Theorem 1 using

, the competitive ratio of the one-round
randomized auction given in Theorem 4.
Theorem 5: in Algorithm 1 combining with

in Algorithm 3 constitutes a truthful, individual rational,
- competitive online auction.

The complete proof of Theorem 5 can be found in
Appendix F. We note that when , the compet-
itive ratio tends to . Following the discussions on
Theorem 3 in Section V-B.1, when tends to , the competitive
ratio of the online auction tends to .

D. Improving the Scale-Down Factor

We have decomposed the fractional solution in
Section V-B after scaling it down by the approximation ratio
of the one-round allocation Algorithm 2, such that a feasible
solution to the decomposition problem (6) is guaranteed.
According to Theorem 5, the scale-down factor is closely
related to the competitive ratio of our online auction, such
that a smaller scale-down factor leads to a better competitive
ratio. However, a scale-down factor smaller than may not
guarantee a feasible decomposition. We therefore design a
binary search algorithm in Algorithm 4 to compute the smallest
scale-down factor that enables feasible decomposition.
The algorithm is designed based on a property of the scale-

down factor, as given in Theorem 6 (proof in Appendix G).
With its monotonicity, we can find the smallest, feasible scale-
down factor using binary search (with arbitrary small error).
We should note that this trial-and-error method may improve
the performance of our online auction algorithm on average in
practice, but does not change the theoretical competitive ratio

Algorithm 4 Binary searching smallest scale-down factor

Require: allowable error
Decide the scale-down ratio in Algorithm 3 with the
following steps:
while do

Solve (7) with scale-down factor .
If Decomposing success then Else

end while
Solve (7) with scale-down factor .

Algorithm 5 The Improved Online Algorithm Framework
based on Minimum Budget Spending Guarantee

for all do

if
otherwise

Run . Let be the set of winning users, and
be the index of their corresponding winning bundle, for

. Define for all .

end for

in Theorem 5 in the worst case. We will investigate the effec-
tiveness of the improved scale-down factor in our trace-driven
simulations.
Theorem 6: If the fractional allocation can be decom-

posed under scale-down factor , then it can also be decom-
posed under any factor .

VI. IMPROVEMENT OF THE ONLINE ALGORITHM FRAMEWORK
WITH MINIMUM BUDGET SPENDING

In this section, we propose an improvement of the online
algorithm framework when additional information
on users’ budget spending is available [10]. Suppose that
each user’s total spending over rounds is at least a fraction
of its budget. Specifically, user is going to use at least an
amount of its overall budget, where .
When this minimum budget spending guarantee is in place,
we design an improved online algorithm framework ,
as given in Algorithm 5. We show that this improved on-
line algorithm can achieve a better worst-case competitive
ratio , where

is the minimum budget spending fraction
among all users, as compared to the competitive ratio of the
original online auction
given in Theorem 5. For example, in the case that ,
the additive loss in the competitive ratio brought by , as
compared to the one-round auction , is ; if
we know that all users are going to spend at least %
of their respective budget, the additive loss brought by the
improved online auction is approximately 0.099.

2068 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 4, AUGUST 2016

The main idea of improving to is as follows.
If user spends a large fraction of its overall budget over time,
the value of will be close to 1 upon termination of the online
algorithm. In the original online algorithm in Algorithm 1, the
value of is exponentially increased from 0 to 1 with the in-
crease of budget consumption since we can prove that no matter
what the final value of is, updating exponentially guaran-
tees a good performance of the online algorithm. Now we know
that will at least reach a value
(computed according to the minimum budget expenditure
based on the update formula of in Algorithm 1), and we can
increase the value of linearly with the increase of budget
consumption before it reaches , and then increase in the
original way (as in Algorithm 1) afterwards. In this way, we can
prove that a better competitive ratio can be achieved.
The properties achieved by are given in Theorem 7,

with complete proof in Appendix H.
Theorem 7: in Algorithm 5 combining with

in Algorithm 3 constitutes a truthful, individual rational,
- competitive online auction.

