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ABSTRACT
Deep neural networks (DNNs) with trillions of parameters

have emerged, e.g., Mixture-of-Experts (MoE) models. Train-

ing models of this scale requires sophisticated paralleliza-

tion strategies like the newly proposed SPMD parallelism,

that shards each tensor along different dimensions. A com-

mon problem using SPMD is that computation stalls during

communication due to data dependencies, resulting in low

GPU utilization and long training time. We present a gen-

eral technique to accelerate SPMD-based DNN training by

maximizing computation-communication overlap and auto-

matic SPMD strategy search. The key idea is to duplicate

the DNN model into two copies that have no dependency,

and interleave their execution such that computation of one

copy overlaps with communication of the other. We propose

a dynamic programming algorithm to automatically identify

optimized sharding strategies that minimize model training

time by maximally enabling computation-communication

overlap. Experiments show that our designs achieve up to

61% training speed-up as compared to existing frameworks.
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1 INTRODUCTION
Modern deep neural networks (DNNs) have been quickly ex-

panding in size. M6 [19] for multimodal pretraining has 100

billion parameters and GPT-3 [4] for natural language pro-

cessing includes over 175 billion parameters. The large mod-

els have exhibited unprecedented performance that reshaped

DNN research, pushing the demand for further increasing

the model capacity. Mixture-of-Experts (MoE) layers [33], ex-

emplified by GShard [18] and Switch Transformer [9], have

shown strong potential in building high capacity models

with trillions or more parameters. Distributed training is

necessary for learning these large models with accelerator

devices such as GPUs.

A number of parallelisms have been exploited for dis-

tributed DNN training. With data parallelism (DP), each

device has a full copy of the model, trains it with a distinct

portion of the training data, and synchronizes model parame-

ters at the end of each iteration. Model parallelism (MP) splits

a DNNmodel into multiple parts and trains them on different

devices with cross-device communication for aggregating

shards of a tensor (e.g. a parameter that is partitioned on

multiple devices). Pure DP and MP fall short when training

very large models as those containing MoE layers [33]. MoE

layers are sparse layers that consist of many conditionally

activated experts. For each data sample, typically 𝑘 experts

are activated regardless of the total number of experts. This

allows the model developer to enlarge the model capacity

without increasing computation. MoE models are often too

large to fit into a single device as required by DP, and their

large communication-to-computation ratios degrade the per-

formance of MP training.

https://doi.org/10.1145/3542929.3563487
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Popularized byGShard [18] andGSPMD [36], Single-Program-

Multiple-Data (SPMD) parallelism has shown its success in

training MoE models. SPMD can be seen as a generalization

of data parallelism and intra-layer model parallelism. With

SPMD, each tensor (e.g., parameters) can be split on any of its

dimensions, and the compiled program to run on each device

is the same [36]. This enables a constant compilation time

regardless of the number of devices, important for scaling

the training to thousands of devices.

State-of-the-art SPMD training faces twomajor challenges:

First, switching the sharding dimension (e.g., changing

from model-parallel training of a layer to data parallelism

of the next layer) in the forward computation pass requires

communication. It has been shown that the All-to-All
communication takes up to 11% of the per-iteration training

time in GSPMD [36], which adopts TPUs with high-speed

device-to-device links. In a GPU cluster with Ethernet inter-

connection, communication time can be substantially larger.

How to mitigate the communication overhead is a key to

expedite SPMD training.

Next, given a DNN model, how to identify a sharding

strategy (i.e., sharding dimensions of each tensor) for SPMD

training has not been carefully explored. Current SPMD

frameworks [36, 38] require user annotations of the shard-

ing strategy and heuristically infer the strategy for operators

that are not explicitly annotated. With the fast emergence

of new DNN models, manually designing SPMD strategies

for each model is manpower intensive and time-consuming.

Further, the optimal sharding strategy depends not only on

the DNN structure but also on the configuration of the train-

ing cluster (number of devices, inter-device bandwidth, etc.).

It is highly desirable to automatically find a good sharding

strategy given a DNN model and the cluster specification.

Addressing these issues, we propose a novel design to mit-

igate communication overhead by overlapping communica-

tion with computation in SPMD training. We design a search

algorithm to find near-optimal sharding strategies, taking

computation-communication overlapping into account.

Our main contributions are summarized as follows:

⊲ We propose a novel method to overlap computation and

communication in SPMD training. We split the input data at

each device into two microbatches with no dependency in

between. Training of the two microbatches on each device

can be carried out in parallel, which effectively overlaps the

computation of one microbatch with the communication of

the other microbatch.

⊲ We build a training time cost model for SPMD sharding

strategies and design a dynamic programming-based search

algorithm to automatically identify an optimized sharding

strategy for a given DNN model and training cluster. The

time cost model captures the concurrency between GPU com-

putation and network transfer. The algorithm incrementally

finds good strategies for parts of the model and prunes those

can be proven not to be a part of the optimal strategy using

the time cost model. It produces an op-level sharding strat-

egy that minimizes model training time without affecting

model accuracy.

⊲ We implement our system, HiDup, on a representative

deep learning framework, PyTorch [24], and conduct experi-

ments on a variety of workloads. Results show competitive

performance in single-machine multi-GPU training, and up

to 61% speed-up in a 64-GPU cluster, as compared with rep-

resentative baselines.

2 BACKGROUND AND MOTIVATION
2.1 Neural Network Training
Tensors are the basic data elements in DNN models. A tensor

is a multi-dimensional array. There are four main types of

tensors in a DNNmodel: (1)Activations are intermediate data

generated during forward computation of the model’s loss

function. They usually have a “batch size” dimension which

is the number of data samples used in a training iteration. (2)

Parameters are updated during training of a DNN model, to

minimize a pre-defined loss function. Parameters may have

different dimensions, like “hidden size” for Dense layers and

“expert” for MoE layers. (3) Gradients of the model parame-

ters are tensors generated through backpropagation. They

usually have the same dimensions as their corresponding

parameters. (4) Optimizer states are used by different optimiz-

ers such as Adam [15] and AdaGrad [7], e.g., the momentum,

which is of the same dimension as the corresponding param-

eter.

In each training iteration, a minibatch of data samples is

used to train the DNNmodel, including a forward pass (when
the loss of the model is calculated for the minibatch) and a

backward pass (aka backpropagation, when gradients of the

parameters are calculated in the reverse order of the forward

pass). The parameters are synchronized across devices and

updated in an update step at the end of each training iteration.

2.2 Mixture-of-Experts Models
Mixture-of-Experts (MoE) models [33] have shown strong

potential in various tasks such as sentence completion [9],

machine translation [33], multimodal pretraining [19], etc.

