
HAP: SPMD DNN Training on Heterogeneous GPU
Clusters with Automated Program Synthesis
Shiwei Zhang

The University of Hong Kong
swzhang@cs.hku.hk

Lansong Diao
Alibaba Group

lansong.dls@alibaba-inc.com

Chuan Wu
The University of Hong Kong

cwu@cs.hku.hk

Zongyan Cao
Alibaba Group

zongyan.cao@alibaba-inc.com

Siyu Wang
Alibaba Group

siyu.wsy@alibaba-inc.com

Wei Lin
Alibaba Group

weilin.lw@alibaba-inc.com

Abstract
Single-Program-Multiple-Data (SPMD) parallelism has re-
cently been adopted to train large deep neural networks
(DNNs). Few studies have explored its applicability on het-
erogeneous clusters, to fully exploit available resources for
large model learning. This paper presents HAP , an auto-
mated system designed to expedite SPMD DNN training on
heterogeneous clusters. HAP jointly optimizes the tensor
sharding strategy, sharding ratios across heterogeneous de-
vices and the communication methods for tensor exchanges
for optimized distributed training with SPMD parallelism.
We novelly formulate model partitioning as a program syn-
thesis problem, in which we generate a distributed program
from scratch on a distributed instruction set that semanti-
cally resembles the program designed for a single device, and
systematically explore the solution space with an A*-based
search algorithm. We derive the optimal tensor sharding
ratios by formulating it as a linear programming problem.
Additionally, HAP explores tensor communication optimiza-
tion in a heterogeneous cluster and integrates it as part of
the program synthesis process, for automatically choosing
optimal collective communication primitives and applying
sufficient factor broadcasting technique. Extensive experi-
ments on representative workloads demonstrate that HAP
achieves up to 2.41x speed-up on heterogeneous clusters.

CCSConcepts: •Computingmethodologies→Distributed
computing methodologies.

Keywords: Distributed system, Neural networks, Program
synthesis
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1 Introduction
Recent machine learning research has demonstrated that
scaling up deep neural network (DNN) models not only im-
proves their prediction performance but also expands their
capabilities. For instance, a language model can perform
a task with few-shot prompting after reaching a certain
model scale [49]. Massive models with billions or trillions
of parameters have emerged [6, 11]. Training these mod-
els necessitates the use of large clusters of accelerator de-
vices (dominantly GPUs), as well as sophisticated paralleliza-
tion paradigms. Consequently, a number of parallelization
schemes have been proposed and adopted in distributed train-
ing of large DNNs, including data/model/pipeline parallelism
[17, 19, 29, 36, 44, 45, 47, 52, 55]. However, the majority of
the existing proposals concentrate on DNN training on ho-
mogeneous clusters, where all devices are of the same type
and interconnect network links have identical bandwidth.
On the other hand, the rapid evolution of accelerate de-

vices (e.g., GPUs, TPUs, Habana chips) and multi-tenant
resource sharing have resulted in mixed device types and
uneven interconnect bandwidth in many clusters. Efficient
exploitation of available heterogeneous resources for DNN
training has piqued significant interest from AI practitioners
[16, 25, 27, 30, 43, 53, 56]. A prevalent approach for making
use of heterogeneous clusters is to distribute multiple train-
ing jobs onto different homogeneous subsets of the cluster
[50, 57]. However, this approach imposes a constraint on the
maximum model size, as it is bound by the capacity of the
subsets. With the emergence of large language models, the
demand for employing the whole heterogeneous cluster to
train a large model has become increasingly crucial.
The limited existing heterogeneity-aware DNN training

designs mostly support data parallelism and inter-op model
parallelism [27, 53, 56]. For data parallelism, each device
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trains the DNN model for a distinct portion of the dataset,
allocated according to capacity of the device, and synchro-
nizes model gradients among each other at the end of each
training iteration. Inter-op model parallelism involves plac-
ing different operations in the DNN model across devices,
with intermediate tensors transmitted among devices during
training. For better GPU utilization, inter-op model-parallel
training is often scheduled in a pipelinedmanner, with micro-
batches of data processed on different devices at the same
time. Due to constrained memory capacity of GPUs, pure
data parallelism or inter-opmodel parallelismmay not be fea-
sible or efficient for training large DNN models. For instance,
in models with Mixture-of-Expert (MoE) [40] layers, a single
tensor may surpass the GPU’s memory limit. In these cases,
it becomes necessary to employ intra-op model parallelism,
which partitions the operations/tensors and distributes the
shards to different devices. It is especially challenging to de-
vise efficient strategies on tensor sharding and deployment
across a cluster of heterogeneous devices, due to the large
strategy space.

This work studies Single-Program-Multiple-Data (SPMD)
parallelism for efficient training of large DNNs on hetero-
geneous clusters. SPMD parallelism generalizes data paral-
lelism and intra-layer model parallelism with tensor shard-
ing along any of its dimensions and input data partitioning
across the devices. It has been proven effective in training
various state-of-the-art models. For example, GShard [22]
uses model parallelism for MoE layers and data parallelism
for other layers, and Megatron [41] designs an SPMD strat-
egy for the Transformer layers [46]. One of the key benefits
of SPMD parallelism is that each device executes the same
program, thereby enabling scaling to a large number of de-
vices with a constant program compilation time.

SPMD parallelism has so far been exploited on homoge-
neous clusters. Enabling efficient SPMD training on a set
of heterogeneous resources facilitates better utilization of
available resources for substantially lowered cost of large
model learning. Three key decisions are involved in applying
SPMD parallelism in heterogeneous clusters: (i) the sharding
strategy, i.e., deciding which dimension to partition (shard-
ing dimension) for each tensor; (ii) the sharding ratios across
the devices, i.e., different tensor partition sizes to assign to
heterogeneous devices according to their computation and
memory capacities, to optimize device utilization; and (iii)
selection of the communication methods, which decides the
implementation of each collective communication operation
for each tensor, to best cater to different tensor sizes and
different interconnect bandwidths across devices. The three
decisions are co-related. For example, if the sharding ratios
are relatively even among the devices, inter-device communi-
cation pattern resembles that of homogeneous clusters, and
standard collective communication generally performs well.
In contrast, if the sharding ratio differs significantly across
devices, heterogeneity-aware communication are needed.