VII. PERFORMANCE EVALUATION

We evaluate our online auction design using trace-driven
simulations. We investigate 23 types of VMs distributed in

(default value 9) datacenters, assembled from three types
of resources (CPU, RAM, and Disk capacity,). Users’
resource demands are extracted from Google cluster-usage
data [33], which record jobs submitted to the Google cluster
with information on their resource demands (CPU, RAM,
Disk). We translate each job request in the Google data into
a bidding bundle as follows: We generate a set of VMs in
Table I randomly that altogether can make up the resource
demands in the job request; the valuation in the bidding bundle
is calculated as the product of the total cost to acquire these
VMs according to the VM charges in Table I and a random
coefficient in the range of [0.5, 2]. In this way, we obtain a
pool of bidding bundles from the Google data. In each round
of the online auctions, each user randomly picks (default 3)
bundles in the pool, tags each VM in each bundle with a data-
center randomly selected from the datacenters, and bids the
bundles. A user ’s total budget is decided by multiplying
the sum of valuations in all the bundles the user may bid in the
rounds of auctions by a random coefficient in the range of

[0.5, 1]. We also compute the total amount of resource of each
type needed by all the bid bundles of users in each round,
scale it down using a random factor in [0, 1], and distribute the
overall amount of type- resource to datacenters evenly, to
obtain the amount of available resource, , for each type
of resource in each datacenter at each time. Note that we run
random bundle selection for each user over rounds first to
estimate users’ budgets ’s and available resources in the
datacenters, ’s, before running the experiments to evaluate
our online auction with the obtained ’s and ’s. We
suppose the maximum ratio between the overall demands for
any type of resource in any two bundles in a user’s bid in each
time-slot , i.e., , is no larger than 2.5, by picking up bundles
with similar resource demands for each user in the auctions,
which we believe to reflect the reality better. We also suppose
all users spend at least 70% of their respective budget.

A. Performance of Our Online Algorithms

We compare the performance of four algorithms:
• Alloc, a pure online resource allocation algorithm, with
the one-round resource allocation algorithm Algorithm 2
serving in the place of in in Algorithm 1;

• Auc, our online auction algorithm presented in
Section V-C, i.e., combined with in
Algorithm 3;

• AucBS, the online auction algorithm with the improved
scale-down factor, i.e., adding the binary search in Algo-
rithm 4 to the auction algorithm in ;

• AucExt, the improved online auction algorithm with the
improved scale-down factor, i.e., adding the binary search
in Algorithm 4 to in the improved online auction
algorithm in Algorithm 5.

We compare these algorithms in different settings, based on
the ratio between the offline optimal social welfare derived by
solving (1) exactly and the overall social welfare produced by
each online algorithm over rounds, which we refer to as the
offline/online ratio. In each scenario, we repeat each experiment
for 10 times to derive the average ratios.
We first compare the algorithms through varying the number

of cloud users from 300 to 3000, while fixing the number
of rounds , as illustrated in Fig. 1(a). The offline/on-
line ratio of Auc declines when is large , which
is consistent with our theoretical analysis in Theorem 3: The
larger the scale of the cloud system, the larger the value of

, and consequently the better offline/online ratio results.
When users’ truthful resource demands and valuations are as-
sumed available for free, the pure online resource allocation al-
gorithm, Alloc, achieves an offline/online ratio close to 1, which
shows that our online algorithm framework together with the
one-round resource allocation algorithm performs closely to the
offline optimum in social welfare, if all the cloud users are coop-
erative.AucBS achieves a better offline/online ratio as compared
to Auc, revealing the usefulness of our improved scale-down
factor based on the binary-search Algorithm 4 in decomposing
the fractional solution into better integer solutions in practical
scenarios. AucExt only slightly outperforms AucBs in this av-
erage-case ratio since its improvement mainly lies in the theo-
retical worst-case competitive ratio.
We next vary the total number of rounds our system is

running for while fixing the number of users to 500. Suppose
each round is 1 h. We observe in Fig. 1(b) that the offline/on-
line ratio of each algorithm always remains at similar levels,
demonstrating the stable performance of our online algorithms
regardless of the total number of rounds they are applied into.
We further evaluate the performance of AucBS when the

number of bundles each user bids for in each round, , and the
number of datacenters, , vary. Fig. 1(c) shows that in general
the performance of the improved online auction is better when
the number of bundles is smaller. This can be explained as
follows: The competitive ratio of our online auction (given
in Theorem 5) is related to , the approximation ratio of the
one-round resource allocation algorithm in Algorithm 2, which
is further closely related to . When is smaller, is
potentially smaller, and thus is smaller, leading to a lower
competitive ratio of the online auction. In a practical cloud
system, the bundles that a user bids are typically different
representations of the user’s same resource demands in a