MoE layers are sparse layers that contain a number of condi-

tionally activated experts, where each expert processes only

a selected portion of the data samples. In an MoE layer, a

gating network is usually used to compute scores for each

expert on each data sample, and each data sample is routed

to 𝑘 experts with the highest scores; then the results of the

𝑘 experts are aggregated to produce the output, typically

weighted by the gating scores.
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An important property of MoE layers is that 𝑘 , the num-

ber of experts to activate for each data sample, is chosen

independently from the total number of experts. This allows

for enlarging the model capacity by adding more experts

without increasing model computation time. The MoE layers

in a DNN model usually contain the majority of parameters

of the model [19]. A common practice is to scale the num-

ber of experts proportionally to the total number of GPUs

[18]. As a result, MoE models are often too large to fit in a

single GPU, and cannot be trained with pure DP. Most of

the MoE models are trained using a simple hybrid sharding

strategy: the MoE layers are partitioned using model paral-

lelism, while other layers use data parallelism [18][36][19].

This strategy introduces large communication overhead that

cannot overlap with computation with existing distributed

training frameworks.

2.3 SPMD parallelism
To train large DNNs such as MoE models, thousands or more

devices are often required [36][38]. SPMD parallelism is

widely used in training MoE models [36][38][19], due to

its excellent scalability onto a large number of devices.

With SPMD parallelism, tensors are partitioned along dif-

ferent dimensions. Each device only stores a slice of each

tensor. Some operators can run on partitioned inputs and

produce partitioned results. For example, most operators in

a DNN can accept input tensors that are partitioned on the

“batch size” dimension. Some operators with multiple inputs

have more complex rules on acceptable input partitioning

strategies, such as MatMul and Einsum. When the input ten-

sors are partitioned in a manner that the operator does not

accept, communication is required to aggregate the shards

and recover the full tensor as input to the operator.

MPI-style collective communications [21] are used in SPMD

parallelism for communication across layers using differ-

ent sharding strategies. In collective communication, the

devices execute the same communication operation with

different ranks. Four types of collective communication are

commonly used in SPMD parallelism. All-Gather concate-
nates the shards of a tensor along a partitioned dimension.

All-Reduce aggregates the tensor shards with element-wise

reduction (e.g. summation), resulting in identical copies of

the aggregated tensor on all devices. Reduce-Scatter can
be seen as All-Reduce followed by sharding the resulting

tensor on a specified dimension. All-To-All switches the
sharding dimension of a tensor, logically equivalent to first

running All-Gather on a dimension that the tensor was

sharded on and then partitioning the resulted tensors on

another dimension.

A tensor may be partitioned on multiple dimensions at the

same time and assigned to a mesh of devices [36][32][35].

This can better exploit the multi-dimensional mesh network

on accelerators like TPU. As a GPU cluster is not typically

organized in a mesh topology, we consider partitioning a

tensor at one dimension at each time in this paper.

Example SPMD parallelism strategies on a MatMul layer
are given in Fig. 1. Fig. 1a shows a single-card model that

consists of a MatMul operator and an opaque loss layer. The

input 𝑋 can be output from previous layers. The outputs are

∇𝑊 and ∇𝑋 , gradients of parameter𝑊 and input 𝑋 .

Fig. 1b gives an example of hybrid parallelism, where the

previous layers (that produce 𝑋 ) are sharded using data par-

allelism and the MatMul layer is sharded using model par-

allelism. The half boxes denote sharded tensors and their

relative position in the tensor of the equivalent single-card

model. Boxes with hachures denote tensors that need to be

summed to recover the single-card counterpart. Both 𝑋 and

𝑊 are sharded, revealing one of the major advantages of hy-

brid parallelism: it can enable large model training within the

same memory consumption as compared with pure data par-

allelism and model parallelism, where only the activations

or the parameters are distributed across devices. However,

communication operators cannot run in parallel with any

computation: for example, the Loss node can only be com-

puted after the first Reduce-Scatter is done because of its
dependency on 𝑍 . Fig. 1c shows our proposed solution to

this problem, to be detailed in Sec. 3.

2.4 Computation-Communication
Overlapping

Computation-communication overlapping has been exploited

in DNN training. For example of Horovod [30] (communica-

tion library used in DP training), gradient synchronization

starts before the completion of the backward pass in each

training iteration. Deep learning frameworks that advocate

pipeline parallelism [11][22] support concurrent activation

transfer and model computation. A number of studies have

focused on further improving the overlapping ratio for data

parallelism, e.g., PACE [3] and ByteScheduler [25].

Data dependency is the key obstacle to achieving a higher

level of computation-communication overlapping in SPMD-

parallel training. For example, in GShard [18], the expert

layers require results of the All-to-All operations as inputs,
and hence their computation cannot naturally overlap with

the communication.

2.5 Opportunities and Challenges
Graphduplication to facilitate communication-computation
overlapping. Since themajor obstacle that prevents computation-

communication overlapping in SPMD parallelism lies in data

dependencies, if we can transform the DNN computation

graph into a mathematically equivalent one with parallel
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Figure 1: Different SPMD parallelism strategies.

branches, we can schedule the operations such that compu-

tation in one branch runs in parallel with communication in

another. Inspired by data parallelism and gradient accumu-

lation, we propose one such transformation, referred to as

Duplex, that is applicable tominibatch training ofmost DNNs,

enabling communication-computation overlap in SPMD par-

allelism (Sec. 3).

SPMD strategy needs to be overlapping-aware. Over-
lapping computation and communication brings a new chal-

lenge: how dowe identify SPMD strategies thatmake the best

out of the overlapping? Existing SPMD systems [34, 35, 38]

minimize communication costs when exploring sharding

strategies, and the strategies are nonetheless inefficient when

computation and communication can overlap. Further, algo-

rithms used in these systems rely on the assumption that

the total cost (per-iteration training time) is the sum of the

costs of operators (computation or communication time).

This assumption does not hold when computation time and

communication time may overlap. We propose to explicitly

formulate computation-communication overlapping in our

cost model and use a Pareto optimization variant of dynamic

programming to find the optimized SPMD strategy (Sec. 4).
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User-friendly implementation on PyTorch. PyTorch [24]
is a popular deep learning framework featuring dynamic

control flows and user-friendly APIs. Due to its dynamism

and lack of static graph representation, graph transformation

on PyTorch models is difficult. As a result, most distributed

training systems that adopt automatic strategy search do not

support PyTorch [2, 34, 35, 37, 40]. We implement HiDup for

PyTorch based on the fx [28] module introduced in PyTorch

1.8, which allows us to trace and edit the forwardmethod of

a DNNmodel, such that we can implement op-level sharding

on the whole computation graph without requiring the user

to change the model code (Sec. 5).

3 DUPLEX
We propose a duplex design for distributed training of large

DNN models (e.g., MoE models), allowing efficient overlap

of communication and computation. Our idea is to duplicate

the assigned computation graph at each device (according

to the parallelism strategy adopted) into two copies, each

trained using half of the input data. The gradients produced

by the two copies are accumulated locally before parameter

synchronization.

