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A Geometric Perspective to Multiple-Unicast
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Abstract— The multiple-unicast network coding conjecture
states that for multiple unicast sessions in an undirected network,
network coding is equivalent to routing. Simple and intuitive as
it appears, the conjecture has remained open since its proposal
in 2004, and is now a well-known unsolved problem in the field
of network coding. Based on a recently proposed tool of space
information flow, we present a geometric framework for analyz-
ing the multiple-unicast conjecture. The framework consists of
four major steps, in which the conjecture is transformed from
its throughput version to cost version, from the graph domain to
the space domain, and then from high dimension to 1-D, where
it is to be eventually proved. We apply the geometric framework
to derive unified proofs to known results of the conjecture, as
well as new results previously unknown. A possible proof to the
conjecture based on this framework is outlined.

Index Terms— Network coding, multiple-unicast, space infor-
mation flow, geometric information flow, multicommodity flow.

I. INTRODUCTION

DEPARTING from the classic store-and-forward paradigm
of data routing, network coding encourages information

flows to be “mixed” in the middle of a network, via means
of coding [6], [7]. While network coding for a single com-
munication session (unicast, broadcast or multicast) is well
understood by now, the case of multiple sessions (multi-source,
multi-sink) is much harder, with fewer results known [8]. The
case of multiple independent one-to-one unicast sessions is
probably the most basic scenario of the multi-source multi-
sink setting. With routing, multiple-unicast is equivalent to
the combinatorial problem of multicommodity flows (MCF)
[9], which is polynomial time computable (assuming fractional
flows are allowed). With network coding, the structure and the
computational complexity of the optimal solution are largely
unknown.
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Fig. 1. (Example from [1].) Two unicast sessions, from s1 to t1 and from
s2 to t2, each with target rate 1. All link capacities are 1. (A) Solution with
network coding. (B) Solution without network coding.

Fig. 2. (Coding solution on the left is an example from [10].) Three unicast
sessions, each with target rate 1. All link capacities are 1. (A) Solution with
network coding. (B) Solution without network coding - each of a1, a2, . . . c2
is an information flow of rate 0.5.

If the network is directed, network coding can outperform
routing for multiple unicast sessions. Fig. 1(A) shows a
network coding solution for two unicast sessions, each with
an end-to-end throughput demand of 1. If each link has a unit
capacity and a predefined direction as shown, then we can
verify that achieving a throughput of 1 and 1 concurrently is
infeasible without network coding. The potential of through-
put improvement due to network coding is unbounded, for
multiple-unicast in a directed network [1].

Interestingly, the picture is drastically different in undirected
networks, where the capacity of a link is flexibly sharable in
two opposite directions. No example is known where network
coding makes a difference from routing. Fig. 1(B) shows a
MCF with end-to-end flow rate of 1 and 1, which is feasible
if the underlying network in Fig. 1(A) is undirected. Fig. 2
shows another example of three unicast sessions, where a
routing based solution (right) can achieve the same maximal
throughput vector of {1, 1, 1} under network coding (left).
Harvey et al. [2] and Li and Li [1] conjectured that net-
work coding is equivalent to routing for multiple-unicast in
undirected networks, in the sense that any throughput vector
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feasible under routing is feasible with network coding, and
vice versa.

Despite a series of research effort devoted to it (e.g.,
[11]–[13]), this fundamental problem in network coding has
witnessed rather limited progresses towards its resolution.
Besides “easy” cases where the cut set bounds can be achieved
without network coding [1], [2], the conjecture has been
verified only in small, fixed networks and their variations,
such as the Okamura-Seymour network [11], [12]. It is worth
noting that such verification already involves new tools such
as information dominance [11], input-output inequality and
crypto inequality [12].

In 2007, Mitzenmacher et al. compiled a list of seven
open problems in network coding [14], where the multiple-
unicast conjecture appears as problem number 1. Chekuri
commented that claiming an equivalence between network
coding and routing for all undirected networks is a “bold
conjecture”, and that the problem of fully understanding net-
work coding for multiple unicast sessions is still “wild open”
[15, pp. 51–55]. A growing agreement is that new tools beyond
a “simple blend” of graph theory and information theory are
required for eventually settling the conjecture.

In this work, we apply a recently proposed tool, space
information flow [3]–[5], to develop a geometric framework
for studying the multiple-unicast network coding conjecture.
The framework consists of four main steps. In Step 1, LP
duality is applied for translating the conjecture from its
throughput version to an equivalent cost version. In Step 2,
graph embedding is performed, for translating the cost version
from the network domain to the space domain. Step 3 aims
at dimension reduction that brings the problem from a high
dimension space to 1-D. Step 4 contains a direct proof in 1-D,
where the cut condition on information flow transmission is
readily applicable.

Step 1 of the framework borrows an existing result from
previous work [1]. Step 2 builds upon recent work on space
information flow, where the optimal transmission of infor-
mation flows, in a geometric space instead of in a fixed
network topology, is studied. Step 3 exploits recent results
developed in the space information flow paradigm and new
results developed in this work. Step 4 is relatively simple,
where the proof is done by taking an integration over the 1-D
space on both sides of the cut condition inequality [4].

Based on the geometric framework, we derive unified proofs
to a number of known results on the conjecture, as well as new
results unknown before. In the throughput domain, it is known
that the multiple-unicast conjecture is true under the following
special cases: (a) when the number of unicast sessions is 2, (b)
when all the unicast sessions have their sources or receivers
co-located on the same node, and (c) when the network has
a star topology. For the general case, it is further known that
(d) the gap between network coding throughput and routing
throughput is upper-bounded by a ratio of O(log k), where k is
the number of unicast sessions. While existing proofs to results
in (a)-(d) are rather different from one another, we utilize the
proposed geometric framework to design unified proofs to all
of them. The difference among our unified proofs lies in the
choice of the target geometric space for network embedding,

and the technique in reducing the dimension of the geometric
space. In the cost domain, the comparison between network
coding and routing for multiple unicast sessions is relatively
new. We examine a class of networks that include uniform
complete networks, uniform or non-uniform grid networks
and layered networks, and prove upper-bounds on the ratio
by which network coding can save cost over routing. We
hope that this framework will shed light onto the original
multiple-unicast conjecture in network coding, and possibly
other problems in network information flow.

The rest of the paper is organized as follows. We review
related literature in Sec. II, and go through preliminary mate-
rial in Sec. III. Sec. IV describes the geometric framework in
detail, including a number of results in each step of the frame-
work, in preparation for Sec. V and Sec. VI, where existing
results on the multiple-unicast conjecture in the throughput
domain and new results in the cost domain are proved,
respectively, in a unified way. Finally, Sec. VII concludes the
paper, while suggesting a possible proof to the multiple-unicast
conjecture based on the proposed geometric framework.

II. PREVIOUS RESEARCH

Harvey and Kleinberg [16] studied how various types of
combinatorial cut conditions can approach the network coding
throughput in an undirected network. They defined and exam-
ined three types of bounds, based on edge-sparsity, vertex-
sparsity and meagerness, respectively. However, it is found
that none of these bounds exactly or closely upper-bounds the
achievable throughput of network coding.

Jain et al. [12] studied the multiple-unicast Conjecture in
the Okamura-Seymour graph, a well-known example with four
unicast sessions, where the cut bound is 1 (for each session)
and routing can achieve a throughput of 3/4 only. Applying
tools in entropy calculus, including input-output equality and
crypto inequality to the network at hand, they show that the
max throughput with network coding is also 3/4, and hence the
conjecture is true there. Independently, Harvey et al. [11] also
studied the Okamura-Seymour example, by blending graph
theory and information theory techniques. Techniques from
both Jain et al. and Harvey et al. can be applied to prove
the multiple-unicast Conjecture in a special type of bipartite
networks [11], [12].