SHI et al.: AN ONLINE AUCTION FRAMEWORK FOR DYNAMIC RESOURCE PROVISIONING IN CLOUD COMPUTING 2069

Fig. 1. Performance of Alloc, Auc, AucBS, and AucExt (a) under different number of users, (b) under different number of rounds, (c) with different number of
bundles, and (d) with different number of datacenters.

Fig. 2. Performance comparison between AucBS, MUCA, and COCA (a) under different number of datacenters, (b) under different number of rounds, (c) under
different number of datacenters, and (d) under different number of bundles.

time-slot, e.g., different bundles may specify different numbers
of different types of VMs requested from different datacenters,
which add up to a similar amount of each type of resource
across different bundles, to serve the user’s need in . Therefore,
we do not expect a large value of at any time. When the
value of is capped (e.g., to 2.5 in our simulation settings),
the competitive ratio is bounded even when takes larger
values, as shown by the similar offline/online ratios obtained
when , or 5, respectively, in Fig. 1(c).
Fig. 1(d) shows that when the total number of datacenters

in the cloud system increases, the performance of our online
auction degrades slightly because the approximation ratio of
Algorithm 2 is larger when is larger. Nevertheless, we do not
expect more than a few tens of datacenters in a real-world cloud
system, and the offline/online ratio is still acceptable around
2.80 when is 10.
We note that the performance ratios obtained in our simu-

lations are much smaller than the theoretical ratios computed
based on Theorem 5, in the range of 6–7 under the same settings
as used in our simulations. This promises the good performance
of our online auction algorithm in practice.

B. Comparison to Existing Auction Mechanisms
Now we compare our online auction algorithm AucBS to an-

other auction algorithm MUCA [6]. The settings in MUCA are
the most similar in the existing literature, which however is a
one-round multi-unit combinatorial auction, where each user
only demands one resource bundle . The main idea of
MUCA is to calculate a virtual price for each bundle based on
the amount of resource consumed by a bundle and a randomly
assigned unit resource price, and to choose the winning bundle
as the one with the highest cost efficiency, i.e., the highest val-
uation with the lowest virtual price. The competitive ratio of
MUCA is , where is the total number of available

VM instances. In order to do a fair comparison betweenMUCA
and our online algorithm, we run MUCA as a subroutine in-
stead of in the same online algorithm framework
in Algorithm 1; for multiple bundles submitted by one user,
the MUCA subroutine greedily chooses the most cost-efficient
available bundle.
Fig. 2(a) compares AucBS and MUCA to different numbers

of datacenters, . The performance of AucBS is always better
than MUCA. With more datacenters, the offline/online ratio of
AucBS increases slower than MUCA, exhibiting that our algo-
rithm handles multiple datacenters better. The reason is that the
competitive ratio of our algorithm mainly depends on , which
increases with very slowly , while the compet-
itive ratio ofMUCA is close to , which increases signif-
icantly with .
Fig. 2(b) compares the performance of both algorithms when

they run for different overall time. We observe that the perfor-
mance of AucBS is again better and the ratios of both algorithms
are quite stable with different time lengths.
Finally, we compare our algorithm AucBS to another online

auction algorithm, COCA [4]. The main idea of COCA is to
calculate an estimated payment for user’s requested resources
based on a pricing curve and accept users with positive utility
as winners. The original COCA model focuses on one type of
resource; for fair comparison, we extend this method to mul-
tiple types of resources and multiple resource bundles, create a
pricing curve for each type of resource with a coefficient as-
signed following the unit price of the respective resource in
real-world cloud services [34], and always choose the bundle
with the largest utility for each user. Note that we simply follow
the underlying pricing curve method of COCA, and assign coef-
ficients in an intuitive fashion. In this way, the extended COCA
algorithm retains similar characteristics (such as truthfulness),
but its theoretical performance in social welfare is no longer