We propose HAP , an SPMD DNN training system for het-
erogeneous clusters, that automatically decides optimal ten-
sor sharding dimension/ratios and communication methods
for expedited training and optimized resource utilization. We
make the following contributions in designing HAP :

⊲We design an iterative optimization process that alterna-
tively optimizes the SPMD sharding strategy and sharding
ratios while fixing the other one. In comparison to exist-
ing methods that only optimize each aspect once [43], our
iterative optimization enables us to approach the global op-
timum while still maintaining an acceptable optimization
time (Sec. 3).

⊲ We novelly formulate SPMD model sharding as a pro-
gram synthesis problem, to construct a distributed program
on a distributed instruction set to emulate a given tensor
program implemented on a single-device instruction set. We
analyze the single-device program to build a background
theory T of semantic constraints, and then employ syntax-
guided synthesis [3] with an A*-based search algorithm to
automatically synthesize a distributed program to achieve
minimal training time, that is equivalent to the single-device
program under the theory T (Sec. 4).

⊲ We design a linear cost model and formulate sharding
ratio optimization as a linear programming problem, and
solve it optimally with off-the-shelf solvers (Sec. 5).

⊲We explore two communication optimization techniques
and integrate them into the program synthesis, to optimize
communication on heterogeneous clusters jointlywith SPMD
sharding. The first optimization involves the trade-off be-
tween two All-Gather implementations on heterogeneous
clusters and the second is to automatically apply sufficient
factor broadcasting [51] that reduces the communication
volume for certain operators (Sec. 4.4).

⊲ We implement HAP on PyTorch and evaluate it on a 64-
GPU heterogeneous cluster on a public cloud. The user API
of HAP is analogous to the built-in DDP module of PyTorch.
Experiments with four representative image classification
and language models demonstrate that HAP consistently
outperforms existing systems on heterogeneous clusters and
show competitive performance on homogeneous clusters
while introducing only seconds of overhead in program syn-
thesis.

2 Background and Motivation
2.1 Large Neural Networks and SPMD Parallelism
There has been a noticeable increase in size of state-of-the-
art DNN models, with examples such as GPT-3 [6] contain-
ing 175 billion parameters and PaLM [11] containing 540
billion parameters. These large neural networks are often
constructed using Transformer [46] layers. Many of them in-
corporateMixture-of-Expert (MoE) [40] layers as well, which
contain sparsely activated experts (each input token is pro-
cessed by a fixed number of experts, regardless of the total
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Figure 1. Common collective communication operations.

number of experts in an MoE layer). The tensors (parameters,
gradients, activation, optimizer states, etc.) in these models
can be sizable that a single tensor exceeds the memory capac-
ity of a modern GPU. For example, the parameter size of an
MoE layer with 2048 experts is about 36GB. Thus, partition-
ing the model and deploying its shards on multiple devices
is indispensable for effective training of these models.
A tensor in a DNN model is a multi-dimension array of

floating-point numbers. A tensor can be partitioned (aka
sharded) into smaller tensors by splitting on any of its di-
mensions. For example, most of the activation tensors (inter-
mediate results calculated from the input to the model) in
mini-batch training has a “batch size” dimension. Partition-
ing this dimension results in the so-called data parallelism.
With SPMD parallelism, the same program is executed on
multiple devices, which collectively produces a result that is
identical to that of a single-device program. Existing SPMD
training systems typically partition the operators in a single-
device program by choosing a sharding strategy out of a
fixed set for each operator. For example, AccPar [43] con-
siders three sharding strategies (sharding on the “batch size”
dimension, “hidden feature” dimension, and “reduction” di-
mension) for each MatMul operator. Flexflow [19] supports
4 dimensions of parallelism by sharding operators on the
sample, operator, attribute and parameter dimensions. When
producers and consumers of a tensor are sharded in an in-
compatible way (i.e., a tensor is expected by the consumer
to be sharded on a different dimension than what it is pro-
duced on), collective communication operators are inserted
to switch the sharding dimension of the tensors according to
pre-defined rules. For instance, if a tensor is sharded on the
batch size dimension and the consumer is expecting a full-
sized tensor, All-Gather can be used to gather the shards
of the tensor across devices to recover the same full-sized
tensor on all devices.

2.2 Collective Communication
Four MPI-style [28] collective communication operations are
commonly used in distributed DNN training. As illustrated
in Fig. 1, All-Gather(𝑒, 𝑑) concatenates the slices of ten-
sor 𝑒 across devices along the 𝑑 dimension. All-Reduce(𝑒)

sums the replicas of a tensor 𝑒 across devices, element-wisely.
Reduce-Scatter(𝑒) is equivalent to performing All-Reduce
and then sharding the results on each device, but is imple-
mented in a more efficient way. All-To-All(𝑒, 𝑑1, 𝑑2) takes
as input the tensor 𝑒 that is sharded on its 𝑑1 dimension and
outputs the tensor that is sharded on the 𝑑2 dimension.

The current collective communication libraries have been
developed for homogeneous clusters and may not exhibit
optimal performance when applied to tensors of different
sizes in a cluster of different inter-device bandwidths. For in-
stance, NCCL [18] requires all tensors to be of the same size
for All-Gather. In order to perform this communication op-
eration on unevenly sharded tensors, the tensor shards must
be first padded to the same size and subsequently trimmed
upon completion of the operation, resulting in wasted band-
width and extra memory access. Alternatively, All-Gather
can be implemented with multiple Broadcast operations to
support unevenly sliced tensor shards without padding, at
the cost of a higher kernel launching overhead.

2.3 Syntax-Guided Synthesis
Syntax-guided synthesis [3] is a type of program synthesis,
where the inputs include a syntax specification that defines
the program space, a semantic correctness specification that
describes the desired properties of the synthesized program,
and a background theory to verify whether a given program
satisfies the semantic correctness specification. Automated
program synthesis has been successfully applied to optimize
various kinds of programs, such as SQL [38] and Datalog
[48]. Compared to the programs implemented in general-
purpose programming languages, these programs typically
have simpler structures that allow easier semantic analysis.
Tensor programs that implement DNNs share the same char-
acteristics as they are non-recursive and have no side-effects.