3.1 Design Principle
When training a DNN model using stochastic gradient de-

scent (SGD), the set of parameters 𝜃 of the DNN model is

updated as follows:

𝜃 (𝑡 ) = 𝜃 (𝑡−1) − 𝛼∇𝜃 ℓ (𝑋 (𝑡 ) , 𝜃 (𝑡−1) ) (1)

where𝑋 = (𝑋1, 𝑋2, . . . , 𝑋𝐵)𝑇 is a minibatch of𝐵 data samples,

𝛼 is the learning rate and ℓ is the loss function. For most

models (except those containing BatchNorm layers), the loss

and gradients of a minibatch are the sums of those of each

data sample:

ℓ (𝑋, 𝜃 ) =
𝐵∑︁
𝑖=1

ℓ (𝑋𝑖 , 𝜃 ), ∇𝜃 ℓ (𝑋, 𝜃 ) =
𝐵∑︁
𝑖=1

∇𝜃 ℓ (𝑋𝑖 , 𝜃 ) (2)

This property serves as the basis of data parallelism and

gradient accumulation [23]. Instead of calculating gradients

of a minibatch all at once, we can split a minibatch into

a number of microbatches and calculate gradients of each

microbatch independently before updating the parameters:

𝜃 (𝑡 ) = 𝜃 (𝑡−1) − 𝛼 [∇𝜃 ℓ (𝑋
(𝑡 )
𝑎 , 𝜃 (𝑡−1) )︸                 ︷︷                 ︸

microbatch 1

+∇𝜃 ℓ (𝑋
(𝑡 )
𝑏

, 𝜃 (𝑡−1) )︸                 ︷︷                 ︸
microbatch 2

] (3)

where 𝑋𝑎 and 𝑋𝑏 are the first half and latter half of the

minibatch, respectively. Mathematically, (1) is equivalent

to (3), while in this way, we can effectively separate the

computation of gradients into two identical yet independent

components that can be done in parallel.

Attention All-To-All MoE All-To-All

Attention All-To-All MoE All-To-All

Attention All-To-All MoE All-To-All

Microbatch 1

Microbatch 2

Duplex

Time

Figure 2: Duplex enables overlapping between compu-
tation and communication in the forward pass. Arrows
denote data dependencies.

3.2 Duplex Procedure
We make the training of the assigned computation graph

duplex at each device as follows: (1) First, we make a copy of

each operator and link its inputs to the copied input opera-

tors; (2) Next, we replace the inputs to the model with Chunk
operators that split the input minibatch along the “batch size”

dimension into two halves (aka two microbatches); (3) Then
we add an element-wise summation operator for each pair of

the gradients produced with the two microbatches to obtain

the full gradient; (4) Finally, CUDA stream synchronization

primitives are inserted before and after communication op-

erators to enforce execution order of the two microbatches.

The execution order will be derived as part of our SPMD

strategy in Sec. 4.

Fig. 2 illustrates the duplex procedure on a Transformer

model consisting of a chain of interleaving attention layers

and MoE layers [33]. The MoE layers are often sharded along

their expert dimensions, and All-To-All communication

operations are inserted before and after these layers to dis-

patch tensors across different workers to their corresponding

experts and distribute them back after being processed by

the experts [18]. For duplex, we first duplicate the graph

into two, each taking half of the minibatch as input and

computing the loss and gradients. Instead of sequentially

training the two microbatches, we parallelize their training

over the two copies of the graph, such that computation of

one microbatch overlaps with communication of the other.

As a more concrete example, Fig. 1c shows the computa-

tion graph after applying duplex on Fig. 1b: the resulting

graph on each worker has two chains that do not intersect

until gradient aggregation; computation and communication

can then be interleaved to reduce the execution time.

The computation-to-communication ratio is a key factor

determining duplex’s performance. Ideally, if every computa-

tion block (a series of computation without communication)

and communication operations take the same time, we can

keep both GPUs and network links busy and save the overall
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training time by 50%. On the other hand, duplex introduces

additional overheads. CUDA synchronization is required to

orchestrate the execution of the two microbatches. Smaller

batch sizes may lead to GPU underutilization, as well as

reduce the efficiency of collective communication. Nonethe-

less, they are negligible in most cases as compared to the

training time saving with duplex. The synchronization is

local on each GPU and does not require cross-device com-

munication. The element-wise addition operations used for

gradient accumulation take less than 80μs.
The duplex’s design can be generalized to more than two

microbatches, by which we have a larger scheduling space

but the potential to achieve better overlapping. However,

further splitting the tensors leads to more overheads due to

even smaller tensor sizes and more CUDA stream synchro-

nizations. We focus on duplex with two microbatches in our

design, practically striking a good balance between training

time saving and additional overhead.

We note that the memory usage with our duplex design is

similar to one without duplex. The two microbatches share

the same version of parameters and optimizer states. The

activations produced by the two microbatches each are half

of the size of activations in the original training graph, due

to the reduced batch size per microbatch. Gradients are pro-

duced on two microbatches separately, but are accumulated

as soon as produced by both microbatches. Therefore, the

overall memory consumption is about the same as training

the original graph without duplex.

Further, the duplex design can be applied to both compu-

tation graphs that contain only forward computation (e.g.,

PyTorch models [24]) and computation graphs that have

both forward and backward passes (e.g., training graphs on

TensorFlow [1]). In the former case, the forward pass and

the backward pass use the same duplex execution: if a pair

of computation and communication overlap in the forward

pass, their corresponding backward operations also overlap

in the backward pass.

4 DUPLEX-AWARE SPMD STRATEGY
Wepropose a dynamic programming-based searchingmethod

to decide the SPMD strategy for training a DNN model on a

given GPU cluster. The strategy search explicitly considers

computation-communication overlapping to minimize the

per-iteration training time with our duplex design.

4.1 Problem Definition
Computation Graph. A DNN model is defined by a com-

putation graph 𝐺 , in which the nodes are operators and the

edges represent tensors. There exists data dependency be-

tween operators that are connected by tensors: the operator

that consumes a tensor can only start after its predecessors

have been done. In the example graphs in Fig. 1, to illustrate

the sharding strategies, we also plot the tensors as nodes.

Tensor Form. A tensor can be in different forms depend-
ing on the sharding strategy. When a tensor is not sharded, it

is in the Full form, i.e. a complete copy of this tensor resides

with each of some workers, identical to that in a single-card

model. We define other forms of a sharded tensor according

to the approach that can be used to transform the tensor

into the Full form. If a tensor is sharded on its i-th dimen-

sion among a number of workers, performing All-Gather
among the workers allows each worker to collect the missing

parts from the other workers, which turns this tensor into

the Full form; we specify this sharded form as Gather(i).
The Reduce form indicates that the sharded tensor (usually

the output of MatMul operators) can be transformed into

the Full form with All-Reduce operations. The form of a

tensor can be changed using collective communications. For

example, a tensor can be transformed from the Reduce form

into a Gather(i) form with Reduce-Scatter, or from the

Gather(i) form to the Gather(j) form using All-To-All,
where 𝑖 and 𝑗 indicate different dimensions on which the

tensor is sharded.