Al-Bashabsheh and Yongacoglu [17] and Kramer and
Savari [18] further studied the multiple-unicast Conjecture in
another specific network, Hu’s 3-commodity network, where a
gap exists between the routing throughput and the cut bound.
The network has 6 vertices, 8 links and 3 unicast sessions.
Based a close examination of the network structure, they
apply input-output equality and submodularity of information
entropy [17], and the d-separation technique from Bayesian
networks [18], respectively, for proving that the max through-
put both with and without network coding is 8/7 for each
unicast session.

Yazdi et al. [19], [20] studied the multiple-unicast problem
in undirected ring networks. Based on an extension of the
Japanese Theorem [21], [22], they show that the multiple-
unicast Conjecture is true when all nodes in the network lie
on a cycle.
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Langberg and Médard [13] studied the multiple-unicast
Conjecture, aiming at proving a relaxed version of it. They
prove that under a certain connectivity assumption, throughput
of network coding is at most three times throughout of routing.
More precisely, if the network is well connected such that it
is possible to concurrently multicast from every sender si to
all receivers at rate r , then routing can achieve a unicast rate
of r/3 for each of the unicast sessions.

Traskov et al. [23] studied the multiple-unicast problem in
directed networks. They design two sub-optimal but practical
code construction techniques for the network coding solu-
tion, based on linear programming and integer programming,
respectively.

Wang and Shroff [24] propose and study pairwise network
coding in directed networks, cyclic or not. They present a
graph theoretic characterization of network coding restricted
to two information flows, and discuss the sufficiency of linear
network coding, the complexity of identifying coding opportu-
nities, and the bandwidth efficiency of the solutions. Erez and
Feder [25] studied a similar problem of two unicast sessions in
directed acyclic networks. They construct a backpressure style
distributed solution based on network coding, for improving
upon multicommodity flow based solutions.

In a recent work, Huang and Ramamoorthy [26] studied
3 unicast sessions in directed acyclic networks. Combining
entropy arguments with network topology constraints, they
characterize a number of cases where rates are achievable or
not achievable by network coding.

III. MODEL AND PRELIMINARIES

We use G = (V , E) to represent an undirected network,
with |V | = n nodes. Let c ∈ Q|E |

+ be a link capacity vector,
and w ∈ Q|E |

+ be a link cost vector. Here Q+ is the set of
positive rational numbers. For the multiple-unicast problem,
the set V contains in particular k sender-receiver pairs, si and
ti , 1 ≤ i ≤ k. The k unicast sessions are independent, and have
a desired throughput vector r = (r1, . . . , rk). An orientation
(V , A) of G is specified by a set of nodes V that is the same
as in G, and a set of directed links A = {→

uv,
→
vu |∀(u, v) ∈ E}.

A flow vector f ∈ QA
+ specifies the rate of information flow

transmitted at each directed link in A. If e ∈ A is a directed
link, then f (e) is the scalar component in f that specifies that
flow rate at e. If e = (u, v) ∈ E is an undirected link then
f (e) = f (

→
uv)+ f (

→
vu) is the total flow rate between u and v.

A. Multiple-Unicast: Network Information Flow

In the max-throughput version of the multiple-unicast prob-
lem, we are given a capacitated network (G, c), and wish to
maximize a ratio α ≥ 0, such that the throughput vector αr
can be achieved. Let αNC and αR be the maximum values
of α possible, under network coding and routing (MCF),
respectively, then the coding advantage is defined as the ratio
αNC /αR .

In the min-cost version of the multiple-unicast problem,
we are given a link-weighted network (G, w), with each
link having unlimited capacity. Under routing (MCF), each
unicast session can be routed separately since there is no

inter-session coding. The minimum cost for each session i
is diri , where di is the length of the shortest path between
si and ti in G, assuming each link e has cost w(e). The
minimum total cost under routing for achieving a throughput
vector r is therefore

∑
i (diri ). Under network coding, we wish

to minimize the total solution cost
∑

e(w(e) f (e)), such that
vector f together with some code assignment forms a valid
network coding solution for achieving throughput vector r .
Assume f ∗ is the underlying flow vector of an optimal
network coding solution, we define the cost advantage of
network coding as the ratio

∑
i (diri )/

∑
e(w(e) f ∗(e)).

B. Multiple-Unicast: Space Information Flow

Space information flow (geometric information flow) is a
new subject of study being proposed [3], [5], which can
be viewed as a generalization of the geometric Steiner tree
problem by introducing network coding. It considers termi-
nals at known locations in a geometric space, with unicast,
broadcast or multicast communication demands among them.
Information flows can be transmitted along any trajectories in
the geometric space, and may be replicated wherever desired,
or encoded wherever they meet. The goal is to minimize the
total bandwidth-distance sum-product, while sustaining given
end-to-end communication rates. Besides being a conceivable
theoretical problem of “network coding in space”, space
information flow models the min-cost design of a blueprint of
a communication network, which deserves renewed research
attention given network coding [3]. Space information flow
also opens the door to geometric approaches for studying
network information flow problems, including in particular the
multiple-unicast network coding conjecture in graphs.

A h-D space with p-norm distance is denoted as lh
p . For

two nodes u and v in lh
p with coordinates (xu1, . . . , xuh) and

(xv1, . . . , xvh), respectively, the distance between u and v is:

||u, v||hp =
(

h∑

i=1

|xui − xv i |p

) 1
p

The superscript h, the subscript p, or both, may be omitted
when their specific values are not important or clear from the
context.

For the multiple-unicast version of the space information
flow problem, we are given k pairs of terminals, (si , ti ), 1 ≤
i ≤ k, in a space lh

p . We seek the min-cost solution that can
achieve a throughput vector r , under the rule that relay nodes
can be inserted anywhere for free, and the cost of a one-
hop transmission is proportional to both its flow rate and its
geometric distance. Under routing (MCF), the optimal cost is∑

i (||si , ti ||pri ), due to the triangular inequality of distances
in lh

p , known as Minkowski inequality in the literature. Under
network coding, let f ∗ be the underlying flow vector of the
optimal solution. For an edge e between two nodes u and v,
let ||e||p = ||u, v||p be the length of e. The cost is then∑

e ||e||p f ∗(e). The cost advantage of network coding here
is

∑
i (||si , ti ||pri )/

∑
e(||e||p f ∗(e)).

Fig. 3(a) shows a multicast version of the space information
flow problem in a 2-D Euclidean space [27]. Among the
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Fig. 3. A multicast space information flow problem in a 2-D Euclidean space
(example taken from [27]), where network coding outperforms routing, i.e.,
the cost advantage is strictly larger than 1. The target multicast throughput
is 1 bps. (a) Six multicast terminals. Radius of circle is 1. (b) Minimum
Euclidean Steiner tree, cost is 4.64. (c) Minimum multicast flow with network
coding, cost is 4.57.

Fig. 4. A 2-D example of space information flow: meeting communication
demands among nodes in space. A min-cost solution is to be computed, for
three unit-demand unicast sessions from s1 to t1, from s2 to t2 and from s3
to t3, respectively (left). Given network coding, is there a solution better than
MCF (right)?

six multicast terminals (A-F), five (A-E) are evenly distributed
along a circle centered at F. Any of the six node can be chosen
as the multicast source, with the other five being receivers.
Fig. 3(b) shows the optimal solution with routing, which has
cost 4.64. Three relay nodes are inserted. Fig. 3(c) shows
the optimal solution with network coding, which has cost
4.57. Five relay nodes are inserted. Despite its small value,
the gap between the two optimal costs reveals that multicast
with network coding is a fundamentally different problem from
geometric Steiner trees, with a different problem structure, and
perhaps a different computational complexity.