We exploit syntax-guided synthesis to systematically gen-
erate feasible distributed programs for SPMD parallelism,
in order to identify the best one that maximizes training
speed. Most literature uses manually defined background
theories, such as the linear integer arithmetic (LIA) [4]. We
construct a background theory for each single-device pro-
gram in the form of Hoare triples [15] by automatically an-
alyzing the single-device program. During the synthesis of
the distributed program, only the mathematical relations
between the model output and the model inputs are utilized.
As a result, we decouple the performance of the distributed
program from the implementation details of the provided
single-device program. Moreover, we automatically explore
alternative implementations of operations that achieve the
same mathematical results during program synthesis.
Some existing distributed DNN training systems may be

categorized as a form of "transformational program synthe-
sis", wherein an initial program undergoes successive mod-
ifications based on a set of rewriting rules. As an example,
Unity [45] performs pattern matching and substitution on a
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proposed parallel computation graph to transform programs.
Each optimized step in this process yields a complete and
correct program, by the correctness of the applied rewriting
rules. In contrast, our approach diverges by exploring in-
complete and potentially incorrect programs throughout the
synthesis process, and validate the semantics of the resulting
distributed program using the background theory derived
from the single-device program.

2.4 Optimal Sharding Ratios
With pure data parallelism, the optimal sharding ratios can
be readily decided by profiling the computation speed of
different devices and setting the ratios in proportion to com-
putation speeds of devices. This does not work optimally for
SPMD parallelism where All-Gather and Reduce-Scatter
are utilized to concatenate tensor shards or aggregate tensor
replicas and then shard the result across devices. In these
communication operations, the devices send and receive
tensor shards of sizes proportional to the sharding ratios.
The communication time therefore depends on the size of
the largest shard. Minimal communication time is achieved
when the tensors are sharded evenly, as the size of the largest
shard is minimized in this case.
To demonstrate this, we train a Transformer model with

intra-op model parallelism on two machines, one equipped
with two P100 GPUs and the other with two A100 GPUs.
Tensors in the model are sharded across the GPUs in two
ways: CP, with sharding ratios proportional to the compu-
tational power of the devices, and EV, evenly sharding the
tensors. We manipulate the hidden feature dimension of
the model to alter the computation-to-communication ratio.
Fig. 2 shows that when the computation time dominates,
CP performs better as it balances computation time on dif-
ferent devices; EV performs better when communication is
the bottleneck. EV leads to lower communication time for
All-Gather and Reduce-Scatter operations and is prefer-
able when the computation-to-communication ratio is low.
When computation time and communication time are similar,
a “sweet point” may exist between CP and EV that achieves
the optimal trade-off between load balance on different de-
vices and fast communication operations. Further, since dif-
ferent layers of a model may exhibit different computation-
to-communication ratios, the optimal sharding ratios may
vary for each layer. In HAP , we formulate sharding ratio
optimization as a linear programming problem to determine
the optimal ratios for each part of the model.

2.5 Communication Optimization
When a tensor is partitioned unevenly, standard collective
communication routines that assume homogeneous clus-
ters do not perform optimally. To explore opportunities for
heterogeneity-aware communication, we study a few tech-
niques that can potentially benefit collective communica-
tion in heterogeneous environments and show that these
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Figure 2. Performance with different sharding ratios under
different computation-to-communication ratios (computed
for P100 GPUs).

optimizations need to be jointly decided with the sharding
strategy and sharding ratio selection.

2.5.1 Padded All-Gather and Grouped Broadcast. The
All-Gather and Reduce-Scatter operations implemented
in NCCL require all shards to be of the same size. To perform
these operations for unevenly partitioned tensors, we can
either pad the shards to the same size before communication,
or broadcast each shard seperately using a NCCL group call.
Fig. 3 visualizes the two approaches.

Selection between the two approaches is highly contingent
upon the tensor sharding ratios employed. When the tensors
are nearly evenly partitioned, the required padding is mini-
mal, and the padded All-Gather method outperforms other
approaches owing to optimizations in NCCL. In contrast,
when a tensor is sharded using heavily skewed ratios among
devices, the grouped Broadcast approach yields better per-
formance. Fig. 4 illustrates this phenomenon as we test the
two approaches on a 4MB tensor in a cluster of twomachines,
each equipped with two NVIDIA A100 GPUs. We allocate
the largest shard to the first device and evenly partition the
remaining among the other devices. The sharding ratio on
the first device then decides the skewness of sharding, de-
picted as the x-axis in Fig. 4. The bandwidth is computed
by dividing the full tensor size by the communication time,
without taking into account any padding.

As performance of the two implementations depends on
the sharding ratios, when we optimize the sharding ratios,
the communication methods should be updated accordingly
to achieve the optimal overall performance. In HAP , we in-
clude the selection of the two methods into the program
synthesis process and interleave its optimization with the
sharding ratio optimization.

2.5.2 Sufficient Factor Broadcasting (SFB). SFB [51] ex-
ploits low-rank structures in gradient tensors to reduce pa-
rameter synchronization communication by replacing the
All-Reduce operation on gradient tensors with All-Gather
operations on smaller tensors called sufficient factors, which
are sufficient to calculate the gradients. Fig. 5 gives an ex-
ample of SFB for an MatMul operation. The output is an
𝑓 × ℎ tensor, which is the gradient of the parameter in a
fully-connected layer. The inputs are the activation tensor
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Figure 5. Sufficient Factor Broadcasting. (b) and (c) depict
the SPMD program on each device.

of shape 𝑏 × ℎ and the gradient of the output with shape
𝑓 × 𝑏, where 𝑏 is the local batch size on each device and 𝐵

is the global batch size. When 𝑏 is small, the gradient (the
𝑓 ×ℎ tensor) is not full rank, and the two aggregated tensors
(the 𝐵 × ℎ and 𝑓 × 𝐵 tensors) are its sufficient factors as
the gradient can be calculated from the two tensors without
further communication. With standard data parallelism, the
gradients are aggregated among devices with All-Reduce, as
shown in Fig. 5(b). With SFB, the input tensors are first col-
lected with All-Gather and then each device calculates the
complete gradient independently. SFB changes the communi-
cation process from transferring the gradient to transferring
the sufficient factors, which can be of smaller sizes when the
global batch size 𝐵 is small.
The performance of SFB is primarily determined by the

batch size and the number of devices involved [7, 54]. TAG

[56] proposes an integer linear programming-based tech-
nique to automatically identify beneficial application of SFB
to tensors in a DNN model trained in a homogeneous cluster.
However, uneven tensor partitioning across heterogeneous
resources introduces additional complication to this prob-
lem. As analyzed in Sec. 2.5.1, performance of All-Gather
is influenced by the sharding ratios, on which whether SFB
is beneficial depends as well. Moreover, in the case of SFB,
every device performs the MatMul operation with a full batch
size 𝐵, which may pose substantial computation overhead on
slower devices. Therefore, SFB presents a different trade-off
in heterogeneous clusters. In HAP , we integrate SFB into
program synthesis to ensure optimal application of SFB as
we update the sharding ratios.