Operator Signature. We use signatures of an operator

to specify acceptable forms of input tensors and the corre-

sponding forms of output tensors at the operator. For exam-

ple, Gather(0), Full -> Gather(0) is a signature of the
MatMul operator, indicating that MatMul can run on multi-

ple devices with the first input tensor sharded on the first

dimension (e.g., the “batch size”) and the second input tensor

not sharded, and produces a tensor that is sharded on its first

dimension. Similarly, Gather(1), Gather(0) -> Reduce is
another signature of MatMul where both inputs are sharded

and the output tensor can be aggregated using All-Reduce.

Stages. Training of a microbatch over the DNN computa-

tion graph on a device alternates between computation and

communication. We divide the training process of a micro-

batch into stages; each stage consists of a communication

step that contains a set of communication operators followed

by a computation step that consists of multiple computation

operators. Only the first stage does not include a commu-

nication step. In our duplex design, we always overlap the

computation step of a stage in the first microbatch’s training

with the communication step of the corresponding stage in

the second microbatch’s training, and the computation step

of the second microbatch with the communication step of

the next stage of the first microbatch, to best exploit compu-

tation and communication resources. The division of stages,

i.e., which communication operations and computation oper-

ations to put in a stage, is part of our strategy search space.

Strategy. A strategy describes how to shard tensors in

a given DNN model and stage division of the computation
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graph for parallel training with our duplex design. A strategy

𝑄 = {(𝑂1, 𝑆1), (𝑂2, 𝑆2), . . . } specifies a series of stages on

the computation graph that starts from a stage including

input nodes and leads to a certain sharding/stage division

state of the DNN model, state(𝑄). Here𝑂𝑖 denotes the set of

computation operators in the 𝑖-th stage and 𝑆𝑖 is the set of

signatures of these operators. A state𝑇 = (𝐶, 𝐹 ) is described
by 𝐶 , a cut in the computation graph that separates input

nodes and the loss node (represented by the set of tensors

on the cut), and 𝐹 , the forms of the tensors in 𝐶 . Executing

the stages in 𝑄 from the inputs leads to state(𝑄). The final
state 𝑇 = ({𝐿}, {Reduce}), where 𝐿 denotes the loss tensor,

corresponds to the state when all tensor sharding decisions

and stage divisions are decided for the entire computation

graph: the last computation in forward pass of SGD-based

training (Eq. (2)) is to sum the losses produced on the devices

to obtain the loss of the whole minibatch and therefore we

have the Reduce form of the loss tensor.We refer to a strategy

that leads to the final state (i.e., state(𝑄) = 𝑇 ) as a complete
strategy.
The communication step in each stage is decided as fol-

lows. When a stage (𝑂𝑖 , 𝑆𝑖 ) is added into a strategy 𝑄 , if

the forms of the inputs to operators in 𝑂𝑖 required by 𝑆𝑖
mismatch those in state(𝑄), communication operations are

inserted at the beginning of the stage. For example, if a tensor

in state(𝑄) is in the Gather(0) form while the same tensor

is of the Gather(1) form in 𝑆𝑖 , an All-To-All operator is

included in the communication step of stage (𝑂𝑖 , 𝑆𝑖 ).
Objective. The goal of our strategy search is to find the

optimal complete strategy𝑄∗ that achieves the smallest train-

ing time of the DNN model.

4.2 Strategy Search Algorithm
To identify the optimal strategy, we carefully analyze costs

associated with each strategy (that reflect the training time

with our duplex training), and exploit them in a dynamic

programming-based search algorithm.

With our duplex design, two microbatches are trained on

two copies of the computation graph in parallel. The com-

putation step in a stage of the second microbatch’s training

may overlap with the communication in the next stage of the

first microbatch’s training (Fig. 2). The end-to-end execution

time of the computation graph under our duplex training

is the time required to execute the complete computation

graph for the two microbatches and produce the aggregated

loss and gradients across all devices.

To capture the overlapping effect in end-to-end execution

time, we define two costs associated with a strategy 𝑄 : (i)

𝜓𝑄 , the time to execute the computation and communication

steps for the two microbatches from the input nodes till the

cut 𝐶 in state(𝑄) (referred to as the training time to reach

state(𝑄)), when the strategy 𝑄 is used; (ii) 𝜙𝑄 , the additive

inverse (i.e., negation) of one microbatch’s execution time

of the computation step in the last stage in 𝑄 . We define

𝜙𝑄 as a negative number to make our strategy searching a

minimization problem. Intuitively, 𝜓𝑄 is the training time

required to reach state(𝑄). −𝜙𝑄 quantifies how much the

time in𝜓𝑄 can overlap with the execution of the next stage

that can be appended to 𝑄 . For a complete strategy 𝑄 , 𝜓𝑄

is the end-to-end execution time of the two microbatches

on the complete computation graph. Tracking the two costs

separately allows us to recursively calculate the costs of a

strategy based on the costs of its sub-strategies, as well as fa-

cilitate more accurate estimation of the end-to-end execution

time with our duplex training.

For a strategy 𝑄 of 𝑚 stages, let 𝑄 (𝑖 ) denote the sub-

strategy that contains the first 𝑖 stages in 𝑄 (𝑖 ≤ 𝑚). The

costs of 𝑄 (𝑖 ) can be calculated as follows, where comm
(𝑖 )

and comp
(𝑖 )

denote one microbatch’s communication time

and computation time of the 𝑖-th stage, respectively:

𝜙𝑄 (𝑖 ) = −comp
(𝑖 )

(4)

𝜓𝑄 (𝑖 ) = 𝜓𝑄 (𝑖−1) + 𝜙𝑄 (𝑖−1) +max{ − 𝜙𝑄 (𝑖−1)︸     ︷︷     ︸
microbatch 2

, comm
(𝑖 )︸    ︷︷    ︸

microbatch 1

}

+max{ comm
(𝑖 )︸    ︷︷    ︸

microbatch 2

, comp
(𝑖 )︸   ︷︷   ︸

microbatch 1

} − 𝜙𝑄 (𝑖 ) (5)

In the RHS of (5),𝜓𝑄 (𝑖−1) +𝜙𝑄 (𝑖−1) gives the training time to

reach state(𝑄 (𝑖−1) ) (for both microbatches), without count-

ing the second microbatch’s computation time in the (𝑖 − 1)-
th stage. The third term decides the time required to run

the second microbatch’s computation in the (𝑖 − 1)-th stage

and the first microbatch’s communication step in the 𝑖-th

stage, which can happen in parallel. The fourth term sim-

ilarly describes the overlapped execution time of the first

microbatch’s computation and the second microbatch’s com-

munication in the 𝑖-th stage. The last term indicates the sec-

ond microbatch’s computation time in the 𝑖-th stage, which

is not overlapped with communication at this stage and will

be considered again when we append the (𝑖 + 1)-th stage

into the strategy.