2070 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 4, AUGUST 2016

guaranteed. Before presenting the simulation comparison, we
compare the extended COCA algorithm and our AucBS from a
theoretical perspective: the theoretical performance of COCA
depends on the ratio between the highest and lowest unit valua-
tions, while AucBS is not influenced by the distribution of user
valuations. However, the performance of AucBS is negatively
affected when is small (e.g., when) since be-
comes larger, while the performance of COCA is the same for
any values of .
We compare the offline/online ratio achieved by the two algo-

rithms by taking the average over 10 times of run of each exper-
iment. Fig. 2(c) shows that the advantage of AucBS is clearer
at larger values of . This is because more datacenters result
in more types of resources (CPU/RAM/disk at different data-
centers are treated as different types of resources), and COCA
handles multiple types of resources in a simple intuitive fashion,
which becomes less efficient when the number of types becomes
larger. Fig. 2(d) reveals that the performance of AucBS is again
consistently better under different numbers of bundles, .

VIII. CONCLUDING DISCUSSIONS

This work presents the first online combinatorial auction
for the VM market in cloud computing. It advances the
state-of-the-art of cloud auction design in that all previous VM
auction mechanisms are either one-round only or simplify VMs
into type-oblivious good (and hence circumvent the challenge
imposed by combinatorial auctions). Our online auction com-
prises three components. First, we design an intuition-driven
primal-dual algorithm for translating the online social welfare
optimization problem into a series of one-round optimizations,
incurring only a small additive penalty in competitive ratio.
Second, we apply a randomized auction subframework that
can translate a cooperative approximation algorithm to the
one-round optimization into an auction. Third, we apply a
greedy primal-dual algorithm that approximates the one-round
social welfare optimization. We also propose two extensions
to the basic online auction framework to further improve the
competitive ratio. Our overall online VM auction guarantees a
theoretical competitive ratio close to 3.30 in typical scenarios,
and its design may shed light on similar auction problems in
related settings.
Finally, we briefly discuss practical implementation concerns

of dynamic VM provisioning in real-world cloud systems.
Latencies for resource partitioning are incurred for VM provi-
sioning, which are a common issue in IaaS cloud provisioning.
To realistically reduce such latencies before a VM can be
ready to run, a practical solution is to maintain pools of pre-
assembled VMs with typical resource configurations (e.g.,
summarized according to historical user demands) and do hot-
plug of CPU/RAM/disk [35] upon user’s requests to produce
customized VMs. Hotplug of CPU and RAM is highly efficient,
while the preparation for the hard disk requires longer time.
Nevertheless, users’ demands for disk capacity are typically
more uniform than those for CPU and RAM, which allows
the cloud provider to prepare some “standard” sizes of virtual
disks in advance (e.g., 256 GB, 512 GB, etc.). In this way, the
latency for dynamic VM provisioning can be reduced to as low
as a few seconds, which is ignorable compared to the hours of
VM rental periods. In addition, our work does not deal with
server provisioning, according to the practical knowledge that

decisions on switching servers on or off are typically made at
much larger time intervals than VM provisioning, e.g., once
per month or so in Amazon EC2 cloud according to discussions
with Amazon employees. We plan to pursue auction mecha-
nism design for two-time-scale decision making and resource
allocation in our future work.