3 Design Overview
We propose HAP that jointly decides the sharding strategy,
sharding ratios, and communication methods of all tensors
in a DNN model for effective SPMD model training on a
heterogeneous cluster. The input to HAP consists of a single-
device DNN model (DNN training program written for a
single device), represented as a computation graph (𝑉 , 𝐸),
and a cluster specification comprising𝑚 virtual devices. A
virtual device can refer to a solitary computation unit (such
as a GPU) or a small homogeneous group of physical devices
(such as a machine containing multiple GPUs). We consider
the distributed training strategy at the virtual device level. In
the latter case, we assume that data parallelism is employed
within each virtual device, as inter-connections within a
machine typically exhibits high bandwidth (e.g., NVLink)
and data parallelism tends to yield reasonable performance.

3.1 Main Components
HAP comprises two pivotal components: a program synthe-
sizer and a load balancer. The program synthesizer generates
the optimal distributed program 𝑄 for given sharding ratios
𝐵 of the tensors in the DNN model, while the load balancer
produces the optimal sharding ratios 𝐵 for a fixed distributed
program 𝑄 . The distributed program 𝑄 is a program on a
distributed instruction set that can be executed on all devices
for distributed DNN training with the SPMD parallelism. The
tensor sharding strategies and communication methods are
implicitly embedded in 𝑄 .
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Figure 6. Stages and synchronization points.

The goal is to find the optimal combination of distributed
program and sharding ratios (𝑄∗, 𝐵∗) that minimizes the
DNN per-iteration training time 𝑡 (𝑄, 𝐵). HAP adopts an iter-
ative optimization approach. During each step 𝑠 , we fix one
of the two decision aspects and identify the optimal solution
for the other:

𝑄 (𝑠 ) = arg min
𝑄

𝑡 (𝑄, 𝐵 (𝑠−1) ) (1)

𝐵 (𝑠 ) = arg min
𝐵

𝑡 (𝑄 (𝑠 ) , 𝐵) (2)

Starting with the initial sharding ratios 𝐵 (0) , which are
selected to be proportional to the computation power of
devices, we first execute the program synthesizer to generate
𝑄 (1) following Eqn. (1). Then we compute 𝐵 (1) based on𝑄 (1)
utilizing Eqn. (2). We proceed to calculate𝑄 (2) based on 𝐵 (1) ,
and so on, until convergence or oscillation of the solutions is
attained. In the case of oscillation, we use the pair of 𝑄 and
𝐵 achieving the lowest cost within the optimization process.

3.2 Cost Modeling
Directly profiling the training performance for each combi-
nation of (𝑄, 𝐵) would be resource expensive. We provide
an estimate of the per-iteration training time 𝑡 (𝑄, 𝐵) by sim-
ulating the execution of the distributed program 𝑄 with 𝐵

on the heterogeneous cluster.
Collective communication typically requires every par-

ticipant device to both send and receive data to and from
all other participants. It is hence reasonable to assume that
all devices are synchronized before communication opera-
tions commence. This allows us to divide the execution of
a distributed program into stages, with each stage starting
with a communication operation followed by a series of com-
putation operations (except for the first stage which only
contains computation), as illustrated in Fig. 6. For example,
the first two instructions in the program 7○ in Fig. 11 are in
the first stage of this program and the other two instructions
are in the second stage. All devices are synchronized at the
beginning of a stage.

Let comm(𝑖 ) and comp(𝑖 )
𝑗

denote the communication time
and computation time of the 𝑖-th stage on the 𝑗-th device,
respectively. As each stage is globally synchronized, the
iteration time is the sum of execution time of all stages. The
execution time of a stage is determined by the maximum
running time of that stage on all devices. Therefore, we have

Single-device program
e1 = placeholder()
e2 = parameter()

e3 = matmul(e1, e2)

written for

Single Imaginary device

Distributed program
e1 = placeholder-shard(0)
e2 = parameter-shard(1)

e3 = matmul(e1, e2)
e4 = all-reduce(e3)

runs on

emulates

semantically
equivalent

Heterogeneous cluster of devices

Figure 7.A heterogeneous cluster runs distributed programs
to emulate a single-device program.

𝑡 (𝑄, 𝐵) =
∑︁

𝑖∈stages(𝑄 )
(comm(𝑖 ) (𝐵) + max

𝑗∈[𝑚]
comp(𝑖 )

𝑗
(𝐵 𝑗 ))

where [𝑚] = {1, . . . ,𝑚} is the list of devices. comp(𝑖 )
𝑗
(𝐵 𝑗 )

can be calculated based on the profiled flops-per-second of
the 𝑗-th device and the estimated number of flops of the
computation operations in stage 𝑖 . Specifically, common op-
erations in DNNs have numbers of flops that are linear to
some of the dimensions of the input tensors. If one of these
dimensions are sharded, the number of flops of this oper-
ation on a device is proportional to the sharding ratio of
this device; otherwise, the number of flops does not change.
The computation time comp(𝑖 )

𝑗
(𝐵 𝑗 ), which is calculated for

each operator in the 𝑖-th stage by dividing the flops with the
flops-per-second of the 𝑗-th device, is therefore a linear func-
tion of the sharding ratio 𝐵 𝑗 . In the case of running HAP on
virtual devices which represent machines (each may contain
multiple GPUs), we add the internal communication time
estimated by the internal bandwidth and parameter sizes in
the stage into comp(𝑖 )

𝑗
(𝐵 𝑗 ). comm(𝑖 ) (𝐵) is determined based

on the collective operation type, the sharding ratio 𝐵, and
NCCL’s profiling data on the cluster’s network. We run each
collective operation on the cluster with tensors of different
sizes and fit the latency and bandwidth in a linear model.
comm(𝑖 ) (𝐵) is then estimated using the fitted model, with
the input of the tensor size of the largest shard.