Fig. 3 illustrates cost calculation for the strategy in Fig. 1c.

𝑄 (𝑖−1)
reaches cut {𝑍 } (Fig. 1a) and stage 𝑖 is appended to

𝑄 (𝑖−1)
to obtain 𝑄 (𝑖 ) . The time segments in the bottom of

the figure visualize Eq. (5). For example, The first segment

indicates when the first microbatch finishes stage 𝑖−1 and the

second microbatch finishes only All-To-All of stage 𝑖 − 1.

The second segment corresponds to the time of executing

Reduce-Scatter and MatMul in parallel. The dotted lines

separate stages.

Due to computation-communication overlapping across

twomicrobatches’ training, we need to track both costs using
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Microbatch 2

Stage i

max{-ϕQ(i-1), comm(i)}

ψQ(i-1)

ψQ(i)

ψQ(i-1) + ϕQ(i-1)

max{comm(i), comp(i)}

-ϕQ(i) = comp(i)

MatMul Reduce-
Scatter Loss

MatMul Reduce-
Scatter Loss

Stage i-1

Microbatch 1 All-To-All

All-To-All

Stage iStage i-1

Time

Figure 3: An illustration of the cost model.

the recursive computation in (4) and (5) in our dynamic

programming algorithm, to identify the strategy minimizing

the completion time of training both microbatches. In our

strategy search, we need to preserve any strategy that is not

dominated by other strategies [29], in terms of the two costs

computed in (4) and (5) with the strategy. We define that

strategy 𝑄1 dominates 𝑄2 if they reach the same state, while

𝑄1 is better in terms of both costs, i.e.:

𝑄1 dominates 𝑄2 ⇐⇒


state(𝑄1) = state(𝑄2)
𝜓𝑄1
≤ 𝜓𝑄2

𝜙𝑄1
≤ 𝜙𝑄2

𝜓𝑄1
< 𝜓𝑄2

or 𝜙𝑄1
< 𝜙𝑄2

The minimal time required to execute the remaining part

of the graph from cut 𝐶 to the loss node depends only on

the forms of tensors in 𝐶 (as we can treat the remaining

part as a standalone model and tensors in 𝐶 are its inputs).

Therefore, if two strategies reach the same state 𝑇 , one can

be regarded as strictly better than the other if it takes a

shorter time to reach the state and brings more overlapping

potential between the two microbatches’ training (indicated

by longer computation time in the last stage of the strategy).

We formalize the idea in Theorem 1. The proof is provided

in a technical report.

Theorem 1. 𝑄 ⊈ 𝑄∗ if ∃𝑄 ′ such that 𝑄′ dominates 𝑄 .

Exploiting the result in Theorem 1, we propose an effi-

cient dynamic programming algorithm to find the optimal

strategy𝑄∗ for a computation graph𝐺 , as given in Fig. 4. We

iterate through all possible cuts 𝐶0, . . . ,𝐶𝑛 in the graph in

an order that ensures that ∀𝑒1 ∈ 𝐶𝑖 , ∀𝑒2 ∈ 𝐶 𝑗 , 𝑖 < 𝑗 , 𝑒1 ≠ 𝑒2,

there is no path from 𝑒2 to 𝑒1. The cuts can be enumerated

with breadth-first search: starting with a set 𝑅 that contains

only the input nodes, we enumerate nodes whose input ten-

sors are produced by nodes in 𝑅 (as a set 𝐽 ) and try to add a

different node in 𝐽 into 𝑅 each time. The tensors produced

by nodes in 𝑅 and consumed by nodes not in 𝑅 form a cut.

The number of possible cuts is exponential to the maximum

1: Input: Computation graph 𝐺

2: Output: Optimal SPMD strategy 𝑄∗

3: Initialize 𝑃 with an empty strategy 𝑄∅
4: for 𝐶 = 𝐶0 to 𝐶𝑛 do
5: for 𝑄 ∈ 𝑃 where 𝐶 ∈ state(𝑄) do
6: for each (𝑂, 𝑆) that can be appended to 𝑄 do
7: 𝑄′ ← 𝑄 ⊕ (𝑂, 𝑆)
8: if ∃𝑄𝑝 ∈ 𝑃 s.t. state(𝑄𝑝 ) = state(𝑄 ′) and 𝑄 ′ is

dominated by 𝑄𝑝 then
9: continue
10: end if
11: for 𝑄𝑝 ∈ 𝑃 where state(𝑄𝑝 ) = state(𝑄 ′) do
12: if 𝑄𝑝 is dominated by 𝑄′ then
13: remove 𝑄𝑝 from 𝑃

14: end if
15: end for
16: append 𝑄′ into 𝑃
17: end for
18: end for
19: end for
20: return 𝑄∗ = arg min

𝑄∈𝑃,state(𝑄 )=𝑇
𝜓𝑄

Figure 4: SPMD Strategy Search Algorithm

number of nodes in 𝐽 , which is 10 in our experiments. For

each cut, we enumerate possible combinations of operators

𝑂 and their signatures 𝑆 to form stages (𝑂, 𝑆), that can reach

a state including this cut and can be appended to the Pareto

optimal strategies 𝑃 (set of strategies that are not dominated

by any other strategies). We only keep a strategy if it is not

dominated by any other strategies (lines 8–10), and elimi-

nate any strategies that are dominated by it (lines 11–15).

Finally, we decide 𝑄∗ as the complete strategy achieving the

smallest𝜓𝑄 , which is the end-to-end training time of the two

microbatches (line 20).

5 IMPLEMENTATION
We implement HiDup as a graph transformation module

on PyTorch [24], as shown in Fig. 5. HiDup takes as input

a single-card PyTorch DNN model (as a PyTorch fx [28]

graph) and the cluster specification (number of GPUs, inter-

connection bandwidth, etc.), and produces a model that can

run on multiple GPUs. HiDup consists of three components.

Annotator. The annotator adds metadata to each node in

the computation graph, including operator signatures, esti-

mated computation time, and the output size. For each node,

the output tensor size is inferred according to the sizes of

input tensors. Possible signatures of an operator are derived

according to the inputs and the operator type. The compu-

tation time of an operator is estimated using the number

of floating-point operations required for the operator. We

profile small models (e.g., a model with a reduced number of
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Figure 5: Overview of HiDup Implementation

layers) to obtain the device flops.
1
The annotator supports

37 PyTorch operators that are used in our experiments, and

can be easily extended to support more operators.

Strategy Searcher. The strategy searcher implements our

SPMD strategy search algorithm to identify the best sharding

strategy. The strategy searcher estimates the communication

costs using the inferred size of the respective tensor and the

inter-device bandwidth provided in the cluster specification.