APPENDIX A
PROOF OF THEOREM 1

We prove the correctness and the competitiveness of
by proving three claims.
1) At the end of the algorithm, it produces feasible solution

for dual (2).
2) Let be the value of the objective function in (1)

after th iteration, , the same for
in dual (2). Then, satisfies

, at any round.
3) The algorithm produces an almost feasible solution

for primal (1). Specifically, its outputs satisfy
(1a), (1c), and (1d). For constraint (1b), we achieve
a slightly weaker property : For all user

Proof of (1): Since no matter
whether or , constraint (4a) guarantees

Also notice
is nondecreasing with , so (2a) holds.
Proof of (2): At time . Substitute

for , and we get claim (2).
Proof of (3): Constraints (1a), (1c), (1d) are guaranteed

by the constraints in (3). In order to analyze the property about
constraint (1b), we prove the following:

(8)
We prove (8) by induction. Equation (8) holds for

apparently. Suppose it holds for , then
for : If , the inequality holds since both sides
are still the same value at time . If :

Comparing this to our target (8), obviously we only need

to show: . We utilize the inequality:

Since ,
we prove (8). Now we utilize the inequality (8) to prove
claim (3). For some user , suppose is the first time

. Then by (8), . The
algorithm never gives user any new bundles once ,
since the weight in will be set to 0. Hence,

. We know
is the first time user ’s total winning bids exceeding its budget

and finishes the proof of claim (3).
Since the increment of valuation is the minimum between

user’s valuation and his remaining budget, total social welfare
should be at least . By claim 2:

SHI et al.: AN ONLINE AUCTION FRAMEWORK FOR DYNAMIC RESOURCE PROVISIONING IN CLOUD COMPUTING 2071

, and recall , we have
. Thus, the social welfare is at least

. By duality, the approximation ratio of
is .

APPENDIX B
PROOF OF THEOREM 2

Suppose user ’s bid is , then we can calculate the value
of by definition. We omit this calculation process in our
proof and directly assume that user submits bid and
other users submit bids . Then, according to the
payment rule , user ’s utility can be calculated as:

. is calculated by maxi-
mizing , which is the total social welfare. Hence,

is greater than because the latter is the
maximum social welfare with the same amount of resources
and one less user. Thus, . Next we compare the utility
under the truthful bid and a false bid. Suppose user submits a
false bid . Then, the fractional allocation decision becomes

. His utility under false bid is calculated similarly:

The difference of these two utilities is

Again, maximizes social welfare, so
, and .

APPENDIX C
PROOF OF THEOREM 3

Constraints (3a) and (3c) are obviously never violated. We
study the constraint (3b). Suppose in iteration
is the first bid that violates constraint (3b) when added to
the allocation. This means such that

.
We know , so

. Hence, .

, where represents the value of
before iteration . Thus, constraint (3b) is never violated.

The feasibility of the dual (4) is more complicated because the
solution is not always feasible during the iterations. However,
the dual variables are feasible after scaling down, which is
described in the following lemma.
Lemma 2: If is the dual solution before iter-

ation , then is a feasible solu-
tion to the dual (4), where is defined as

, and is the set of
is the selected user in iteration .

Proof: We have .
Note that we choose the by choosing the max-
imum ratio of and a summation. Therefore,

, and

. So:
.

Thus, is feasible to dual (4).
Nowwe are ready to prove the final conclusion of Theorem 3.

Let . Let be
the optimal solution to the dual (4). Let be the bundle
selected in iteration . Totally iterations are executed.
Case 1: stops at iteration where and

. The solution is optimal.
Case 2: stops at iteration where , and

, such that . Then, it is a -approximation
solution since and is nondecreasing of .
Case 3: stops at iteration where
, and . For any iteration

. Define

. Then,

. We utilize the inequality:

. Let ,

then: . Note
that is nonincreasing of . Therefore,
reaches its maximum when . Recall the definition
of , we have

. Here is a corollary of Lemma 2:

. Hence, . We utilize the in-
equality: here, and repeat this process:

. Note that and , so
. Hence, . Also

note that . According to the weak duality,
this finishes the proof of Theorem 3.

APPENDIX D
SEPARATION ORACLE AND PROOF OF LEMMA 1

First, we describe the separation oracle. In each iteration of
the ellipsoid method, a possible solution of (7) is gen-
erated, and is given as the input of the seperation oracle. The
separation oracle we present in Algorithm 6 judges whether this
solution is feasible. If it is not feasible, the oracle returns a con-
flict constraint as the separation plane, i.e., a set of . We use

as the separation plane. If the objective value is larger
than 1, we need to find a set of that satisfies

. Remember the
input and makes the objective value larger than
1: . Hence, we
find a conflict constraint if we can find satisfies

.