4 Distributed Program Synthesis
Various optimizations such as SFB (Sec. 2.5.2) and different
implementations of collective communications (Sec. 2.5.1)
can be considered in tensor sharding strategy search, which
has not been comprehensively investigated in previous SPMD
training frameworks [19, 44, 47, 58]. In HAP , we systemat-
ically approach tensor sharding strategy design in a novel
way by formulating it as a program synthesis problem. In-
stead of selecting a partitioning method for each operator
to modify the single-device program, we synthesize a dis-
tributed program from scratch on a distributed instruction
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program ∈ [instruction]
instruction := computation | communication
computation := tensor ← optype([tensor])
communication := tensor ← collective(tensor, dim)
dim ∈ {0, 1, . . . }
collective := All-Reduce | All-Gather | . . .
optype := MatMul | Sigmoid | . . .

Figure 8. Syntax of a distributed program.

set that emulates the single-device program, as illustrated in
Fig. 7. To ensure that the synthesized program is equivalent
to the original single-device program, we formalize the se-
mantics of the single-device program and then generate the
distributed program under the constraint that the generated
program must produce a semantically equivalent output as
the single-device program for any inputs.

4.1 Distributed Programs
A distributed program 𝑄 is defined as a sequence of symbols
that follows the syntax in Fig. 8. An instruction is a computa-
tion operation or a collective communication operation with
a set of tensors as inputs and produces a tensor as the output.
The computation instructions in the distributed instruction
set are largely similar to the single-device instruction set,
i.e., the tensor operators provided by DNN frameworks like
PyTorch [33], except for some specialized operations like
Placeholder-Shard, which is akin to the Placeholder oper-
ation utilized in single-device programs to read model inputs,
but assumes that the input tensor is partitioned along a spe-
cific dimension. Executing a distributed instruction involves
executing the same instruction on all devices, where the
inputs are local tensors on each device.

4.2 Program Semantics
To produce distributed programs that are equivalent to the
single-device program, we first analyze the semantics of
the single-device program to form a background theory T ,
which is utilized to express the semantic constraints during
program synthesis.

The semantics of a program are expressed as a set of prop-
erties. To formally define these properties, we introduce dis-
tributed tensors, which are tensors produced by and used in
distributed programs. A distributed tensor is a collection of
instances (i.e., shards of sharded tensors and replicas of repli-
cated tensors) of the same tensor on all devices. A property
of a distributed tensor describes its mathematical relation-
ship with a reference tensor, referring to a tensor in the
single-device graph (𝑉 , 𝐸). The properties of a distributed
tensor 𝑒 are expressed as 𝑒 | 𝐼 , where 𝑒 ∈ 𝐸 is a reference
tensor and 𝐼 is an instruction such that executing 𝐼 with 𝑒

as input produces a distributed tensor whose instances on
all devices are equal to 𝑒 . For example, if a distributed tensor

𝑒 has the property 𝑒 | All-Gather(0), then after executing
All-Gather(𝑒, 0) (where 0 denotes the sharding dimension),
all devices will have a tensor that is equivalent to 𝑒 . The set
of tensors generated by a program𝑄 is denoted by 𝐸 (𝑄), and
the properties of a program 𝑄 are defined as the properties
of all tensors in 𝐸 (𝑄), denoted as 𝑃 (𝑄).
The background theory T is expressed as a set of Hoare

triples [15]. A Hoare triple is represented as:

{ 𝑝𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 } 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 { 𝑝𝑜𝑠𝑡𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 }

When the precondition is satisfied, executing the instruction
establishes the postcondition. The instruction is either a com-
putation operation or a collective communication operation
that runs simultaneously across all devices. The precondition
and postcondition are expressed as sets of properties. If a
program contains all properties in the precondition, append-
ing the instruction to the program results in a new program
that contains the properties in the postcondition.
We derive the background theory T by analyzing the

single-device computation graph with a set of pre-defined
rules that encodes mathematical characteristics of common
tensor operations. Fig. 9 provides some examples of such
rules on four collective communication operations and the
MatMul operation. For conciseness, we do not explicitly name
the tensors produced by an operation, but just use 𝑒 to refer
to the distributed tensor that has the property in the precon-
dition associated with a reference tensor 𝑒 . For example, in
the first rule in Fig. 9, the precondition 𝑒 | All-Reducemeans
that there is a tensor 𝑒 in the program running All-Reduce
with which produces a distributed tensor that equals a ref-
erence tensor 𝑒 . When this condition is met, appending the
instruction All-Reduce(𝑒) to the program leads to a new
program that meets the postcondition 𝑒 | Identity, which
means that a distributed tensor produced by the new pro-
gram is equivalent to the reference tensor 𝑒 (Identity is an
operator that returns its input). As another example, the last
rule in Fig. 9 describes what is usually called reduction par-
allelism for MatMul: if 𝑒1 is sharded on its second dimension
and 𝑒2 is sharded on its first dimension, the MatMul operation
can be executed with instances of the two tensors on all de-
vices, but an extra All-Reduce needs to be used on the result
to obtain a tensor that equals the single-device MatMul.

The background theory T is obtained for the single-device
graph (𝑉 , 𝐸) by enumerating all rules and finding matches
in the single-device graph, and then gathering the Hoare
triples from thematched rules. The semantic constraint of the
distributed program𝑄 is defined as (𝑙 | All-Reduce) ∈ 𝑃 (𝑄),
where 𝑙 is the output tensor (typically the training loss) of the
single-device graph. If a distributed program can be proved
to have property 𝑙 | All-Reduce under theoryT , it is deemed
equivalent to the single-device graph as it produces the same
output as the single-device graph. We will use such semantic
constraints to produce equivalent distributed programs with
different tensor sharding and communication strategies.