For the multiple-unicast version of space information flow,
consider three unicast sessions each with unit demand, from
s1 to t1, from s2 to t2 and from s3 to t3, respectively, in
a 2-D Euclidean space as shown in Fig. 4. We can route
an information flow along any path in space, insert relay
nodes wherever desired, and replicate or encode information
flows wherever desired. We aim to minimize the volume of
the solution network induced,

∑
e ||e|| f (e). Here e is a link

employed for flow transmission, ||e|| is the length of e in
space, and f (e) is the rate of information flow routed across e.
What is the optimal solution for satisfying the three unicast
demands? Can network coding lead to better solutions than
routing (MCF)? Recent examples show that network coding
can outperform routing when the demand in space is multicast
[3], [5]. What about multiple-unicast?

C. Paradigm Comparison

Given a space information flow vector f , a network
can be induced, over the same nodes and links as in f ,
by viewing f (e) as the capacity of e. The distance of e
is denoted as ||e||. The cost of f is then

∑
e ||e|| f (e).

This reflects the general rule that the longer and the wider a
communication cable is, the more expensive it is. For the sake
of cost minimization, apparently, only straight line segments
(or geodiscs in manifolds without a global coordinate system)
need to be considered in f .

We can establish a connection between the cost advantage
in space and that in graphs. Given a problem instance, in the
form of either multiple-unicast or multicast, let ζd , ζu and
ζs be the max cost advantage possible in directed networks,
undirected networks, and space, respectively. Then we have
the following relation among the three:
Theorem 3.1. ζd ≥ ζu ≥ ζs .
Proof: We first show that ζd ≥ ζu . Given the maximum cost
advantage ζ ∗

u in undirected networks, let #u be a problem
instance where this cost advantage is achieved, and let f ∗ be
the underlying flow of the optimal network coding solution.
We can create a corresponding problem instance #d for the
directed setting, by viewing f ∗ as the directed network, while
keeping the terminal nodes, link costs and target throughput
intact. With network coding, the cost of the optimal solution
is the same in #d and in #u , since f ∗ constitutes an optimal
solution for both. Without network coding, the cost of the
optimal solution can only increase from #u to #d , since
the latter is more restrictive — a routing solution faces extra
constraints in the form of predefined link directions. Therefore
ζd ≥ ζu .

We next show that ζu ≥ ζs . Given the maximum cost
advantage ζ ∗

s in geometric spaces, let #s be a problem
instance where this cost advantage is achieved, and let f ∗ be
the underlying flow of the optimal network coding solution.
We can create a corresponding problem instance #u for the
undirected network setting, by viewing f ∗ as the underlying
network topology. The orientation of links in f ∗ is cancelled.
If two links appear between the same pair of nodes as a result,
they are merged into a single link with the sum capacity.
The set of terminal nodes and the target throughput remain
unchanged. The cost of a link between two nodes u and
v, w(uv), is taken as the geometric distance ||u, v||hp . With
network coding, the cost of the optimal solution is the same
in #s and in #u , since f ∗ constitutes an optimal solution for
both. Without network coding, the cost of the optimal solution
can only increase from #s to #u , since the latter is more
restrictive — a routing solution faces extra constraints in the
form of a predefined network topology (including the number
of relay nodes, and the interconnection among the terminal
nodes and relay nodes). Therefore ζu ≥ ζs . !

Given Theorem 3.1, we know that all upper-bounds on the
cost advantage proven for the undirected model are still valid
in the space model. Conversely, all lower-bounds that we can
prove for the space model will also be valid for the undirected
model. For example, an upper-bound of 2 is known for cost
advantage in undirected multicast networks [28]–[30]. This
bound automatically holds for multicast in a geometric space
of any dimension, with normed distances.

D. Discussions

At a first glance, it may appear that the space information
flow problem is less rich than the network information flow
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problem, in that only terminal nodes present in the problem
input, and a detailed network topology including relay nodes
and link connections are not specified. Furthermore, one
may naturally worry that transforming the multiple-unicast
problem from the network domain into the space domain (as
we describe in Sec. IV) makes the problem trivial and less
interesting, because the interconnection information essential
for a network is lost; and hence, the geometric perspective may
not be helpful in proving the original multiple-unicast network
coding conjecture. Surprisingly, results we prove suggest a
different picture. In particular, we show the following relations
between the network version and the geometric version of the
multiple-unicast conjecture:

1. If the conjecture is true in networks, then it is true in any
geometric space with a properly defined notion of dis-
tance, satisfying non-negativity, symmetry, and triangular
inequality (implied from Theorem 3.1).

2. In particular, if the conjecture is true in networks, then
it is true in an Euclidean space of any dimension. If
the conjecture is true in all Euclidean spaces, then it is
approximately true in networks (the gap between network
coding throughput and routing throughput cannot be too
large).

3. The conjecture is true in all networks if and only if it is
true in all geometric spaces with Chebyshev distance.

Item 3. above shows that the multiple-unicast problem
carries over its full flavor form the network domain to the
space domain.

In the space information problem, for either multiple-unicast
or multicast, one may generalize the flow cost function from
linear to nonlinear, including sub-linear and super-linear ver-
sions. However, we restrict our attention to linear cost only in
this paper. The linear cost model is a natural and basic model
to start with, and it also appears sufficient for our purpose of
translating the multiple-unicast conjecture into its geometric
version.

IV. THE GEOMETRIC FRAMEWORK

In this section, we describe the geometric framework for
studying the multiple-unicast conjecture, including its four
major steps.

A. Step 1. From Throughput to Cost: LP Duality

In their original work where the multiple-unicast conjecture
was proposed [1], Li and Li first formulated the conjecture in
the throughput domain, and then applied linear programming
duality to translate it into the cost domain.

The multiple-unicast Conjecture [1], [2]

Throughput domain: For k independent unicast sessions
in a capacitated undirected network (G, c), a throughput
vector r is feasible with network coding if and only if it is
feasible with routing.
Cost domain: Let f be the underlying flow vector of a
network coding solution for k independent unicast sessions
with throughput vector r , in a cost-weighted undirected
network (G, w). Then

∑
e(w(e) f (e)) ≥ ∑

i (diri ).

Li and Li proved that the throughput version of the conjec-
ture is equivalent to the cost version, by applying LP duality
in the form of the Japanese Theorem. In particular, their proof
leads to the following result that will be used in this work:
Theorem 4.1. (Li and Li, 2004 [1]) Given an undirected
network G with k pairs of unicast terminals specified, and any
desired throughput vector r , the maximum coding advantage
in (G, c) over all c ∈ QE

+, equals the maximum cost advantage
in (G, w) over all w ∈ QE

+.
Intuitively, the throughput version of the conjecture claims

that network coding cannot help improve throughput, while the
cost version claims that network coding cannot help reduce
transmission cost. In Step 1 of the framework, we apply
Theorem 4.1 to translate the statement to be proven from its
throughput version to cost version.

B. Step 2. From Network to Space: Graph Embedding

An embedding of a link-weighted graph (G = (V , E),w)
into a space lh

p involves assigning a h-D coordinate to each
node u ∈ V . In the multiple-unicast problem, we embed either
the closure or the partial closure of G. The closure network
G′ is a metric closure of the link-weighted network G. It is
a complete network defined over the same set of vertices as
in G, such that the cost of a link e = (u, v) equals duv , the
shortest path length between u and v in G. The partial closure
of G is G with direct links added between each pair of si and
ti , with cost di .