2072 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 4, AUGUST 2016

Algorithm 6 Separation Oracle

Require: input

1: If , Then return “YES”
2: If , Then return “NO”

with separation plane
3: If , Then
4:
5: Run with input , get output

. Set if , and 0 otherwise.
6: Return “NO” and
7: EndIf

The following is the detailed proof of Lemma 1.We first show
that for any , we can find in polynomial time a feasible
integer allocation such that

. Note the here can be
negative value, so we cannot invoke directly. So
we define . Then, we use , with input vector

to get satisfying
. Also note that satisfies

. Thus,
we find an integer solution . Next we show the optimal
value of (7), and hence of (6) is exactly 1. Here is a fea-
sible solution with value 1:

, so the optimal value is at least 1. Then, we claim
that it is at most 1: suppose

. Then, we can find an integer solution using the
previous method such that

, which contradicts
constraint (7a). Finally we show the function of our designed
oracle is correct. Two cases are obvious: objective value equals
1 and smaller than 1. When larger than 1, the oracle generates

and calls . The correctness of this method has been
discussed. Therefore, this oracle solves (7) as we expect.

APPENDIX E
PROOF OF THEOREM 4

We calculate the expectation of his utility:

. His utility cannot be
increased by false bid. Hence, the scaled-down auction is
also truthful. The social welfare under the fractional VCG
auction is . Now we
calculate the expected social welfare under randomized
auction:

. This proves the com-
petitive ratio since the social welfare under optimal
fractional solution is larger than under integer solution.
Next we show the individual rationality. First note

that the definition

guarantees . Then, we
calculate user ’s utility under random choice

.

In order to prove , we only need to prove
.

APPENDIX F
PROOF OF THEOREM 5

The only difference between Theorems 5 and 1 is we intro-
duce randomness here. Recall the proof of Theorem 1, the only
claim affected by randomness is claim (2). We analyze the ex-
pectation of the increment on the primal and dual and

. At time .
, which finishes

our proof.

APPENDIX G
PROOF OF THEOREM 6

Suppose with scale-down ratio is decomposed
into a set of integer allocations . Then,

. We obtain ratio by adding a
“zero” allocation into the decomposition set . The
possibilities are adjusted: . The possibility of the
“zero” allocation is . We can verify that the new
decomposition set, with new possibilities is a decomposition
for ratio .

APPENDIX H
PROOF OF THEOREM 7

First we prove to be at least
. Whenever , we update by:

. Its total valuation is
, and we have . Then, we prove the three

claims just similar to the proof in Appendix A. Proofs of the
first two claims are trivially similar. Now we prove the third
claim by inductively prove the following inequality relation:
Suppose user has spent fraction of budget. If

. If

. The first case is proved by monotonicity. The
second case can be proved by induction, similar to Appendix A.

REFERENCES
[1] “Amazon Elastic Compute Cloud,” [Online]. Available: http://aws.

amazon.com/ec2/
[2] “Windows Azure,” [Online]. Available: http://www.windowsazure.

com/
[3] H. Fu, Z. Li, and C. Wu, “Core-selecting auction design for dynam-

ically allocating heterogeneous VMs in cloud computing,” in Proc.
IEEE CLOUD, 2014, pp. 152–159.

[4] H. Zhang et al., “A framework for truthful online auctions in cloud
computing with heterogeneous user demands,” in Proc. IEEE IN-
FOCOM, 2013, pp. 1510–1518.

[5] “Amazon EC2 spot instances,” [Online]. Available: http://aws.amazon.
com/ec2/spot-instances/

SHI et al.: AN ONLINE AUCTION FRAMEWORK FOR DYNAMIC RESOURCE PROVISIONING IN CLOUD COMPUTING 2073

[6] Q. Wang, K. Ren, and X. Meng, “When cloud meets eBay: Towards ef-
fective pricing for cloud computing,” in Proc. IEEE INFOCOM, 2012,
pp. 936–944.

