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Abstract—Network coding encourages in-network mixing of
information flows for enhanced network capacity, particularly for
multicast data dissemination. This work aims to explore prop-
erties in the underlying network topology for efficient network
coding solutions, including efficient code assignment algorithms
and efficient encoding/decoding operations that come with small
base field sizes. The following cases of (pseudo-)planar types of
networks are studied: outer-planar networks where all nodes co-
locate on a common face, relay/terminal co-face networks where
all relay/terminal nodes co-locate on a common face, general
planar networks, and apex networks.

I. INTRODUCTION

Departing from the classic store-and-forward paradigm of

data networking, network coding encourages the mixing of

information flows within the middle of a network [1] [2],

for enhanced network capacity, efficiency, and robustness.

Network coding has been extensively studied for one-to-many

multicast data dissemination, where it appears particularly ben-

eficial [1] [3]. For a source S multicasting h information flows

to a set of receivers T , Li et al. [4] proved that linear coding

over a sufficiently large finite field is sufficient to achieve the

optimal throughput: each link in the network G carries a linear

function of the h source flows, and each receiver recovers the

h original flows from h linearly independent encoded flows.

Two fundamental problems in multicast network coding

are therefore (i) choosing a finite field to perform the en-

coding/decoding operations in, and (ii) deciding where and

how to encode, and hence what information flow to transmit

on each link. The latter is known as the code assignment

problem. Existing literature on network coding often takes an

algebraic approach that treats the topology of the network as

a blackbox, and designs network coding solutions in a general

fashion. For instance, the algebraic framework of Koetter and

Médard assumes ubiquitous coding in the network regardless

of the topology, and performs code assignment through value

assignment that makes the network polynomial non-zero, over

the field GF (2m) with m up to ⌈log2(kh + 1)⌉ [2], where

k denotes the number of receivers. The deterministic code

assignment algorithm of Jaggi et al. [5] improves the required

field size to the same as the number of receivers k, and has

a polynomial time complexity. The randomized/non-coherent

network coding approach [6] [7] applies randomly selected

encoding operations at each node, regardless of its location

in the network. It requires a relatively large field for avoiding

linearly dependent flows at a receiver.

The necessity, benefit and complexity of network coding

are indeed sensitive to the specific structure of the network

[8] [9] — after all, network coding is coding performed

within a network. By exploiting the underlying structure of the

network topology, one can achieve efficient network coding

in many realworld networking scenarios. Efficient network

coding here is intended to have a two-fold meaning. First,

it operates over a very small field, such that the encoding

and decoding complexity is minimized [10] [11]. Second,

the code assignment algorithm is deterministic, guaranteed to

succeed, yet has a linear time complexity, the best asymptotic

complexity possible.

This work focuses on planar networks and their variations,

a classic subject of study in graph theory and theoretical

computer science [12]. Planar networks also have strong

connections with real world networking. For instance, Internet

backbone networks naturally exhibits a planar embedding on

the surface of earth. Furthermore, for non-planar networks

such as a dense wireless sensor network, extracting a planar

mesh backbone from the network for running network algo-

rithms provides improved efficiency. Unless otherwise stated,

we assume the fundamental case of multicast where two

source flows are disseminated, which may include an arbitrary

number of receivers, requires unbounded field sizes in general

networks [2] [5] and leads to the largest known throughput

benefit of network coding [13].

Table. I summarizes the main results of this work.

For outerplanar networks [12], a special type of planar

networks with a face adjacent to all nodes, we prove that

network coding and routing (tree packing) are equivalent. We

further extract from the proof a linear time algorithm for

packing multicast trees, which is NP-hard in general networks

[3]. For relay-coface networks, planar networks where relay

nodes reside on a common face, we prove that that coding

over GF (2) is sufficient, and present a linear time algorithm

for code assignment over GF (2). For the complementary case

of terminal-coface networks (multicast source and receivers

reside on a common face), we provide a partial proof of a

similar result. For general planar networks, we present the first

planar networks that require coding over GF (3), and prove

that GF (3) is also sufficient. Code assignment algorithms

are designed with linear time complexity over GF (3) and

quadratic time complexity over GF (4). For apex networks,
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TABLE I
SUMMARY OF RESULTS

Category Illustration†
Field
Size

Code Assignment
Complexity

Outer-planar
Networks

tree
packing
suffices

O(|V |)