A closure embedding has distortion β if ||u, v||p ≤ d(uv) ≤
β · ||u, v||p,∀u, v ∈ V . A partial closure embedding has
distortion β if ||si , ti ||p ≤ di ≤ β||si , ti ||p, and ||e||p ≤
w(e),∀e ∈ E . In both cases, the embedding is isometric if
β = 1.
Theorem 4.2. For k pairs of unicast sessions in an undirected
network (G, w), with desired throughput vector r , assume G
has a β-distortion closure embedding in a space lh

p . If the
cost advantage is ζ ≥ 1 after the embedding, then it is upper-
bounded by βζ before the embedding.

Proof: Assume, by way of contradiction, that there is
a network coding solution in G, with an underlying flow
vector f satisfying βζ

∑
e(w(e) f (e)) <

∑
i (diri ), then there

is such a f ′ in G′, by the definition of a closure network.
The embedding of f ′ leads to a solution in lh

p , where βζ ·∑
e(||e||p f ′(e)) < β · ∑i (||si , ti ||pri ) due to the β-distortion

property of the embedding, contradicting the assumption that
the cost advantage after the embedding is ζ . !

A similar result holds for partial embedding as well.
Theorem 4.3. For k pairs of unicast sessions in an undirected
network (G, w), assume there is a β-distortion partial closure
embedding of G in a space lh

p . If the cost advantage is ζ
after the embedding, then it is upper-bounded by βζ before
the embedding.

The proof of Theorem 4.3 is similar to that of Theorem
4.2, and is omitted. Informally, when the original link cost
vector is ‘nice’, e.g., satisfying the triangular inequality, par-
tial closure embedding may be preferred. Otherwise, closure
embedding is likely to be more helpful. A special case of
Theorem 4.2 and Theorem 4.3 is when β = 1, then cost



XIAHOU et al.: GEOMETRIC PERSPECTIVE TO MULTIPLE-UNICAST NETWORK CODING 2889

Fig. 5. Projection from ln∞ to lk∞: (1) for each session i ∈ {1, . . . , k},
identify primary coordinate for session i ; (2) for each node u, remove its
(n − k) non-primary coordinates and keep its k primary coordinates.

advantage is 1 after the embedding only if it is 1 before the
embedding.

C. Step 3. From High Dimension to 1-D: Projection

Step 3 of the framework aims to simplify the statement to
be proven from high dimension to 1-D. We introduce a few
results useful for such dimension reduction.
Theorem 4.4. If there exists a configuration of k unicast ses-
sions in ln

∞, n > k, where
∑

e(||e||∞ f (e)) <
∑

i (||si , ti ||∞ri ),
then there exists a configuration of k unicast sessions in lk

∞,
where the same inequality holds.

Proof: For each session i of the k unicast sessions in
the ln

∞ space, let’s define the primary coordinate of i as
argmax j |xsi j − xti j |. We project the original multiple-unicast
instance from ln

∞ to lk
∞ by truncating the coordinate of each

point in the following way: keep k coordinates including all
the primary coordinates, dropping other coordinates. More
specifically, let J be the set of all primary coordinates. The
size of J is at most k. Each point (x j , j = 1, . . . , n) in the
original n-D space is mapped to a point in the |J |-D space
of coordinates (x j , j ∈ J ). Fig. 5 illustrates such a projection
from ln

∞ to lk
∞ with an example of five nodes and two unicast

sessions.
After the projection from ln

∞ to lk
∞ above, the distance

||si , ti ||∞ remains unchanged, for each session i . The distance
between any two nodes u and v cannot increase. Therefore,∑

e(||e||∞ f (e)) does not increase due to the projection, while∑
i (diri ) remains unchanged due to the projection, and hence

the theorem is true. !
By definition, the normed spaces are all equivalent in

1-D. In particular, there is no difference between l1
2 and l1

∞.
Therefore we drop the norm p from l1

p , and simply write l1.
Theorem 4.5. If there exists a configuration of k unicast
sessions in l2

∞, where
∑

e(||e||∞ f (e)) <
∑

i (||si , ti ||∞ri ),
then there exists a configuration of k unicast sessions in l1,
where the same inequality holds.

Proof: Let p⃗ and q⃗ be two vectors in a space lh
p . We

define the projection of p⃗ onto q⃗ as the Euclidean projection
proj ( p⃗, q⃗) = p⃗·q⃗

||q⃗||h2
, where · is the inner product operation and

→
p · →

q = ||p||h2||q||h2| cos θ |, with θ being the angle between
→
p and

→
q .

As shown in Fig. 6, given a unit length vector (
−→
OC) in l2

∞,
the total Euclidean length of the two projected line segments
onto the two diagonal lines (

−−→
O M and

−−→
O N ) is constant (

√
2).

Fig. 6. Projecting a unit vector in ł2∞ to the two diagonal lines. While unit
vectors form a circle in l22 , they form a square in l2∞ . The total Euclidean
length of the two projected vectors is constant, and is

√
2, since ||O D||22 +

||O E||22 = ||O M||22.

Fig. 7. Project and Integrate over all possible diretions
→
p .

Therefore we know that for any link e in l2
∞,

proj (e,
→

O M) + proj (e,
→

O N )

||e||2∞
=

√
2

Since
∑

e(||e||2∞ f (e)) <
∑

i (diri ) by assumption, we have:
∑

e

( f (e)(proj (e,
−−→
O M) + proj (e,

−−→
O N)))

<
∑

i

(ri (proj (−→si ti ,
−−→
O M) + proj (−→si ti ,

−−→
O N )))

From the inequality above, we can conclude that for at least
one of

−−→
O M and

−−→
O N , the projected network coding solution

still has a smaller total cost than the cost of the projected MCF
solution. !
Theorem 4.6. If there exists a configuration of k unicast
sessions in lh

2 , for any h ≥ 2, where
∑

e(||e||h2 f (e)) <∑
i (||si , ti ||h2ri ), then there exists a configuration of k unicast

sessions in l1, where the same inequality holds.
Proof: Given the h − D problem instance, such that∑

e( f (e)||e||h2) <
∑

i (||si , ti ||h2ri ), we construct a 1 − D
k pairs unicast instance and its network coding solution
by projecting their counter parts from h-D. Our goal is to
show that there exists a 1-D sub-space/direction in the h-D
space, onto which the projection satisfies

∑
e( f (e)||e||1) <∑

i (||si , ti ||1ri ).
As shown in Fig. 7, let & be the surface of the h-D unit

hyper-sphere at the origin. We can enumerate all possible
directions in h-D by traversing all points on &, and connecting
to there from the origin. Let

→
p be the vector from origin to

the corresponding point on &, let
→
1 be the h-D unit vector

(1, 0, 0, . . . , 0).
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Fig. 8. Integrated projection of a link e over all possible directions is constant,
regardless of the orientation of e— an example of projecting from l22 to l1 .
The integration equals the area of the shaded region between 0 and 2π . The
orientation of e affects the phase of the cosine curve but not the area. Here
x-axis is the orientation of p⃗ in the 2-D space, and the absolute value of
y-axis is e · p⃗.

The integration over the closed surface & for all the
projections of f is:

∫✞✝ ☎✆∫

&

∑

e

( f (e)(e · →
p ))d& =1

∑

e

∫✞✝ ☎✆∫

&
f (e)(e · →

p )d&

=2
∑

e

∫✞✝ ☎✆∫

&
f (e)||e||h2(

→
1 ·→p )d&

=3
∑

e

( f (e)||e||h2)
∫✞✝ ☎✆∫

&
(
→
1 ·→p )d&

The nice property of this integration is that it is separable, in
the sense that we can perform integration for each link flow
segment first, and then take the summation (=1). Furthermore,
we observe that when we integrate for each line segment, the
orientation of that line segment does not matter, since we vary
the projection direction to take all possible values (=2), as
illustrated in Fig. 8.