Compiler. The compiler edits the single-card DNN computa-

tion graph according to the identified sharding strategy and

adds synchronization operations to enforce stage execution

order in our duplex training design. For each stage in the

strategy, it generates communication operations required

in the stage and copies the computation operators in the

stage from the original single-card graph. It runs this pro-

cedure twice on two CUDA streams to generate operations

for the two microbatches. Before and after each communica-

tion step, it inserts CUDA stream synchronization primitives

to prevent consecutively running two stages on one micro-

batch without switching to the other one, which ensures

alternating execution of the two microbatches.

6 EVALUATION
6.1 Experimental Setup
Testbed. By default, we conduct experiments on 8 machines

in a public cloud, each equipped with 8 NVIDIA V100 GPUs

and NVLink. Inter-machine bandwidth is about 9.71Gbps,

measured using iperf3 [8]. Static resource allocation and

exclusive access to the cluster are ensured during our exper-

iments.

Benchmarks. We train four models that cover language

modeling and image classification. We add MoE layers to the

BERT [5] and ViT [6] models by replacing a feed-forward

module every two layers, in a similar manner as in GShard

[18]. We add two types of MoE layers to the models: BERT-
SGMoE andViT-SGMoE use Sparsely-GatedMixture-of-Experts

layers [33] with 𝑘 = 2; BERT-Switch and ViT-Switch use

1
Directly profiling computation time in large MoE models is often costly

and difficult without sharding the large models first.

Table 1: Benchmark models

Model Operators Parameters (Millions)
BERT-SGMoE 250 89 + 19𝑛

BERT-Switch 250 89 + 19𝑛

ViT-SGMoE 254 38 + 38𝑛

ViT-Switch 254 38 + 38𝑛

Switch Transformer [9] layers. We follow the common prac-

tice of weak scaling in training these MoE models, i.e., set the

global batch size and the total number of experts proportional

to the number of GPUs. For language model pretraining, we

train BERT-SGMoE and BERT-Switch on the WikiText-103

[20] dataset. For image classification, we train ViT-SGMoE

and ViT-Switch on the Cifar-10 [16] dataset.

Except for the MoE layers, we mostly use the same trans-

former configurations as in BERT-Base [5], and reduce the

number of layers to 8 in order to allow for training the mod-

els with more experts in our testbed. We use 2 experts on

each GPU for ViT-SGMoE and ViT-Switch, and 1 expert per

GPU for BERT-SGMoE and BERT-Switch (because they are

more memory-demanding). The models are trained with the

Adam optimizer [15]. The numbers of operators and param-

eters in the models are summarized in Table 1. 𝑛 denotes the

number of GPUs.

Baselines.We compare HiDup with four relevant designs:

(1) DeepSpeed [27], which supports MoE model training by a

handcrafted operator parallelism with ZeRO-based [26] data

parallelism; (2) FastMoE [10], which implements an MoE

layer with customized CUDA kernels and supports over-

lapped computation of different experts on the same GPU

using multiple CUDA streams, when one expert cannot fully

utilize the GPU; (3) PyTorch DDP, PyTorch’s built-in data par-

allelism module that supports computation-communication

overlapping in the backward pass; (4) Horovod, a distributed
DNN training framework (working with Pytorch in our ex-

periments), using data parallelism and supporting overlap-

ping of All-Reduce and computation.

In our experiments, HiDup, PyTorch DDP, and Horovod

use the same implementation of the DNNmodels. DeepSpeed

and FastMoE provide MoE layers that may have subtle differ-

ences from our implementation. For example, FastMoE does

not have a per-expert processing capacity limit while HiDup

and DeepSpeed drop the data samples that exceed the capac-

ity. This could degrade performance or cause out-of-memory

(OOM) errors with FastMoE, when the outputs of the gating

networks are not balanced and too many samples are routed

to the same worker. For DeepSpeed, we do not enable op-

timizations that are orthogonal to our contributions (1-bit

Adam, etc.) and only use its MoE module. We use exhaustive

search to tune the ep_size parameter of DeepSpeed that

defines the model parallelism size for MoE layers, and find
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Figure 6: Per-iteration training time comparison: 8-machine cluster. Missing data are due to OOM errors.
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Figure 7: Per-iteration training time comparison: single machine. Missing data are due to OOM errors.

through our experiments that setting it to the total number

of GPUs always gives the best result.

Pure DP-based methods do not support MoE model train-

ing at large scale due to replicating every expert on every

device and that the number of experts is proportional to the

number of GPUs in the standard MoE settings. We hence

only include PyTorch DDP and Horovod in single-machine

experiments.

EvaluationMethod.HiDup and the baselines do not change
the training semantics (i.e., producing the same gradients as

training over single-card models with only floating-point er-

rors), such that the number of iterations required for model

convergence to specified accuracies remains the same as

single-card training. Therefore, our comparison of per-iteration

training time reflects that of the end-to-end training time.

Under each configuration, we train the respective model for

100 iterations and show the average time of the last 50 itera-

tions. The pre-training overheads of the evaluated systems,

such as the fused operator compilation in DeepSpeed and

strategy search in HiDup, are within tens of seconds and

negligible compared to the DNN training time.

6.2 Scalability
We first evaluate the per-iteration training time of HiDup as

compared to baselines on up to 64 GPUs across 8 machines.

Fig. 6 shows that similar performance is achieved among

HiDup, FastMoE, andDeepSpeedwhen training BERT-SGMoE

and BERT-Switch with up to 16 GPUs, while HiDup achieves

up to 18% speed-up as compared to the best baseline when

more GPUs are in use. This is because when we add more de-

vices, collective communication becomes slower due to band-

width contention. Compared with FastMoE and DeepSpeed,

our duplex design can mitigate the increased communication

overhead by overlapping computation and communication,

achieving better results.

Benefited from its optimized implementation, FastMoE

achieves the best performance in 8-GPU training, but is

bottlenecked by communication with more GPUs. It also

experiences OOM in 64-GPU training, due to the lack of per-

expert processing capacity limit. DeepSpeed’s MoE module

shows a similar scaling trend as HiDup, but is consistently

slower than HiDup as it does not overlap computation and

communication.

When training ViT-SGMoE andViT-Switch, HiDup achieves

significantly better performance (up to 61% faster) than the

baselines. Computation time and communication time in

these models are closer to each other and HiDup can achieve

higher overlapping ratios.

6.3 Single-Machine Performance
We also evaluate HiDup in a single machine of 8 GPUs,

which represents a high-bandwidth inter-connect scenario
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as the devices are connected by NVLinks of 200 Gbps uni-

directional pairwise bandwidth. As Fig. 7 shows, pure DP-

basedmethods (Horovod and PyTorchDDP) generally achieve

good performance in this single-machine scenario, because

communication can fully overlap with backward pass compu-

tation under the very high bandwidth. HiDup automatically

identifies similar strategies and achieves comparable perfor-

mance as Horovod and PyTorch DDP, despite the additional

overhead introduced by our duplex design.