EuroSys ’24, April 22–25, 2024, Athens, Greece Shiwei Zhang, Lansong Diao, Chuan Wu, Zongyan Cao, Siyu Wang, and Wei Lin

∀𝑒 ∈ 𝐸
{ 𝑒 | All-Reduce } All-Reduce(𝑒) { 𝑒 | Identity }

∀𝑒 ∈ 𝐸, ∀𝑑 ∈ dims(𝑒)
{ 𝑒 | All-Reduce } Reduce-Scatter(𝑒, 𝑑) { 𝑒 | All-Gather(𝑑) }

∀𝑒 ∈ 𝐸, ∀𝑑1, 𝑑2 ∈ dims(𝑒), 𝑑1 ≠ 𝑑2

{ 𝑒 | All-Gather(𝑑1) } All-To-All(𝑒, 𝑑1, 𝑑2) { 𝑒 | All-Gather(𝑑2) }

∀𝑒 ∈ 𝐸, ∀𝑑 ∈ dims(𝑒)
{ 𝑒 | All-Gather(𝑑) } All-Gather(𝑒, 𝑑) { 𝑒 | Identity }

∀𝑒1, 𝑒2, 𝑒3 ∈ 𝐸, 𝑒3 = MatMul(𝑒1, 𝑒2)
{ 𝑒1 | All-Gather(0), 𝑒2 | Identity } MatMul(𝑒1, 𝑒2) { 𝑒3 | All-Gather(0) }

∀𝑒1, 𝑒2, 𝑒3 ∈ 𝐸, 𝑒3 = MatMul(𝑒1, 𝑒2)
{ 𝑒1 | Identity, 𝑒2 | All-Gather(1) } MatMul(𝑒1, 𝑒2) { 𝑒3 | All-Gather(1) }

∀𝑒1, 𝑒2, 𝑒3 ∈ 𝐸, 𝑒3 = MatMul(𝑒1, 𝑒2)
{ 𝑒1 | All-Gather(1), 𝑒2 | All-Gather(0) } MatMul(𝑒1, 𝑒2) { 𝑒3 | All-Reduce }

Figure 9. Examples of the semantics of common collective
communication operations and the MatMul operation.

4.3 Program Search Algorithm
A naive way to generate the best distributed program𝑄 (that
minimizes the iteration time with 𝐵) is to enumerate all pos-
sible programs, produced by sharding tensors along different
dimensions and using different suitable collective commu-
nication following the syntax in Fig. 8. We can produce the
programs in a breadth-first search manner and verify if a re-
sult program is semantically equivalent to the single-device
program. However, the number of possible distributed pro-
grams grows exponential with the number of instructions.
The exhaustive search is impractical for DNN models with
hundreds or more operators.
We propose a more efficient program search algorithm

based on the following ideas: (i) we estimate a cost lower-
bound (execution time) for a partial program and stop search-
ing further based on this partial program if its cost lower-
bound is higher than the current best program; (ii) if two
programs lead to the same set of properties, we discard the
one with a higher cost. A program 𝑄 is considered complete
if 𝑙 | All-Reduce ∈ 𝑃 (𝑄), indicating that it is already se-
mantically equivalent to the single-device program and no
additional instructions are required. Programs constructed
during the search that are not complete are called partial
programs.

We use A* algorithm combined with the idea of dynamic
programming to search for the optimal distributed program
𝑄∗, as given in Fig. 10. We maintain a priority queue 𝑆 that
contains partial programs and their scores. The score of a
partial program 𝑄 is an estimate of the per-iteration execu-
tion time of the optimal complete program 𝑄𝑐 that starts
with 𝑄 : score(𝑄) = cost(𝑄) + ecost(𝑄), where cost(𝑄) is
the execution time of the partial program 𝑄 and ecost(𝑄)
is a heuristic function that estimates the future cost of the
program cost(𝑄𝑐 ) − cost(𝑄). In order for the A* algorithm to
find the optimal program, the heuristic function ecost must
not overestimate the future cost (i.e., we need ecost(𝑄) ≤

1: Input: computation graph (𝑉 , 𝐸), sharding ratios 𝐵
2: Output: Optimal distributed program 𝑄∗

3: Initialize a priority queue 𝑆 with an empty program 𝑄∅
4: Initialize best program 𝑄∗ = null and set cost(𝑄∗) = ∞
5: while ∃𝑄 ∈ 𝑆, score(𝑄) < cost(𝑄∗) do
6: Remove the program 𝑄 with lowest score from 𝑆

7: for { 𝑝𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 } 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 { 𝑝𝑜𝑠𝑡𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 } ∈ T of
the single-device program where 𝑝𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ⊆ 𝑃 (𝑄) and
𝑝𝑜𝑠𝑡𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ⊈ 𝑃 (𝑄) do

8: 𝑄 ′ = 𝑄 ∪ 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛; 𝑃 (𝑄 ′) = 𝑃 (𝑄) ∪ 𝑝𝑜𝑠𝑡𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛
9: if ∃𝑄𝑠 ∈ 𝑆 s.t. 𝑃 (𝑄𝑠 ) ⊇ 𝑃 (𝑄 ′) and cost(𝑄𝑠 ) ≤ cost(𝑄 ′)

then
10: continue
11: end if
12: for 𝑄𝑠 ∈ 𝑆 where 𝑃 (𝑄 ′) ⊇ 𝑃 (𝑄𝑠 ) and cost(𝑄 ′) ≤

cost(𝑄𝑠 ) do
13: remove 𝑄𝑠 from 𝑆

14: end for
15: if 𝑄 ′ is complete then
16: 𝑄∗ ← 𝑄 ′ if cost(𝑄 ′) < cost(𝑄∗)
17: else
18: add 𝑄 ′ into 𝑆
19: end if
20: end for
21: end while

Figure 10. A* algorithm for sharding strategy search

cost(𝑄𝑐 ) − cost(𝑄)), as otherwise the program will be ex-
cluded from the potential solutions. We use the minimum
required execution time of program 𝑄 as its ecost, assum-
ing infinite communication bandwidth among the devices.
For a complete program 𝑄 , cost(𝑄) = 𝑡 (𝑄, 𝐵), obtained via
our cost modeling in Sec. 3.2. For an incomplete program,
cost(𝑄) is calculated similarly, but only includes the time to
reach the last synchronization point (e.g., synchronization
point 2 in Fig. 6).
In each loop of the algorithm, we retrieve the program