The integration over the closed surface & for all the
projections of { →

si ti ri |i = 1, . . . , k} is:
∫✞✝ ☎✆∫

&

∑

i

(
→
si ti ·→p )ri d& =

∑

i

∫✞✝ ☎✆∫

&
(

→
si ti ·→p )ri d&

=
∑

e

∫✞✝ ☎✆∫
(||si , ti ||h(

→
1 ·→p ))ri d&

=
∑

i

||si , ti ||h
∫✞✝ ☎✆∫

&
(
→
1 ·→p )ri d&

Since
∑

e( f (e)||e||h) <
∑

i ||si , ti ||h by assumption, we
claim that:

∫✞✝ ☎✆∫

&

∑

e

( f (e)(e · →
p ))d& <

∫✞✝ ☎✆∫

&

∑

i

(
→
si ti ·→p )ri d&

Since the terms being integrated on both sides are non-

negative, there must exist a particular direction
→
p∗, for which

∑

e

( f (e)(e ·
→
p∗)) <

∑

i

(
→
si ti ·

→
p∗)ri !

Below we formulate a conjecture that generalizes
Theorem 4.5 from l2

∞ to lh
∞ for h ≥ 2. It can also be viewed

as the transformation of Theorem 4.6 from lh
2 to lh

∞. Later we
show that this conjecture implies the original multiple-unicast
network coding conjecture.
Conjecture 4.1. If there exists a configuration of k unicast
sessions in lh

∞ for some h ≥ 2, where
∑

e(||e||h∞ f (e)) <

Fig. 9. Three unicast sessions in 1-D. Total flow crossing point x0, f 1
x0

, is
lower-bounded by Demand((−∞, x0); (x0,∞)) = r1 + r2.

∑
i (||si , ti ||h∞ri ), then there exists a configuration of k unicast

sessions in l1, where the same inequality, with dimension h
replaced by 1, holds.

Theorem 4.6 and Theorem 4.7 in the next subsection show
that the multiple-unicast network coding conjecture is true for
Euclidean spaces of any dimension (in the literature, an Euclid-
ean space of dimension higher than 3 is sometimes referred to
as a Hilbert space). We recall that the celebrated Nash Embed-
ding Theorem states that every Riemannian manifold can
be isometrically embedded into some Euclidean space [31].
However, this does not directly imply a proof of the multiple-
unicast network coding conjecture in Riemannian manifolds,
since: the isometry claimed in Nash Embedding Theorem is
between geodesic distances before and after embedding, not
between geodesic distances before embedding and straight-
line distances after embedding. In fact, it may be interesting
to study (a) the possibility of isometric closure embedding of
an undirected graph into a Riemannian manifold, and (b) the
correctness of the multiple-unicast conjecture in Riemannian
manifolds.

D. Step 4. Prove Conjecture in 1-D:
Integrating Cut Inequality

In a 1-D space, each line segment (or edge) e between two
neighboring vertices forms a cut of the network. The amount
of flow f (e) over e has to be at least the total throughput
requirement of terminal pairs separated by the removal of e.
We next prove that this implies the multiple-unicast conjecture
in 1-D geometric spaces, confirming that any solution, with
network coding or not, can not break through the throughput-
distance sum-product barrier in a 1-D space.
Theorem 4.7. Given k independent unicast sessions in 1-D
space, let f 1 be the underlying flow vector of a network coding
solution achieving a rate vector r . Then

∑
e(||e||1 f (e)) ≥∑

i (||si , ti ||1ri ).
Proof: For a given point x in the 1-D space, let f 1

x be the
total amount of flow crossing x , in both directions. Note that
the point x constitutes a cut of the 1-D space, and therefore
f 1
x is lower-bounded by the flow demand between the left

sub-space (−∞, x) and the right sub-space (x,∞), denoted
as Demand((−∞, x); (x,∞)). We integrate both quantities
over the entire 1-D space, and obtain:

∫ ∞

x=−∞
f 1
x dx ≥

∫ ∞

x=−∞
Demand((−∞, x); (x,∞))dx

=
∑

i

||si , ti ||1ri

Furthermore, note that
∑

e(||e||1 f (e)) =
∫ ∞

x=−∞ f 1
x dx . We

conclude that
∑

e(||e||1 f (e)) ≥ ∑
i (||si , ti ||1ri ). !
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V. UNIFIED PROOFS TO PREVIOUS RESULTS

In this section, we demonstrate the application of the
geometric framework designed in Sec. IV, by providing unified
proofs to a few known results of the multiple-unicast conjec-
ture in the throughput domain.

A. The Cases of Two Unicast Sessions and
Co-Located Terminals

A set of vertices ( ⊆ V covers the k unicast sessions if
∀i ∈ {1, . . . , k}, si ∈ ( or ti ∈ (. In other words, a cover
of the k unicast sessions is a set of nodes that includes at
least one of the two terminal nodes from each of the k unicast
sessions. Such a cover is a vertex cover of the demand graph
[32] for the multiple-unicast problem.

We next prove that, if there exists a two-node cover (, i.e.,
|(| = 2, then network coding is equivalent to routing. From
this result, we derive as corollaries that the multiple-unicast
conjecture is true in the following two cases, which are known
in the literature: (a) if the number of unicast sessions k is 2,
and (b) is all the k unicast sessions have their sources (or
receivers) co-located at a common node.
Theorem 5.1. For k unicast sessions in an undirected network
(G, c), if there exists a two-node cover ( = {u, v} ⊆ V ,
then network coding is equivalent to routing (MCF), i.e., a
throughput vector r is feasible with network coding if and
only if it is feasible with routing.

Proof: Step 1. Transformation: Apply Theorem 4.1 to all
network configurations with a two-node cover, to translate the
statement from its throughput version to cost version.
Step 2. Embedding: Apply Theorem 4.2, to translate the
statement to be proven from the network information flow
domain to the space information flow domain, from G to ln

∞.
A network (G, w) with n nodes has an isometric closure
embedding into ln

∞, as reviewed below.
Let u and v be two nodes in ln

∞, at location (xu1, . . . , xun)
and (xv1, . . . , xvn), respectively. The ∞-norm distance, or
Chebyshev distance, between u and v is:

||u, v||∞ = lim
p→∞

(
n∑

i=1

|xui − xv i |p

) 1
p

= max
i

|xui − xv i |

We number the nodes in G and hence G′ as u1, u2, . . . , un .
We can embed each node ui , 1 ≤ i ≤ n by assigning
it the coordinates (xi1 = di1, xi2 = di2, . . . , xii = dii =
0, . . . , xi,n = di,n), where di j is the shortest path length
between ui and u j in G. After such an embedding, we can
verify that for any 1 ≤ k ≤ n, |dik − d jk| ≤ |di j | due to
the triangular inequality satisfied by cost metric d in G′, and
hence ||ui , u j ||∞ = di, j by the definition of ∞-norm distance
above.
Step 3. Projection: We can apply a primary coordinate based
dimension reduction technique, similar to that used in the
proof of Theorem 4.4, for reducing the geometric space from
ln
∞ to l2

∞. Given the two-node cover ( = {u, v}, we can select
as two primary coordinates the two coordinates in ln

∞ that
correspond to distances to nodes u and v in G respectively
(recall that each coordinate in ln

∞ denotes distances from some

node to a given node in G, by the way G is embedded into ln
∞).

Then, we can project each node ui from ln
∞ to l2

∞ by
truncating its (n − 2) non-primary coordinates, resulting in
a 2-D coordinate (xiu , xiv ).

Next, we apply Theorem 4.5 to further reduce the geometric
space from l2

∞ to l1.
Step 4. 1-D Proof: Apply Theorem 4.7 to prove the statement
in l1, concluding the proof to Theorem 5.1. !
Corollary 5.1. For two unicast sessions in an undirected net-
work (G, c), network coding is equivalent to routing (MCF),
i.e., a throughput vector (r1, r2) is feasible with network
coding if and only if it is feasible with routing.