6.4 Performance under Different
Bandwidth Levels

This set of experiments were conducted on an on-premise

cluster of 2 machines connected to a Dell Z9100-ON switch,

each quipped with 4 NVIDIA V100 GPUs and NVLink. We

evaluate HiDup under different inter-machine bandwidth

levels, by limiting the bandwidth using tc tool in iproute2
package [17]. As Fig. 8 shows, HiDup outperforms the base-

lines by up to 14% as it automatically optimizes the SPMD

strategies for different bandwidth levels and hides communi-

cation time within computation time with our duplex design

when the bandwidth is smaller.

6.5 Performance with Different Batch Sizes
We train BERT-SGMoE using different per-card batch sizes

on two machines that are connected by a 100Gbps RDMA

network. Each machine is equipped with 4 NVIDIA V100

GPUs and NVLink. As Fig. 9a shows, HiDup outperforms

the two baselines when batch size is larger than 16. When

the batch size is smaller, HiDup’s performance is similar to

the baselines, because its duplex training further splits the

minibatch and results in lower GPU utilization.

To further measure GPU underutilization caused by de-

creased batch sizes, we run the Einsum operation used in

BERT-SGMoE with different batch sizes and calculate the

throughput as batch size divided by computation time. As

shown in Fig. 9b, the computation thoughput is similar when

the batch size is larger than 64.

6.6 Interference between Computation and
Communication

When computation and communication overlap, they may

compete for GPU resources including processors, memory

bandwidth, caches, etc. This interference may reduce the

benefits brought by duplex training. We measure the inter-

ference between computation and communication by pro-

filing the performance of MatMul operations on one CUDA

stream while running All-Reduce on another CUDA stream

and compare it with the performance of MatMul without

communication. This shows the worst case of interference

under 100% overlapping. We conduct this experiment on

Table 2: Additional computation time of MatMul when
overlapped with communication.

Cluster Tensor Size Additional time
Single Machine 256MB 14.0%

Single Machine 256KB 3.5%

Two Machines (100Gbps) 256MB 1.9%

Two Machines (100Gbps) 256KB 2.0%

Table 3: Peak GPU memory usage (GB).

B-SGMoE B-Switch V-SGMoE V-Switch

HiDup 6.77 6.34 2.79 2.60

DDP 9.87 9.44 4.92 4.68

Horovod 8.98 8.55 4.21 3.97

FastMoE 7.63 7.30 2.78 2.63

DeepSpeed 8.09 7.80 2.53 2.52

the same cluster as in Sec. 6.5 (two machines with 100Gbps

inter-connection). As Table 2 shows, the interference is only

significant when the tensor size is relatively large and the

communication is within a machine. Since HiDup targets

distributed DNN training, the impact of interference is small.

6.7 GPU Memory Usage
We show the peak GPU memory usage when training the

benchmark models with 4 GPUs on one machine. The usage

is recorded using torch.cuda.max_memory_allocated. As
Table 3 shows, HiDup uses the least memory for BERT mod-

els and similar memory levels as the best baseline for ViT

models. Duplex training slightly increases the memory con-

sumption due to producing each gradient twice, but HiDup’s

automatic strategy search can shard more tensors than the

baselines and reduce the per-card memory usage.

6.8 Training Time Breakdown
To gain further insights on HiDup’s performance, we ana-

lyze computation time and communication time separately

from the execution trace of BERT-SGMoE. In Table 4, the

wall time is the real-world time spanning an iteration. Total

time is the sum of computation time and communication

time without considering their overlapping. The overlapping

ratio is calculated by dividing the duration when compu-

tation and communication are overlapped by the smaller

one between computation time and communication time.

We see that HiDup can hide more than 91% and 41% of the

communication in computation in the single and two ma-

chines (100Gbps) cases, respectively. It does not completely

hide all communication because of uneven communication

times and computation times in the pipeline. As illustrated

in Fig. 3, a communication step needs to be shorter than the

computation step of the same stage and that of the previous

stage to be fully overlapped. We see that HiDup’s total time
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is similar to the baselines but it achieves shorter wall time

by overlapping computation and communication.

6.9 End-to-End Training Time
We evaluate HiDup by training BERT-SGMoE until conver-

gence on the same cluster as in Sec. 6.5. As Fig. 10 shows,

HiDup and baselines reach the same log perplexity on the

same model, but HiDup accelerates the training.

6.10 SPMD Strategy
We analyze the strategies found by HiDup under different

bandwidth levels. We first show the placement strategies of

parameters. With SPMD parallelism, there are two major

placement strategies for a parameter: replication and shard-
ing. When using replication, each device holds a full copy

of the parameter, and All-Reduce is needed to aggregate

the gradients in the backward pass. When using sharding,

the parameter is split along a dimension and each device

stores a slice. All-Gather is used to recover the full param-

eter in the forward pass and Reduce-Scatter is used to

aggregate the gradients in the backward pass. Conceptually,

an All-Reduce operation is equivalent to Reduce-Scatter
followed by All-Gather. However, due to some low-level

optimizations [12], All-Reduce in NCCL can be faster than

running Reduce-Scatter and All-Gather separately.

Intuitively, the placement strategies for the parameters can

be chosen according to the following principles: (1) When

the bandwidth is low, replication is preferred, because the

communication time dominates the training time which can

hardly be hiddenwithin computation time, and the communi-

cation time of All-Reduce is lower which leads to a shorter

training time than sharding. (2) When the bandwidth is high,

the communication may be hidden within the computation

time and the overlapping ratio plays a more important role

in the overall training time. In this case, sharding could be

preferred. Even though it leads to longer communication

time, the communication lies in both the forward pass and

the backward pass, while the All-Reduce operation in the

replication case can only overlap with the backward compu-

tation. Therefore, sharding can lead to a higher overlapping

ratio and may lead to faster training in high bandwidth cases.

Fig. 11 shows the number of parameter tensors that use

the two placement strategies for BERT-SGMoE under dif-

ferent bandwidth levels, respectively. We find that HiDup’s

decisions follow our analysis above and it can automatically

identify the optimal placement strategy for each parameter.

Next, we show the partition strategy found by HiDup for

MoE layers in Fig. 12. We use the same notation as in GShard

[18], where lower case letters denote sharded dimensions.

𝐵 is the batch size, 𝑆 is the sequence length, 𝑀 is the em-

bedding size, 𝐸 is the number of experts, 𝐶 is the per-expert

capacity and 𝐻 is the hidden size. The dashed boxes show

stages. The left side of Fig. 12 shows the strategy on two

machines connected by a 100Gbps link. It is the same as the

expert-designed strategy in GShard [18]. However, when
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Table 4: Per-iteration time breakdown.