Relay-coface
Networks

q = 2 O(|V |) over GF (2)

Terminal-
coface
Networks

q = 2 O(|V |) over GF (2)‡

Planar
Networks

q = 3
O(|V |2) over GF (3)
O(|V |) over GF (4)

Apex
Networks

q = 4
O(|V |2) over GF (4)
O(|V |) over GF (5)

†: Solid nodes are multicast terminals, hollow nodes are relays.
‡: Partially proven.

networks that are planar with the removal of a node, we prove

that depending on whether the new apex node is a terminal or

a relay, the necessary field size can be bounded by 3 and 4,

respectively. A code assignment algorithm is designed, with

quadratic time using GF (4) or in linear time using GF (5).
In the rest of the paper, we present models and preliminaries

in Sec. II. Sections III-VII contain detailed studies of outerpla-

nar, relay-coface, planar, apex and terminal-coface networks,

respectively. Sec. VIII concludes the paper.

II. NETWORK MODEL AND PRELIMINARIES

We consider an undirected multicast network G = (V,E)
with unit-capacity edges, allowing multiple edges between a

pair of nodes. A source S wishes to multicast h information

flows to a set of k receivers T = {T1, . . . , Tk}. When h = 2,

two unit flows x and y are to be disseminated. A link can

transmit either x, y or their linear combination. The multicast

source and receivers are jointly referred to as the terminal

nodes. Other nodes in G are relay nodes. We assume that

the network permits a static linear algebraic code, and ignore

cases where a convolutional code [14] is required.

For h = 2, we assume G is a minimal network supporting

h = 2 [15], i.e., any edge removal makes a multicast rate

2 infeasible. For such edge-minimal networks, we sometimes

consider its orientation in which the max-flow from the source

to each receiver is 2, and refer to the in-degree and out-degree

of nodes in such an orientation. Each relay node is assumed to

have degree at least 3; otherwise it can be contracted without

affecting the throughput h or the network coding scheme.

A minimal multicast network for h = 2 can be decomposed

into a set of subtrees, along each of which x, y or a linear

function of x and y propagates [16]. A node in the multicast

flow is a root of a subtree if it either is the source or has in-

degree 2. If the multicast flow f is planar, each subtree forms

its own face in a plane embedding of f , as shown in Fig. 1.

S
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e9

(a) (b)

Fig. 1. Illustration of the subtrees and the subtree faces that correspond to
a planar multicast flow.

Subtree roots and leaves form the inter-subtree boundaries and

are referred to as the boundary nodes. A subtree face is an in-

face for its leaf nodes and an out-face for its root. The graph

formed by the subtree faces is a subtree graph.

III. OUTERPLANAR NETWORKS

A planar graph can be embedded with any of its face being

the outer infinite face. For outerplanar graphs, the infinite face

is usually chosen to be the common face containing all nodes.

Links in an outerplanar networks are categorized into two

types: boundary links on the infinite face, and chords inside.

A. The Equivalence between Network Coding and Routing in

Outerplanar Networks

Theorem 1. In an outerplanar multicast network, with h = 2,

network coding is equivalent to routing.

Proof: We present a constructive proof to the theorem, by

designing a routing solution (code assignment using the two

original flows x and y only) in the following five steps.

1. Pre-processing. An outerplanar network has no K4 minor

[12]. A graph H is a minor of another graph G if H can

be obtained from G by a series of link deletion and link

contraction operations. By Dirac’s theorem [17], every graph

with minimum degree 3 contains a K4 minor, we can claim

that the network must contain a degree-2 node, which must be

a terminal, since relay nodes have degree at least 3 (Sec. II).

By the source independence for network coding in undirected

networks [18], we can always switch the multicast source to

this degree-2 terminal, without affecting the throughput h or

the code assignment.

2. Constructing a Subtree Graph. As described in Sec. II,

decompose the multicast network into subtree faces.

3. Forming two Regions. Traverse all boundary nodes in the

subtree graph. If a boundary node v has two in-faces only

(corresponding to a receiver in the multicast flow without

outgoing flows), merge its two adjacent faces Fα and Fβ into

a new face Fα∪Fβ (Fig. 2). Later on we will color the subtree

faces. A proper coloring to the merged faces can be converted

to a coloring of the original subtree faces: let Fβ inherit the

color of Fα ∪Fβ , then pick the complementary color for face

Fα, who has only one neighbor face.