Proof: This can be proved by applying Theorem 5.1, while
selecting ( = {s1, s2} to be the cover. !
Corollary 5.2. If all the k unicast sessions have their sources
(or receivers) co-located at a common nodes, then network
coding is equivalent to routing (MCF), i.e., a throughput vector
r is feasible with network coding if and only if it is feasible
with routing.

Proof: Let u be the node in G where the k sources (or
receivers) are co-located. Choose another node v ̸= u from G
arbitrarily. Let ( = {u, v}. By the definition of a node cover,
( is a valid node cover for the k unicast sessions that have
co-located sources (receivers). Applying Theorem 5.1, we can
conclude that network coding is equivalent to routing in this
case. !

B. The O(logk) Upper-Bound in the General Case

Theorem 5.2. For k unicast sessions in a undirected capaci-
tated network (G, c) with n vertices, the coding advantage is
upper-bounded by O(log k).
Proof:
Step 1. Transformation: Apply Theorem 4.1, to translate the
statement from throughput version to its cost version.
Step 2. Embedding: We translate the problem from G to a
geometric space with l1 distance, where:

||u, v||1 =
(

∑

i

|xui − xv i |1
) 1

1

=
∑

i

|xui − xv i |

Recall that d(u, v) denotes the shortest path distance
between two nodes u and v in G. For each node u in G,
map u to (d(u, Ai)|i = 1, . . . , O(log2 k)), where each Ai is a
randomly chosen subset of the terminals T = {si , ti |1 ≤ i ≤ k}
generated in the following way: for each h < k that is a
power of 2, randomly pick O(log h) sets A ⊆ T of cardinality
h; map u to (d(u, Ai )) where d(u, A) = minv∈A d(u, v). It
is proved that the mapping satisfies almost surely both (i)
||u, v||1 ≤ d(u, v), ∀u, v ∈ V , and (ii) d(u,v)

O(log k) ≤ ||u, v|| ≤
d(u, v), ∀u, v ∈ T ( [33], Corollary 3.4). If the embedding
fails to satisfy both (i) and (ii), one can repeat the randomized
embedding until (i) and (ii) are satisfied, leading to a O(log k)-
distortion partial embedding of G into l O(log2 k)

1 .
Step 3. Projection: In this step we aim at reducing the space
from l O(log2 k)

1 to l1. If the total size of the network coding
solution f is smaller than that of the routing solution in
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l O(log2 k)
1 to l1, i.e.:

Ø(log2 k)∑

i=1

∑

e=(u,v)∈ f

(|xui−xv i | f (e)) <

Ø(log2 k)∑

i=1

k∑

j=1

(|xs j i −xt j i |ri ),

there must be at least one particular i , such that 1 ≤ i ≤
O(log2 k), and

∑

e=(u,v)∈ f

(|xui − xv i | f (e)) <
k∑

j=1

(|xs j i − xt j i |ri ),

meaning that there is a problem instance in l1, where the
network coding cost is smaller than the routing cost.
Step 4. 1-D Proof: Apply Theorem 4.7 to prove the statement
in l1, concluding the proof to Theorem 5.2. !

C. Multiple-Unicast in Star Networks

A network G is a star network, if there is a (center) node
u in G, such that every other node is directly connected to u
only. It has been previously studied in the literature of network
coding for multiple unicast sessions [34].
Theorem 5.3. For k unicast sessions in an undirected network
(G, c) with a star topology that satisfies the following property,
network coding is equivalent to routing: for each session i ,
at least one of si or ti locates at a node that is a source or
destination of at most three sessions.

Proof: Step 1. Transformation: Apply Theorem 4.1 to
undirected star networks, to translate the statement from
throughput version to its cost version.
Step 2. Embedding: We apply Theorem 4.3 to transform the
problem from G to l2

∞. We show a partial closure embedding
of the star network (G, w) into l2

∞, with β = 1, guaranteeing
(a) the distance between every pair of si and ti remains
unchanged during the embedding, and (b) the length of every
edge e is upper bounded by w(e) in the network.

In the first step of the embedding, we map the center node
O of the star network to the origin of l2

∞.
In the second step, we randomly place non-center nodes into

one of the four quadrants of l2
∞. For each of the non-center

node u, select one of the four quadrants randomly and place
u along the diagonal line of that quadrant, with distance to
each of the two axes being w(uO) in G. For instance, if the
second quadrant is picked, then the coordinates assigned to u
are (−w(uO),w(uO)).

The third step resolves potential conflicts that arise when si
and ti are mapped into the same quadrant, for some unicast
session i ∈ {1, . . . , k}. If such a session i exists, then by the
assumption in the theorem, either si or ti is located at a node
that is a terminal for at most three unicast sessions. Without
loss of generality, let’s assume it’s si , which locates at a node
v in G. v hosts at most two other unicast sessions, i ′ and i ′′.
We relocate node v to a quadrant that is different from both
(i) its current quadrant, and (ii) the quadrant that hosts the
other terminal of unicast sessions i ′ and i ′′. Fig. 10 shows an
example of such embedding.

For each pair of terminals si and ti , if one of them resides at
the center O, then e = (si , ti ) is an edge in G and the shortest

Fig. 10. Embedding a star network with heterogeneous cost into l2∞ .
(a) Original network G . (b) Embedding in l2∞ .

si -ti path in G is the link (si , ti ) because G is a star network
and there are no alternative paths. Furthermore, di = w(e),
and ||si , ti ||2∞ = max{w(e),w(e)} = w(e) = di . If neither si
or ti is at the center O, then they are mapped to two different
quadrants in l2

∞, and it can be verified that ||si , ti ||2∞ =
||si , O||2∞ + ||ti , O||2∞ = w(si , O) + w(O, ti ) = di .

The last step of verifying the validity of the partial closure
embedding is to show that for every edge (u, v) in G,
||u, v||2∞ ≤ duv . If one of u and v is the center node, then
||u, v||2∞ = w(u, v) = duv by the way the embedding is
defined. If neither u or v is the center node, then ||u, v||2∞ =
du,v if u and v are mapped to different quadrants, and
||u, v||2∞ < du,v if u and v are mapped to the same quadrant.
Step 3. Projection: Apply Theorem 4.5 to reduce the space
from l2

∞ to l1.
Step 4. 1-D Proof: Apply Theorem 4.7 to prove the statement
in l1, concluding the proof to Theorem 5.3. !

VI. NEW RESULTS IN COST DOMAIN

In this section, we further apply the geometric framework
from Sec. IV to prove a number of new results.

A. Complete Networks

We prove that in a complete network with uniform cost,
network coding can not outperform routing, for multiple
unicast sessions.
Theorem 6.1. For k unicast sessions in a network (G, w), if
G is a complete graph and w is a uniform cost vector, then
the cost advantage is 1.

Proof: Step 1. Transformation: In this case, we are
proving network coding is equivalent to coding in the cost
domain only. Step 1 in the framework does not apply.
Step 2. Embedding: We describe an isometric closure embed-
ding of the uniform complete network G into ln

2 . For each
vertex i , i = 1, 2, · · · , n, let all the coordinates of i be
zero, except that the i th coordinate is

√
2

2 . Consequently, the
distance between any two points is 1 in the target space, and
we obtain an isometric embedding of G. We can then apply
Theorem 4.2 to transform the problem from G to ln

2 .
Step 3. Projection: Apply Theorem 4.6 to reduce the space
from ln

2 to l1.
Step 4. 1-D Proof: Apply Theorem 4.7 to prove the statement
in l1, concluding the proof to Theorem 6.1. !

If the complete network (G, w) does not have a uniform
cost in w, then we can similarly prove that the cost advantage
is upper-bounded by the maximum heterogeneity in list costs
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Fig. 11. The straightforward embedding of a 2-D square grid network
into l22 .