Single Machine Two Machines (100Gbps) Two Machines (30Gbps)

System HiDup DeepSpeed FastMoE HiDup DeepSpeed FastMoE HiDup DeepSpeed FastMoE

Wall time (s) 0.2972 0.3988 0.3492 0.3985 0.4993 0.6971 0.6657 0.8251 0.7563

Total time (s) 0.3245 0.3813 0.3375 0.4611 0.4827 0.6857 0.7453 0.8055 0.7417

Computation (s) 0.2948 0.3531 0.2182 0.3088 0.3479 0.2252 0.3021 0.3469 0.2300

Communication (s) 0.0297 0.0282 0.1193 0.1523 0.1347 0.4605 0.4432 0.4585 0.5117

Overlapping ratio 91.92% 0 0 41.10% 0 0 26.35% 0 0
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Figure 12: Partition strategies for MoE layers.

the bandwidth is reduced to 10Gbps, HiDup switches to the

strategy shown on the right side. This strategy duplicates

the calculation of the gating layer on every card, reducing

communication at the cost of more computation. The input

to the MoE layer is not partitioned, which is highly coupled

with the strategy used by the previous layer, indicating that

HiDup can holistically consider the partition strategy across

layers.

6.11 Computation/Communication Time
Estimation

We evaluate the impact of our computation and communi-

cation time estimation (using device flops and bandwidth,

as discussed in Sec. 5) on the strategy found by HiDup for

BERT-SGMoE on the same cluster as in Sec. 6.5. We add two

types of noises to authentic profiling results, generate the

best strategy based on these noisy estimations, and derive

the average ratio of per-iteration training time achieved with

the generated strategy over that of the optimal strategy gen-

erated using the unmodified estimations (the ‘Relative Time’

in Table 5). The first noise type is “𝑥% random noise”, with

Table 5: Impact of inaccurate computation and com-
munication time estimation.

Noise Relative time
20% random noise 100.2%

50% random noise 112.9%

+20% communication 100.0%

+50% communication 100.0%

−20% communication 100.0%

−50% communication 117.2%
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Figure 13: Flops-based computation time estimation.

which we randomly change the estimated time of each oper-

ator by up to 𝑥%. We conduct the experiments 10 times for

each noise level. The second type is “±𝑦% communication”,

which means we increase/decrease the estimated time of all

communication operators by 𝑦%. We observe from Table 5

that HiDup can find near-optimal strategies with noise up

to 20%, suggesting that it is resilient to estimation errors.

We show the estimated computation time and profiling

results for operators used in BERT-SGMoE in Fig. 13. The

flops-based estimation tends to under-estimate the compu-

tation time for small operators like element-wise addition,

because these operators may be memory-bound and flops do

not reflect the memory accessing time. For larger operators

like MatMul, the maximum estimation error is 17%.

6.12 Strategy Searching Time
Fig. 14 shows HiDup’s strategy search time for BERT-SGMoE.

In Fig. 14a, we keep the number of GPUs as 4 and alter

the number of layers in the model. The overall search time

increases linearly with the number of layers. In Fig. 14b, we

fix the number of layers at 6 and change the number of GPUs.
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As HiDup uses SPMD parallelism where all devices use the

same computation graph, its search time is independent of

the number of GPUs.

7 RELATEDWORK
7.1 MoE training systems
GShard [18] and GSPMD [36] parallelize computation in

large model training based on user annotated SPMD strate-

gies and heuristic parallelism strategies for nodes not an-

notated. For MoE models, their heuristic strategies are to

alternate between MP for MoE layers and DP for other lay-

ers. GSPMD supports a special case of pipeline training for

models consisting of identical consecutive layers, by treating

the layers as an additional dimension. In contrast, HiDup

automatically finds sharding strategies. We do not exper-

imentally compare with GShard and GSPMD as they are

mainly designed for TPU clusters and implemented on Mesh

Tensorflow [32], while we focus on GPU clusters and imple-

ment HiDup for PyTorch.

DeepSpeed [14, 27] uses 3D parallelism including DP, MP,

and pipeline parallelism to support MoE model training. Fast-

MoE [10] implements MoE layers for PyTorch with low-level

optimizations such as customized CUDA kernels. Both of

them provide special MoE layer implementation with built-

in parallelisms. HiDup uses graph transformation to support

MoE model training so that it can holistically consider the

sharding strategy for both MoE layers and other layers.

7.2 Automatic parallelism strategy search
Tofu [35] and HyPar [34] use dynamic programming to find

a DNN partition strategy that minimizes the total commu-

nication cost. Alpa [39] solves an integer linear program

for intra-op partition strategies and applies dynamic pro-

gramming to identify inter-op partition strategies. Flexflow

[13] uses a Markov Chain Monte Carlo (MCMC) algorithm

for strategy search on the SOAP space, including sharding

strategies and placements. HeteroG [37] utilizes a graph neu-

ral network to generate distributed training strategies for

heterogeneous clusters. HiDup is different from these studies

in that we consider computation-communication overlap in

strategy search, introduced by our duplex design, while no

overlapping is assumed in these systems. Such overlapping

complicates the dynamic programming approach design.

8 DISCUSSIONS
8.1 Heterogeneous Clusters
Existing SPMD frameworks are mostly used on homoge-

neous clusters. However, GPUs allocated in public clouds

are often scattered in different machines or racks, result-

ing in heterogeneous inter-connections. As a possible future

direction, HiDup can be extended to support this kind of het-

erogeneity by using topology-aware communications (e.g.,

Hoplite [41], TACCL [31]) that exploit faster links and avoid

slow links.

8.2 Pipeline Parallelism
GPipe [11] and PipeDream [22] propose the pipeline paral-

lelism for DNN training, where the model is divided into

stages (each consisting of multiple computation operators

- note that it is different from our stage definition in Sec. 4)

and multiple microbatches are trained at different stages

at the same time. In HiDup, our duplex design effectively

forms a pipeline between the computation devices (GPUs)

and communication devices (network links); however, this

pipeline is quite different from the pipeline parallelism above,

as we focus on SPMD parallelism and do not put different

layers on different devices. HiDup can be used in conjunc-

tion with the pipeline parallelism: many pipeline training

systems embed data parallelism [27, 39] as well, by putting a

single stage on multiple devices for DP training; HiDup can

be used to replace the DP strategy with more sophisticated

SPMD parallelism, to further accelerate pipeline training.

9 CONCLUSION
We present HiDup, an automatedmodule to accelerate SPMD

trainingwith duplex and automatic SPMD strategy searching.

Our duplex design introduces computation-communication

overlapping to the SPMD parallelism, and our dynamic pro-

gramming-based strategy searching algorithm automatically

identifies sharding strategies that exploit the overlapping

opportunities provided by duplex. We implement HiDup for

PyTorch and show that it achieves up to 61% faster training of

MoE models as compared with representative frameworks.
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