After the above face merging, we traverse all boundary

nodes for a second round. For each boundary node u, label the

two of u’s adjacent faces that are neighboring the infinite face
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Fig. 2. Merging subtree faces.

as region 1 faces, as shown in Fig. 3. All links not included

in region 1 (must be chords) are in region 2.

region 2

region 1

re
g
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n
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region 1

Fig. 3. Two regions to be colored separately.

4. Coloring Region 1. We color the faces in region 1 along the

infinite face boundary using two colors x and y. If a boundary

node has two flows arriving from two faces in region 1, which

intersect only at this node, then expand it into a node pair

connected by a new link, (Fig. 4). Such a link expansion

is preparing for coloring the subtree faces in region 1, for

ensuring flows arriving at the same receiver are independent.

outer face

Fig. 4. Expanding a node into two nodes connected by a link, while
preserving the planarity of the network.

A potential conflict arises due to the availability of only

two colors, if the number of region 1 faces is odd, and each

of them share an expanded boundary with each of its two

neighbor faces. However, this is impossible for the following

reason. For any expanded boundary node v1, let v2 and v3
be the other boundary node for the face on its left and right,

respectively. The left and right face are an out face for v2 and

v3 respectively. At least one of v2 and v3 is not the multicast

source, and is not expanded.

5. Coloring Region 2. A chord in region 2 cannot enter an

expanded boundary node — otherwise that boundary node

would have three incoming flows, contradicting h = 2. When

the chord enters a non-expanded boundary node u, u has at

most 1 incoming flow assigned already, and we can pick a

color complementary to that flow for the chord link.

B. Code Assignment Algorithm for Outerplanar Networks

Algorithm 1) is for code assignment in outer-planar net-

works, extracted from the proof above. It indeed degrades into

a tree packing algorithm since network coding is not necessary.

Line 1 can be done by traversing all nodes and links in the

network once. Line 2 traverses all faces in region 1. Lines

3-6 traverse edges in region 2. By Euler’s formula [12], the

number of links and number of faces are both linear in the

Algorithm 1: Steiner Tree Packing in Outer-planar Net-

works
Input: an outer-planar multicast network G with h = 2
Output: two edge-disjoint Steiner trees.

1 Decompose G into subtree faces. (Sec. III)

// Coloring Region 1
2 Color the collection of boundary subtree faces neighboring the

infinite face greedily with 2 colors x, y.

// Coloring Region 2
3 for each chord −→uv do
4 if the other incoming edge to v has been colored then

5 Color −→uv with the complement color.

6 else Assign x to −→uv.

number of nodes in a planar graph. Therefore, the overall time

complexity of Algorithm 1 is O(|V |). We can therefore solve

the tree packing problem in linear time, in contrast to the NP-

hard complexity of the general tree packing problem [3].

IV. RELAY-COFACE NETWORKS

We next consider planar networks with relay nodes co-

located on the same face. For instance, the wellknown com-

bination network [13] C3,2 can be embedded with the three

relay nodes on the outer-face. We assume the network G is

directed acyclic, for this section only. We prove that GF (2)
is sufficient in such a relay-coface multicast network.

A. Sufficiency of GF (2) in Relay-coface Networks

We use Gsub to denote a sub-network of G, containing

an induced subset of terminals from G. We first prove the

following lemma.

Lemma 1. Given a planar sub-network G of a combination

network Cn,2, GF (2) is sufficient to achieve multicast rate 2.

Proof: We construct from G a new graph G1, and prove G1 is

3-colorable. Then we map the 3-coloring to a code assignment

in G over GF (2). As G is a sub-network of Cn,2 for some

n, a receiver in G is connected to two relay nodes and has

out-degree zero. For each receiver in G, contract it with any

one of its two neighbors. Let G1 be resulting graph after such

contractions. We show that G1 is 3-colorable, and any two

relay nodes connected to a receiver will receive different colors

as they are adjacent in G1. G1 doesn’t contain a K4 minor;

otherwise, combining the minor in G1 with the source S, we

obtain a K5 minor in G, contradicting the planarity of G (a

planar graph has no K5 minor [12]). Without a K4 minor, G1

must be a series parallel graph and is 3-colorable [19]. Given a

proper 3-coloring to the relay nodes, we map the three colors

to {x, y, x + y}. Each receiver receives two different flows

from two relays and can recover x and y.