Fig. 12. Embedding a grid network with diagonal links into l2∞ .

maxe1,e2∈G w(e1)/w(e2). The difference in the proof lies in
Step 3, where we resort to an embedding with a distortion,
instead of an isometric one.

B. Grid Networks

Theorem 6.2. For k pairs of unicast sessions in a 2-D
square grid network (G, w) with uniform cost in w, the cost
advantage is at most

√
2 (Fig. 11). If each pair of si and ti is

further on the same row or column, then cost advantage is 1.
Proof: Step 1. Transformation: Not applicable.

Step 2. Embedding: We perform a partial closure embedding
of the grid network into l2

2 in the straightforward way. The
distortion is upper-bounded by

√
2. If each pair of si and

ti is on the same horizontal or vertical line, then we obtain
an isometric partial closure embedding. Then we can apply
Theorem 4.3 to transform the problem from G to l2

2 .
Step 3. Projection: Apply Theorem 4.6 to reduce the space
from l2

2 to l1.
Step 4. 1-D Proof: Apply Theorem 4.7 to prove the statement
in l1, concluding the proof to Theorem 6.2. !

The result in Theorem 6.2 can be enhanced and generalized
in a number of directions. For instance, if the original network
G is a uniform h-D grid instead of a 2-D grid, for some h ≥ 2,
then we can embed G into lh

2 with distortion
√

h, leading to an
upper-bound of

√
h on the cost advantage of network coding

for multiple unicast sessions.
Furthermore, consider a 2-D uniform grid network G that

further includes diagonal lines within all minimal squares, also
with unit cost. We can embed the partial closure of G into l2

∞
in an isometric fashion, as shown in Fig. 12. Here the isometric
embedding is obtained by applying the most straightforward
way of embedding G into a plane. Applying this as Step 2 in
the framework, we can prove that network coding is equivalent
to routing in G.

Fig. 13. Embedding a layered network (can be viewed as generalization of
both a bipartite network and a combination network Cn,k) into l2∞ . di is the
uniform cost of links in layer i . If link costs in layer i are not uniform, we
scale them to uniform before embedding, losing a factor equivalent to the cost
heterogeneity.

C. Layered Networks

A layered network is a generalization of a bipartite network
into multi-partite, such that edges exist between neighboring
partite/layers only. Specifically, nodes in a layered network G
can be partitioned into V = V1 ⊕ . . . ⊕ VL+1, and links in
G can be partitioned into E = E1 ⊕ . . . ⊕ EL , such that for
each link e = (uv) ∈ El , for any 1 ≤ l ≤ L, u ∈ Vl and
v ∈ VL+1. A bipartite network is a special case where L = 2.
A combination network is a special case where L = 3 and the
first layer has one node only.

We prove that, if links from each layer have uniform cost,
then the cost advantage for multiple-unicast is 1. If links from
each layer have heterogeneous costs, the cost advantage can
still be bounded by the degree of intra-layer cost heterogeneity
— the cost heterogeneity of layer l is ρl = maxe,e′∈El

w(e)
w(e′) .

Theorem 6.3. For k unicast sessions in a layered network
(G, w) where each pair of si and ti are located at different lay-
ers, the cost advantage of network coding is upper-bounded by
ρ = maxlρl , the maximum intra-layer link cost heterogeneity.

Proof: Step 1. Transformation: Not applicable.
Step 2. Embedding: We embed the layered network G into
l2
∞, as shown in Fig. 13. First, map each layer of nodes Vi

to a vertical line in l2
∞, such that all nodes in Vi share the

same x-coordinate xi , and xi+1 − xi = mine∈Li w(e). For
the y-coordinate, we place each node in Vi randomly in the
range [0, mini (xi+1 − xi )], making sure that for each link
e = (uv) ∈ E , the Chebyshev length of e is measured as
the difference between the x-coordinates of u and v. We can
verify that such an embedding satisfies both requirements of a
ρ-distortion partial closure embedding: (i) d(si ,ti )

ρ ≤
||si , ti ||2∞ ≤ d(si , ti ),∀1 ≤ i ≤ k, and (ii) ||e||2∞ ≤ w(e),
∀e ∈ E . Then Theorem 4.3 can be applied to transform the
problem from G to l2

∞.
Step 3. Projection: Apply Theorem 4.5 to reduce the space
from l2

∞ to l1.
Step 4. 1-D Proof: Apply Theorem 4.7 to prove the statement
in l1, concluding the proof to Theorem 6.2. !

A special case of a layered network, as shown in Fig. 14(a),
was used to demonstrate that network coding can have an
arbitrarily large coding advantage for multiple unicast ses-
sions [1]. There are k pairs of unicast sessions. Each source
si is connected to node A and every receiver t j for 1 ≤ j ≤ k
and j ̸= i . Each receiver ti is connected to B and every source
s j for 1 ≤ j ≤ k and j ̸= i . If we assume each link has a
unit cost (instead of a unit capacity [1]), Fig. 14(b) depicts
the embedding of this network into l2

∞. From Theorem 6.3,
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Fig. 14. A specific layered network (a) and its embedding (b).

we know that network coding does not make a difference
here, contrasting the arbitrarily large coding advantage under
uniform link capacities.

VII. CONCLUSION

We applied a recently proposed tool, space information flow,
to design a geometric framework for analyzing the multiple-
unicast conjecture, a well-known open problem in network
coding. Based on the framework, we obtain unified proofs
to a number of new results as well as existing results on
the multiple-unicast conjecture. Our studies show that the
cost version of the multiple-unicast conjecture is true in
Euclidean/Hilbert spaces, in Riemannian manifolds and in l1
spaces. We conclude by suggesting the following direction for
proving the conjecture itself, through transforming the original
conjecture in networks into l∞ spaces:

A possible proof to the multiple-unicast conjecture
Step 1. Transformation: Apply Theorem 4.1 to translate
the conjecture from its throughput version to cost version.
Step 2. Embedding: Based on the isometric closure
embedding of G into ln

∞, apply Theorem 4.3 to transform
the problem from G to ln

∞.
Step 3. Projection: Prove and then apply Conjecture 4.1,
to reduce the problem from ln

∞ to l1.
Step 4. 1-D Proof: Apply Theorem 4.7 to prove the
statement in l1, concluding the proof to the conjecture.

ACKNOWLEDGMENT

The second author would like to thank Michael Langberg,
Sidharth Jaggi, Lap Chi Lau and Xunrui Yin for helpful
discussions.

REFERENCES

[1] Z. Li and B. Li, “Network coding: The case of multiple unicast sessions,”
in Proc. 42nd Annu. Allerton Conf. Commun., Control, Comput., 2004,
pp. 1–9.

[2] N. J. A. Harvey, R. D. Kleinberg, and A. R. Lehman, “Comparing net-
work coding with multicommodity flow for the k-pairs communication
problem,” CSAIL, Cambridge, MA, USA, Tech. Rep. MIT-LCS-TR-964,
Nov. 2004.

[3] Z. Li and C. Wu, “Space information flow,” Dept. Comput. Sci., Univ.
Calgary, Alberta, AB, Canada, Tech. Rep. 2012-0728-sif, 2012.

[4] Z. Li and C. Wu, “Space information flow: Multiple unicast,” in Proc.
IEEE ISIT, Jul. 2012, pp. 1897–1901.

[5] X. Yin, Y. Wang, X. Wang, X. Xue, and Z. Li, “Min-cost multi-
cast network in Euclidean space,” in Proc. IEEE ISIT, Jul. 2012,
pp. 1316–1320.

[6] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung, “Network informa-
tion flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216,
Jul. 2000.