𝑄 with the lowest score from the priority queue 𝑆 (Line
6) and find an instruction that can be appended to it (Line
7). We want the resulting program to have more properties
than 𝑄 ; otherwise, the resulting program would be strictly
worse than 𝑄 because it contains more instructions (there-
fore a higher cost) but is not closer to a complete program.
Therefore, we enumerate the Hoare triples in T and find
instructions whose precondition is met but postcondition
contains properties not in 𝑃 (𝑄) (Line 7), so appending the
instructions to 𝑄 is guaranteed to produce a new program
𝑄 ′ that contains more properties than 𝑄 . Next, we check if
there are programs that are strictly better than 𝑄 ′ and stops
further constructing programs based on 𝑄 ′ if so (Lines 9
to 11). We also remove any programs in 𝑆 that are strictly
worse than 𝑄 ′ (Lines 12 to 14). Finally, if 𝑄 ′ is complete,
we compare it with the current best complete program and
replace the best program if 𝑄 ′ is better (Line 16). If 𝑄 ′ is not
complete, we add it to 𝑆 and proceed to next loop (Line 18).
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The resulting program contains both computation oper-
ations and communication operations (as in instructions).
The sharding strategy is implicitly included in the gener-
ated program when synthesizing communication operations
and special operations like Placeholder-Shard. Following
our semantic constraints, the generated collective commu-
nication is guaranteed to properly handle the tensors the
computation produces. For example, All-Gather(𝑒1, 0) will
only be generated upon a tensor 𝑒1 that is previously sharded
on its 0-th dimension. Similarly, All-Reduce(𝑒2) will only
be generated if performing this operation produces a tensor
that equals a tensor 𝑒2 in the single-device graph.

We give an example of the searching process in Fig. 11. Sup-
pose that the single-device program contains 4 instructions,
as given on the top left in the figure. The Placeholder opera-
tion retrieves a batch of input samples. The Parameter oper-
ation loads a parameter tensor of the model. Then the matrix
product of the two tensors are computed and its element sum
is computed as the loss. Starting with an empty distributed
program, assume that we find the following matching rule:

∀𝑒 ∈ 𝐸, 𝑒 = Placeholder()
{ ∅ } Placeholder-Shard(0) { 𝑒 | All-Gather(0) }

whose precondition is met (as it has no properties). We ap-
pend the instruction Placeholder-Shard(0) to the empty
program and obtain program 1○. Suppose there is no other
rule with an empty precondition; 1○ is now the only element
in the priority queue. For brevity, we only consider parti-
tioning 𝑒1 on the first dimension (dimension 0) and 𝑒2 on its
second dimension (dimension 1), and do not include commu-
nication optimizations in this example. In the second loop,
we retrieve 1○ from the priority queue and append different
instructions to it by enumerating T , leading to programs 2○
and 3○. In the third loop, we retrieve 2○ from the priority
queue and append a MatMul operation and obtain program
4○. Note that we remove the properties regarding 𝑒1 and 𝑒2
as the two tensors will no longer be used in the rest of the
program. We will introduce details of this optimization in
Sec. 4.5. Then in the fourth loop, we find 5○ and 6○ based on
3○. In the fifth loop, we obtain program 7○ which is a com-
plete program as it has property 𝑙𝑜𝑠𝑠 | All-Reduce. Since
its cost is no higher than the scores of 5○ and 6○ (the two
programs in the priority queue), the search terminates and
returns 7○ as the optimal program.

4.4 Communication Optimization
With our program synthesis approach, we can readily in-
corporate the two communication optimization techniques
(Sec. 2.5) into the distributed program search, to jointly op-
timize communication on heterogeneous clusters with the
sharding strategy.
As discussed in Sec. 2.5.1, there can be two implemen-

tations of All-Gather on a heterogeneous cluster, which
exhibit different performance under different sharding ratios.
To automatically decide the better implementation under a

given sharding ratio 𝐵, we can add the following rule during
program search:

∀𝑒 ∈ 𝐸, ∀𝑑 ∈ dims(𝑒)
{ 𝑒 | All-Gather(𝑑) } Grouped-Broadcast(𝑒, 𝑑) { 𝑒 | Identity }

The rule has the same precondition and postcondition as the
All-Gather instruction in Fig. 9 (which refers to the padded
All-Gather implementation), but indicates using multiple
Broadcast operations to implement All-Gather. Whenever
a partial program meets the precondition, our A* search will
attempt both instructions and retain only the one with better
estimated performance, using lines 9 to 14 in Fig. 10.
To support sufficient factor broadcasting (Fig. 5(c)), we

only need to add the following rule in additional to those in
Fig. 9:

∀𝑒1, 𝑒2, 𝑒3 ∈ 𝐸, 𝑒3 = MatMul(𝑒1, 𝑒2)
{ 𝑒1 | Identity, 𝑒2 | Identity } MatMul(𝑒1, 𝑒2) { 𝑒3 | Identity }

which denotes that all devices duplicate the same computa-
tion with identical input data. By applying this rule and the
fifth rule in Fig. 9 to the single-device program in Fig. 5(a),
which is inside the search space of our A* algorithm, we
can generate the program depicted in Fig. 5(c). By adding
similar rules to common operators in DNNs, HAP’s program
synthesis process can automatically explore other possible
applications of SFB.

4.5 Search Time Optimization
As the number of operations increases, the execution time of
our A* algorithmmay still be substantial. We further propose
three heuristics to balance the search time and performance
of the obtained sharding strategy.
Our first optimization involves fusing Hoare triples that

have empty preconditions with their consumers. For in-
stance, for a Placeholder operation in the single-device
graph that produces reference tensor 𝑒 , we may create a
Hoare triple { ∅ } Placeholder { 𝑒 | Identity }. Since it
has an empty precondition, the code may appear at any po-
sition in the program before the first consumer of 𝑒 , and
our search algorithm would explore all possible positions of
such instructions during the search. To reduce the overhead,
we fuse those Hoare triples with their consumers to gen-
erate new Hoare triples with two consecutive instructions.
Specifically, for two Hoare triples { 𝑃𝑟𝑒1 } 𝐼𝑛𝑠𝑡1 { 𝑃𝑜𝑠𝑡1 } and
{ 𝑃𝑟𝑒2 } 𝐼𝑛𝑠𝑡2 { 𝑃𝑜𝑠𝑡2 }, if 𝑃𝑟𝑒1 = ∅ and 𝑃𝑜𝑠𝑡1 ⊆ 𝑃𝑟𝑒2, we
remove the first triple from T and insert a new Hoare triple
{ 𝑃𝑟𝑒2 \ 𝑃𝑜𝑠𝑡1 } 𝐼𝑛𝑠𝑡1 ∪ 𝐼𝑛𝑠𝑡2 { 𝑃𝑜𝑠𝑡1 ∪ 𝑃𝑜𝑠𝑡2 }. This ensures
that all instructions with empty preconditions occur directly
before their first consumers and eliminates the enumeration
of their positions in the program.
Our second optimization is to disallow repeated com-

munications of the same reference tensor. We also disal-
low communication of tensors produced by Placeholder
and Parameter, which can directly produce sharded ten-
sors with specialized instructions, Placeholder-Shard and
Parameter-Shard. Without this optimization, HAP attempts
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placeholder-shard(0) e1 | all-gather(0)

e1 = placeholder()
e2 = parameter()

e3 = matmul(e1, e2)
loss = sum(e3)

placeholder-shard(0)
parameter-shard(1)

e1 | all-gather(0)
e2 | all-gather(1)