Theorem 2. In a planar relay-coface network G, GF (2) is

sufficient for multicasting two information flows.

Proof: For each node v in G, if v is a relay node with

exactly one incoming edge, then remove the edge and connect
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v directly to the source S if not already so; if v obtains at

least one unit information from a node with in-degree 2 or

the source, then remove v and the edges incident to v. As all

relay nodes are on the same face, connecting some of them to

S will not affect planarity. Hence we obtain a bipartite network

G′ that is also planar, with the relay nodes with in-degree 1
form a group, and the nodes with in-degree 2 form the other

group. S is only connected to the relay nodes with in-degree

1. Any two relay nodes with in-degree 1 are not connected in

G′, otherwise they are connected in G and we can contract

the two nodes without affecting the multicast rate 2. Any two

terminals are not connected in G′ due to the second rule in

constructing this bipartite network.

G′ is a sub-network of Cn,2 by construction. Treat each

node with in-degree 2 in G′ as a receiver. Following the steps

in Lemma 1, we obtain a feasible network code over G′ with

field size GF (2). For edges and nodes existing in G′, keep

the flows unchanged in G. The key obstacle is to recover the

flows which don’t exist in G′. From the construction of G′, we

need to recover the information for the nodes with in-degree

1 and nodes with two incoming flows, one of which comes

from a node with in-degree 2.

First, if v is a relay node with in-degree 1 in G, assign the

same information it has obtained over G′. Second, if v is the

removed nodes with in-degree 2, it must receive one flow from

a node u with in-degree 2. Wu et al. [20] proved that links

entering multicast receivers don’t require encoding. Therefore,

if v’s other flow is from a node with in-degree 1, u can just

forward one of its two incoming flows to v, ensuring that

v receives two different flows. Otherwise, the two incoming

flows with respect to v both come from nodes with in-degree

2, then let v’s parents forward two different flows to v.

From the proof, it is evident that the “relay-coface” condi-

tion can be relaxed, and the sufficiency of GF (2) holds as long

as that all relay nodes with in-degree 1 are on the same face.

This extends the applicability of the theorem to, for example,

the classic butterfly network, which has three relay nodes with

in-degree 1, all of which reside on the infinite face.

B. Code Assignment Algorithm for Relay-coface Networks

An efficient code assignment algorithm for relay-coface

networks can be extracted from the proof to Theorem 2, as

shown in Algorithm 2.

The algorithm consists of three main steps. The first step

(lines 1-5) of constructing G′ can be done by traversing all

nodes in G. The second step (lines 6-9) constructs a network

code in this bipartite network G′. Here the complexity mainly

depends on the coloring algorithm in G1, which takes linear

time [19]. In the last step (lines 10-18), we need to recover

the flows for the removed nodes in G. This requires visiting

all the nodes and the incoming edges with respect to them.

As a node has at most two incoming edges, this step can be

finished in linear time in the number of nodes. To conclude,

Algorithm 2 has a linear time complexity.

Algorithm 2: Code Assignment Algorithm for Relay-

coface Networks
Input: a relay-coface multicast network G, with h = 2.
Output: a valid code assignment scheme over GF (2).

// Constructing a Bipartite Network G′

1 for each v with in-degree 1 do
2 Remove its incoming edge and connect it to the source S.
3 for each v with in-degree 2 do
4 if ∃ a parent u, s.t. in-degree(u) =2 then
5 Remove v and all the edges incident to v.

// Design a Network Code in G′

6 for each node with in-degree 2 in G′ do
7 Contract it with one of its parents.
8 Remove the source S and let G1 denote the graph obtained

here.
9 Color the graph G1 with 3 colors [19].

// Design a Network Code in G
10 for each node v with in-degree 1 do
11 Assign it the same flow that it has obtained in G′.
12 for each v with in-degree 2 in G and v 6∈ G′ do
13 Assume its two parents are u1, u2.
14 if in-degree(u1)=2 and in-degree(u2)=2 then
15 u1, u2 forward two different flows they have received

to v.
16 else if in-degree(u1)=2 then
17 u1 forwards a flow to v different from the other

incoming flow of v.
18 else u2 forwards a flow to v different from the other

incoming flow of v.