[7] R. Koetter and M. Médard, “An algebraic approach to network coding,”
IEEE/ACM Trans. Netw., vol. 11, no. 5, pp. 782–795, Oct. 2003.

[8] X. Yan, R. W. Yeung, and Z. Zhang, “The capacity region for multi-
source multi-sink network coding,” in Proc. IEEE ISIT, Jun. 2007,
pp. 116–120.

[9] T. C. Hu, “Multi-commodity network flows,” Oper. Res., vol. 11, no. 3,
pp. 344–360, 1963.

[10] R. Dougherty and K. Zeger, “Nonreversibility and equivalent construc-
tion of multiple-unicast networks,” IEEE Trans. Inf. Theory, vol. 52,
no. 11, pp. 5067–5077, Nov. 2006.

[11] N. J. A. Harvey, R. Kleinberg, and A. R. Lehman, “On the capacity
of information networks,” IEEE Trans. Inf. Theory, vol. 52, no. 6,
pp. 2345–2364, Jun. 2006.

[12] K. Jain, V. V. Vazirani, R. W. H. Yeung, and G. Yuval, “On the capacity
of multiple unicast sessions in undirected graphs,” in Proc. IEEE ISIT,
Sep. 2005, pp. 563–567.

[13] M. Langberg and M. Médard, “On the multiple unicast network coding
conjecture,” in Proc. 47th Annu. Allerton Conf. Commun., Control,
Computing, 2009, pp. 222–227.

[14] M. Mitzenmacher. (2007, Aug.). Network coding: Open problems
[Online]. Available: http://mybiasedcoin.blogspot.ca/2007/08/network-
coding-open-problems.html

[15] C. Chekuri, “Routing vs. Network coding,” Dept. Comput. Sci.,
Univ. Illinois at Urbana-Champaign, Champaign, IL, USA, Tech.
Rep. 09w5103, 2009.

[16] N. J. A. Harvey and R. Kleinberg, “Tighter cut-based bounds for k-pairs
communication problems,” in Proc. 43rd Annu. Allerton Conf. Commun.,
Control, Computing, 2005, pp. 1–10.

[17] A. Al-Bashabsheh and A. Yongacoglu, “On the k-pairs problem,” in
Proc. IEEE ISIT, Jul. 2008, pp. 1828–1832.

[18] G. Kramer and S. A. Savari, “Edge-cut bounds on network coding rates,”
J. Netw. Syst. Manag., vol. 14, no. 1, pp. 49–67, 2006.

[19] S. M. S. Yazdi, S. A. Savari, F. Farnoud, and G. Kramer, “A multimes-
sage capacity region for undirected ring networks,” in Proc. IEEE ISIT,
Jun. 2007, pp. 1091–1095.

[20] S. M. S. Yazdi, S. A. Savari, G. Kramer, K. Carlson, and F. Farnound,
“On the multimessage capacity region for undirected ring networks,”
IEEE Trans. Inf. Theory, vol. 56, no. 4, pp. 1930–1947, Apr. 2010.

[21] M. Iri, “On an extension of the maximum-flow minimum-cut theorem
to multicommodity flows,” J. Oper. Res. Soc. Jpn., vol. 13, no. 3,
pp. 129–135, 1971.

[22] K. Onaga and O. Kakusho, “On feasibility conditions of multicom-
modity flows in networks,” IEEE Trans. Circuit Theory, vol. 18, no. 4,
pp. 425–429, Jul. 1971.

[23] D. Traskov, N. Ratnakar, D. S. Lun, R. Koetter, and M. Médard,
“Network coding for multiple unicasts: An approach based on linear
optimization,” in Proc. IEEE ISIT, Jul. 2006, pp. 1758–1762.

[24] C.-C. Wang and N. B. Shroff, “Pairwise intersession network cod-
ing on directed networks,” IEEE Trans. Inf. Theory, vol. 56, no. 8,
pp. 3879–3900, Aug. 2010.

[25] E. Erez and M. Feder, “Improving the multicommodity flow rates with
network coding for two sources,” IEEE J. Sel. Areas Commun., vol. 27,
no. 5, pp. 814–824, Jun. 2009.

[26] S. Huang and A. Ramamoorthy, “A note on the multiple unicast capacity
of directed acyclic networks,” in Proc. IEEE ICC, Jun. 2011, pp. 1–6.

[27] J. Huang, X. Yin, X. Zhang, X. Du, and Z. Li, “On space information
flow: Single multicast,” in Proc. IEEE Symp. Netw. Coding, Jun. 2013,
pp. 1–6.

[28] Z. Li and B. Li, “Network coding in undirected networks,” in Proc. 38th
Annu. CISS, 2004, pp. 1–6.

[29] A. Agarwal and M. Charikar, “On the advantage of network coding for
improving network throughput,” in Proc. IEEE Inf. Theory Workshop,
Oct. 2004, pp. 247–249.

[30] C. Fragouli and E. Soljanin, Network Coding Fundamentals. Norwell,
MA, USA: Now Publishers, 2007.

[31] J. Nash, “The imbedding problem for Riemannian manifolds,” Ann.
Math., vol. 63, no. 1, pp. 20–63, Jan. 1956.

[32] C. Chekuri, M. Mydlarz, and F. B. Shepherd, “Multicommodity demand
flow in a tree and packing integer programs,” ACM Trans. Algorithms,
vol. 3, no. 3, pp. 5067–5077, Aug. 2007.

[33] N. Linial, E. London, and Y. Rabinovich, “The geometry of graphs and
some of its algorithmic applications,” Combinatorica, vol. 15, no. 2,
pp. 215–245, Feb. 1995.

[34] S. M. S. T. Yazdi, S. A. Savari, and G. Kramer, “Network coding in
star networks,” in Proc. IEEE ISIT, Jul. 2008, pp. 325–329.



XIAHOU et al.: GEOMETRIC PERSPECTIVE TO MULTIPLE-UNICAST NETWORK CODING 2895

Tang Xiahou obtained her bachelor’s degree from University of Science and
Technology of China in 2010. After that, she studied at University of Calgary
under the supervision of Dr. Zongpeng Li and obtained her master’s degree
in 2012. Currently she is working as a developer at Microsoft in Beijing.

Zongpeng Li (M’05–SM’12) received his B.E. degree in Computer Science
and Technology from Tsinghua University (Beijing) in 1999, his M.S.
degree in Computer Science from University of Toronto in 2001, and his Ph.D.
degree in Electrical and Computer Engineering from University of Toronto
in 2005. Since 2005, he has been with the Department of Computer Science
in the University of Calgary. In 2011-2012, Zongpeng was a visitor at the
Institute of Network Coding, Chinese University of Hong Kong. His research
interests are in computer networks and network coding.

Chuan Wu (M’08) received her B.Engr. and M.Engr. degrees in 2000 and
2002 from the Department of Computer Science and Technology, Tsinghua
University, China, and her Ph.D. degree in 2008 from the Department of
Electrical and Computer Engineering, University of Toronto, Canada. Between
2002 and 2004, she worked in the Information Technology industry in
Singapore. Since September 2008, Chuan Wu has been an Assistant Professor
in the Department of Computer Science at the University of Hong Kong. Her
research is in the areas of cloud computing, online and mobile social networks,
peer-to-peer networks and wireless networks. She is a member ACM.

Jiaqing Huang (M’08) received his B.Sc. degree and M.S. degree in
Electronic Science and Technology from East China Normal University
(Shanghai) in 1994 and 1997, respectively, and his Ph.D. degree in Electronics
and Information Engineering from Huazhong University of Science and
Technology (Wuhan) in 2003. He has been working at the Department
of Electronics and Information Engineering in the Huazhong University of
Science and Technology since July 1997, where he is currently an Associate
Professor. His research interests are in communications, particularly network
coding.