[7] S. Zaman and D. Grosu, “Combinatorial auction-based mechanisms
for VM provisioning and allocation in clouds,” in Proc. IEEE/ACM
CCGrid, 2012, pp. 729–734.

[8] L. Zhang, Z. Li, and C. Wu, “Dynamic resource provisioning in
cloud computing: A randomized auction approach,” in Proc. IEEE
INFOCOM, 2014, pp. 433–441.

[9] W. Wang, B. Liang, and B. Li, “Revenue maximization with dynamic
auctions in IaaS cloud markets,” in Proc. IEEE ICDCS, 2013, pp. 1–6.

[10] N. Buchbinder, K. Jain, and J. S. Naor, “Online primal-dual algorithms
for maximizing ad-auctions revenue,” in Proc. Annu. Eur. Symp., 2007,
pp. 253–264.

[11] R. Lavi and C. Swamy, “Truthful and near-optimal mechanism design
via linear programming,” in Proc. IEEE FOCS, 2005, pp. 595–604.

[12] Y. Zhu, B. Li, and Z. Li, “Truthful spectrum auction design for sec-
ondary networks,” in Proc. IEEE INFOCOM, 2012, pp. 873–881.

[13] C. Wu, Z. Li, X. Qiu, and F. C. M. Lau, “Auction-based P2P VoD
streaming: Incentives and optimal scheduling,” Trans. Multimedia
Comput., Commun., Appl., vol. 8, no. 15, 2012, Art. no 14.

[14] Z. Feng, Y. Zhu, Q. Zhang, L. M. Ni, and A. V. Vasilakos, “TRAC:
Truthful auction for location-aware collaborative sensing in mobile
crowdsourcing,” in Proc. IEEE INFOCOM, 2014, pp. 1231–1239.

[15] W.Vickrey, “Counterspeculation, auctions, and competitive sealed ten-
ders,” J. Finance, vol. 16, no. 1, 1961, DOI: 10.1111/j.1540-6261.1961.
tb02789.x.

[16] M. H. Rothkopf, A. Pekeč, and R. M. Harstad, “Computationally
manageable combinational auctions,” Manage. Sci., vol. 44, no. 8, pp.
1131–1147, 1998.

[17] A. Mu'Alem and N. Nisan, “Truthful approximation mechanisms for
restricted combinatorial auctions,” Games Econ. Behav., vol. 64, no.
2, pp. 612–631, 2008.

[18] D. Lehmann, L. I. Oćallaghan, and Y. Shoham, “Truth revelation in
approximately efficient combinatorial auctions,” J. ACM, vol. 49, no.
5, pp. 577–602, 2002.

[19] L. Mashayekhy, M. M. Nejad, D. Grosu, and A. V. Vasilakos, “Incen-
tive-compatible online mechanism for resource provisioning and allo-
cation in cloud,” in Proc. IEEE CLOUD, 2014, pp. 312–319.

[20] G. Shanmuganathan, A. Gulati, and P. Varman, “Defragmenting the
cloud using demand-based resource allocation,” in Proc. ACM SIG-
METRICS, 2013, pp. 67–80.

[21] N. Nisan, Algorithmic Game Theory. Cambridge, U.K.: Cambridge
Univ. Press, 2007.

[22] R. Lavi and N. Nisan, “Competitive analysis of incentive compatible
on-line auctions,” in Proc. ACM EC, 2000, pp. 233–241.

[23] M. Alicherry and T. Lakshman, “Network aware resource allocation in
distributed clouds,” in Proc. IEEE INFOCOM, 2012, pp. 963–971.

[24] S. T. Maguluri, R. Srikant, and L. Ying, “Stochastic models of load
balancing and scheduling in cloud computing clusters,” in Proc. IEEE
INFOCOM, 2012, pp. 702–710.

[25] F. Xu, F. Liu, H. Jin, and A. V. Vasilakos, “Managing performance
overhead of virtual machines in cloud computing: A survey, state of
the art, and future directions,” Proc. IEEE, vol. 102, no. 1, pp. 11–31,
Jan. 2014.

[26] L.Wang et al., “GreenDCN:A general framework for achieving energy
efficiency in data center networks,” IEEE J. Sel. Areas Commun., vol.
32, no. 1, pp. 4–15, Jan. 2014.