V. GENERAL PLANAR NETWORKS

A. The Necessity of GF (3) in General Planar Networks

Interestingly, we are not aware of an example multicast

network in the literature that both has a planar topology,

and requires coding over GF (3). We design new multicast

networks to show that coding over GF (3) is indeed necessary

in general planar networks.

Theorem 3. There exist planar networks that require GF (3)
for achieving the optimal multicast throughput.

Proof: Fig. 5 depicts a multicast network, with one source S

and five receivers {T1, T2, T3, T4, T5}. Each link has a unit

capacity. To achieve throughput 2, there is only one possible

network orientation.At least 4 linearly independent flows are

required to satisfy the demands of receivers Ti, i = 1, 2, 3, 4, 5,

hence a minimum field size of 3 is necessary in this network.

y

 x+y

 x+2y x+2y

 x+y

T3 T4
T5

T1 T2

Sx

Fig. 5. A planar multicast network in which multicast rate 2 can be achievable
by coding over GF (3) but not over GF (2).
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Theorem 4. There exist bipartite planar networks that require

GF (3) for achieving the optimal multicast throughput.

Proof: Fig. 6 shows a bipartite multicast network with one

source, four relay nodes and six receivers. A throughput of 2
is feasible only if the base field size is at least 3.

S

Fig. 6. A planar bipartite multicast network requiring GF (3).

B. The Sufficiency of GF (3) in General Planar Networks

Theorem 5. Coding over GF (3) is sufficient for multicasting

two information flows in a planar network.

Proof: We first compute a multicast flow achieving throughput

two [3] and construct a subtree graph as described in Sec. II.

If the two in-faces of a node u intersect only at this node, we

expand u into a node pair, connected by a new link (Fig. 4).

By the Four Color Theorem [12], every planar graph can be

colored using four colors, such that no two adjacent faces

share a common color. Two faces are adjacent if they share

a common link, and are not adjacent if they share only a

common node. We color the subtree faces processed in step

2, using the following four colors: x, y, x+ y and x+ 2y.

To verify that the code assignment is valid, it is sufficient

to show that the root u of each subtree face has two distinct

incoming flows. This is true since u has two in-faces due to the

property of the subtree decomposition. Furthermore, the ex-

pansion operation in Step 2 guarantees that these two in-flows

always share a common boundary, and hence will be assigned

different colors/flows. Once receiving two distinct flows, the

root u is able to linearly combine them for generating the flow

assigned to its out-face(s), if any. To conclude, we obtained

a valid code assignment over GF (3), for achieving multicast

throughput h = 2 in the planar network.

C. Code Assignment Algorithm in General Planar Networks

Algorithm 3: Code Assignment Algorithm for General

Planar Networks
Input: a planar multicast network G, with h = 2.
Output: a valid code assignment over GF (3) (GF (4)).

1 Decompose G into subtree faces. (Sec. III)

2 for each node v with in-degree 2 do
3 if two subtrees faces with v as a leaf only intersect at v

then
4 Expand v to an edge shared by these two faces (Fig. 4).

5 Color the subtree faces with four colors [21] or five colors [22].

Algorithm 3 is extracted from the proof to Theorem 5.

Its overall computational complexity is dominated by face

coloring the subtree graph. With four colors (coding over

GF (3)), it takes O(|V |2) time to four-color a planar graph

[21]. However, if we encode over a larger field GF (4),
then five-coloring can be accomplished in O(|V |) time [22].

GF (4) is perhaps preferred in realworld implementations, for

the following three reasons: (1) efficient linear time code

assignment; (2) exact 2-bit representation of a symbol; and

(3) efficient implementation of addition, which is equivalent

to bit-wise XOR.

VI. APEX NETWORKS

A pseudo-planar network that can be made planar by

removing a single vertex (the apex node) is an apex network

[23]. For example, Fig. 7(a) shows a planar multicast network

that requires coding over GF (2). By adding an extra receiver

node v, we obtain an apex network in Fig. 7(b) that requires

coding over GF (3).

(a)
v1

v2

v3

v4S

v

(b)
v1

v2

v3

v4S

Fig. 7. A planar multicast network and an apex multicast network.

Theorem 6. In an apex network G, with h = 2, coding over

GF (4) suffices.

Proof: We prove the sufficiency of GF (4) by examining each

of the three cases of the in-degree of the apex node v.

1. in-degree(v) = 0. Then v must be the multicast source. Let

Nv be its neighbors. Pretend that the nodes ∈ Nv in G − v

have the same in-degree as in G. Starting from nodes in Nv,

construct the subtree graph over G−v based on the in-degrees.