[27] L. Wang, F. Zhang, A. V. Vasilakos, C. Hou, and Z. Liu, “Joint virtual
machine assignment and traffic engineering for green data center net-
works,” Perform. Eval. Rev., vol. 41, no. 3, pp. 107–112, 2014.

[28] F. Xu, F. Liu, L. Liu, H. Jin, and B. Li, “iAware: Making live migra-
tion of virtual machines interference-aware in the cloud,” IEEE Trans.
Comput., vol. 63, no. 12, pp. 3012–3025, Dec. 2013.

[29] Z. Zhou et al., “On arbitrating the power-performance tradeoff in SaaS
clouds,” in Proc. IEEE INFOCOM, 2013, pp. 872–880.

[30] J. Guo, F. Liu, D. Zeng, J. C. Lui, and H. Jin, “A cooperative game
based allocation for sharing data center networks,” in Proc. IEEE IN-
FOCOM, 2013, pp. 2139–2147.

[31] N. Cherfi and M. Hifi, “A column generation method for the mul-
tiple-choice multi-dimensional Knapsack problem,” Comput. Optimiz.
Appl., vol. 46, no. 1, pp. 51–73, 2010.

[32] G. Gens and E. Levner, “Complexity of approximation algorithms for
combinatorial problems: A survey,” ACM SIGACT News, vol. 12, no.
3, pp. 52–65, 1980.

[33] “Google cluster data,” [Online]. Available: https://code.google.com/p/
googleclusterdata/

[34] “CloudSigma: Cloud servers on a powerful IaaS platform,” [Online].
Available: http://www.cloudsigma.com

[35] “KVM CPU Hotplug,” [Online]. Available: http://www.linux-kvm.
org/page/CPUHotPlug

Weijie Shi (S’14) received the B.E. degree in com-
puter science and technology from Tsinghua Univer-
sity, Beijing, China, in 2012, and is currently pur-
suing the Ph.D. degree in computer science at the
University of Hong Kong, Hong Kong.
His research interests include cloud computing and

mechanism design.

Linquan Zhang (S’13) received the B.E. degree
in computer science and technology from Tsinghua
University, Beijing, China, in 2010, and the M.Phil.
degree in computer science from the University of
Hong Kong, Hong Kong, in 2012, and is currently
pursuing the Ph.D. degree in computer science at the
University of Calgary, Calgary, AB, Canada.
His research interests are mainly in cloud com-

puting, network optimization, and game theory.

Chuan Wu (M’08) received the B.E. and M.E.
degrees in computer science and technology from
Tsinghua University, Beijing, China, in 2000 and
2002, respectively, and the Ph.D. degree in electrical
and computer engineering from the University of
Toronto, Toronto, ON, Canada, in 2008.
She is currently an Associate Professor with the

Department of Computer Science, The University
of Hong Kong, Hong Kong. Her research interests
include cloud computing and online/mobile social
network.

Zongpeng Li (SM’12) received the B.E. degree in
computer science and technology from Tsinghua
University, Beijing, China, in 1999, and the M.S.
degree in computer science and Ph.D. degree in elec-
trical and computer engineering from the University
of Toronto, Toronto, ON, Canada, in 2001 and 2005,
respectively.
He is currently an Associate Professor with the

Department of Computer Science, University of
Calgary, Calgary, AB, Canada. His research interests
are in computer networks, particularly in network

optimization, multicast algorithm design, network game theory, and network
coding.

Francis C. M. Lau (M’93–SM’03) received the
Ph.D. degree in computer science from the Univer-
sity of Waterloo, Waterloo, ON, Canada, in 1986.
He has been a faculty member with the Department

of Computer Science, The University of Hong Kong,
Hong Kong, since 1987, where he served as the De-
partment Chair from 2000 to 2005. He was an Hon-
orary Chair Professor with the Institute of Theoret-
ical Computer Science, Tsinghua University, Beijing,
China, from 2007 to 2010. His research interests in-
clude computer systems and networking, algorithms,

HCI, and application of IT to arts.