Perform the expanding operation when needed and then apply

the four-coloring algorithm [21] to color the subtree faces. As

v is the source, it can transmit any flow from {x, y, x+y, x+2y}
to Nv. For each node u in Nv over G, assign the flow that u

has obtained through −→vu over G− v to the edge −→vu. For other

flows over G, keep them the same as assigned in G− v.

2. in-degree(v) = 1. In this case, there is a subtree T over

G containing all the edges incident to v. Assign a new color

x+3y to T . For the remaining subtrees, they form a planar

graph which is a subgraph of G− v, and can be four-colored.

3. in-degree(v) = 2. If v is a relay node, change it to a receiver

role. Li and Li [18] proved the source independence property

that states the multicast throughput and code assignment can

be independent of the selection of the source within the

multicast group. We can exchange the source and receiver roles

between the original sender S and v. Then refer to the first

case for the proof of sufficiency of GF (3).
From the proof above, we can indeed see that the increment

of the field size from GF (3) to GF (4) is only required

when the apex node is a relay, and is not necessary when the

apex node is a terminal. The complexity of code assignment

procedure described in the proof is dominated by the face
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coloring of a graph obtained from G. If we perform four-

coloring, the overall field size requirement is GF (4) and the

time complexity is O(|V |2). If we perform five-coloring, the

field size requirement is GF (5) and the time complexity is

O(|V |). If we further know that the apex node is a terminal,

the required field size decreases by 1 in both cases.

VII. TERMINAL-COFACE NETWORKS

In this section, we provide a partial proof to the conjecture

that GF (2) suffices for terminal-coface networks. For the

subtree graph of a multicast network G, contract each subtree

to a node and connect the two nodes if the two corresponding

subtrees share a common leaf in G. We refer to the resulting

graph as the subtree-node graph of G. A recent work of Yin et

al. [9] show that if a multicast network G requires GF (3), then

the subtree-node graph of G must contain a K4 minor. Below

we first prove that the subtree-node graph of a terminal-coface

network can not be K4.

Lemma 2. If a planar multicast network G’s subtree-node

graph H is K4, then G is not a terminal-coface network.

Proof: Embed G with the terminals on the outer face. We first

prove that when constructing the subtree-node graph H , the

nodes corresponding to the subtrees with a receiver as a leaf

form the outer face of H . Then we show H can’t be K4.

In the process of constructing H , it’s sufficient to perform

only link contraction. If two subtrees share a common receiver

as a leaf, contract the receiver with one of the two subtree-

nodes to produce the edge connecting them in H . As the

receiver is on the outer infinite face of G, after the contraction,

the edge between the two subtree-nodes is still incident to the

outer face. For the subtrees containing terminals, the nodes

corresponding to them are also incident to the outer face.

Next, if H is K4, let the boundary of its outer-face be

defined by three nodes v1, v2, v3. From the above, we know

that the remaining subtree node v4 doesn’t contain any receiver

as a leaf, otherwise it should be on the same face with

v1, v2, v3. For each edge viv4, i = 1, 2, 3 in H , vi and v4
share a non-receiver node with in-degree 2 and must produce

a different subtree node. There are at least two subtree nodes

on the outer face, say, v1 and v2, with the source as the root.

Then no subtree can have its root be a common leaf of v3 and

v4, contradiction.

Theorem 7. Let G be a terminal co-face planar network with

h = 2 and subtree-node graph H . If H has maximum node

degree 3, then GF (2) is sufficient for G.

Proof: From Lemma 2, the subtree-node graph H cannot

be K4. Moreover, Brooks’s theorem [24] states that every

connected graph with the maximum vertex degree at most

three has a 3-coloring, otherwise it is isomorphic to K4.

Therefore, H can be properly colored in 3 colors, and GF (2)
is sufficient for coding in G.

VIII. CONCLUSION

We studied multicast network coding in a series of special

planar, planar and pseudo-planar networks in this work, in-

cluding outerplanar networks, relay/terminal co-face networks,

planar networks, and apex networks. We prove the no coding

at all, or coding over very small finite fields, suffices in these

cases, and further extract efficient code assignment algorithms

from the constructive proofs. An interesting future work is to

generalize the results from two source information flows to an

arbitrary number of source flows.
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