Single-device program

placeholder-shard(0)
parameter()

e1 | all-gather(0)
e2 | identity

placeholder-shard(0)
parameter()

matmul()
e3 | all-gather(0)

placeholder-shard(0)
parameter-shard(1)

matmul()
e3 | all-reduce

placeholder-shard(0)
parameter-shard(1)

all-gather(1)

e1 | all-gather(0)
e2 | all-gather(1)

e2 | identity

placeholder-shard(0)
parameter-shard(1)

all-gather(1)
matmul()

e3 | all-gather(0)

placeholder-shard(0)
parameter()

matmul()
sum()

loss | all-reduce

placeholder-shard(0)
parameter-shard(1)

matmul()
sum()

loss | all-reduce

① cost: 0, ecost: 16

② cost: 0, ecost: 16

③ cost: 0, ecost: 16

④ cost: 15, ecost: 1

⑤ cost: 10, ecost: 16

⑥ cost: 15, ecost: 1

⑦ cost: 16

⑧ cost: 25, ecost: 1

⑨ cost: 17

Figure 11. A* search example. Names of distributed tensors (e.g., 𝑒1) are omitted.

to append multiple communication instructions for each
tensor because they introduce new properties to the pro-
gram, even though most of these properties are not utilized.
For a Hoare triple that generates a communication instruc-
tion of reference tensor 𝑒 , we append a special property
𝑒 | ¬Communicated to its precondition and 𝑒 | Communicated
to its postcondition. This makes communication instructions
of the same reference tensor conflict with each other, so that
at most one of them can appear in one distributed program.

Our third optimization is about removing redundant prop-
erties from partial programs to increase the number of pro-
grams we can prune in lines 9 to 14 in Fig. 10. A property
is redundant to a partial program 𝑄 if it does not appear in
the precondition of any instruction whose 𝑝𝑜𝑠𝑡𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ⊈
𝑃 (𝑄). For example, the property 𝑒1 | All-Gather(0) in the
partial program 2○ only appears in the preconditions of
two kinds of instructions: communication operations of 𝑒1
and MatMul(𝑒1, 𝑒2). The former are not considered as a re-
sult of our second optimization. Therefore, after inserting
the MatMul instruction to form 4○, no instruction with 𝑒1 |
All-Gather(0) in its precondition satisfies 𝑝𝑜𝑠𝑡𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ⊈
𝑃 ( 4○), and we can safely remove this property from 𝑃 ( 4○)
without affecting the final result.

5 Load Balancing
We next detail our design of the load balancer that produces
the optimal sharding ratios 𝐵 for a fixed distributed program
𝑄 , i.e., solve arg min𝐵 𝑡 (𝑄, 𝐵).

5.1 A Base Case
We first consider a basic case where the same sharding ra-
tios across the devices are used for each tensor in the DNN
model. As a collective communication operation involves all
devices and is bottlenecked by the slowest participant, the
communication time in the 𝑖-th stage (Sec. 3.2), comm(𝑖 ) (𝐵),
is decided by the largest communication time of a tensor
shard, i.e., comm(𝑖 ) (𝐵) is a linear function of max𝑗∈[𝑚] (𝐵 𝑗 ).
Since we synchronize all devices at the beginning of each

stage and the collective communication operations take the
same time across devices (Fig. 6), the computation time of
the 𝑖-th stage is the maximum computation time among the
devices, i.e., max𝑗 comp(𝑖 )

𝑗
(𝐵 𝑗 ). We then solve the following

problem to obtain 𝐵:

min
∑︁

𝑖∈stages(𝑄 )
(comm(𝑖 ) (𝐵) + max

𝑗∈[𝑚]
comp(𝑖 )

𝑗
(𝐵 𝑗 )) (3)

subject to:
𝑚∑︁
𝑗=1

𝐵 𝑗 = 1,

𝐵 𝑗 ≥ 0, ∀𝑗 ∈ [𝑚]

The objective function is the sum of the communication time
and computation time of all stages, which is the per-iteration
training time that we are minimizing. The constraints state
that sharding ratios are non-negative and sum to 1. In HAP ,
the functions comm(𝑖 ) and comp(𝑖 )

𝑗
are modeled as linear

functions on bandwidth and flops (Sec. 3.2). Therefore, the
optimization problem is a linear program and can be solved
efficiently with off-the-shelf solvers.

After obtaining the optimal fractional solutions, we round
the sharded sizes of each tensor to integers and ensure they
add up to the total length of the dimension that is sharded
on. We first set the sharded sizes to their nearest integers.
If the sum is larger or smaller than the original size, we
repeatedly reduce/increase the size by one for a shard that
introduces smallest rounding errors, until the sizes of the
sharded tensors sum to the original tensor.

5.2 Different Sharding Ratios across the Model
If the DNNmodel contains many layers and the computation-
communication ratio differs across layers, using the same
sharding ratios throughout the model may not be ideal. Due
to the large number of tensors in a model, computing a
different set of sharding ratios for each tensor may incur
high computation overhead. Instead, we partition the tensors
in the model, 𝐸, into 𝑔 segments, denoted by 𝐸𝑘 , 1 ≤ 𝑘 ≤ 𝑔,
and identify the sharding ratios for each model segment.
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The segment division can be either specified by the user
(such as using the layers of the model) or determined using a
partition algorithm such as METIS [20] (which minimizes the
tensor size on the cuts while balancing the size of partitions).
The sharding ratios 𝐵 subsequently become a 𝑔 ×𝑚 matrix,
where 𝐵𝑘,𝑗 represents the sharding ratio for tensors in the
𝑘-th model segment on the 𝑗-th device.

For a tensor in the 𝑘-th segment that is produced by ten-
sors from other segments (whose sharding ratios may not
be 𝐵𝑘 ), an All-To-All operation is inserted to coordinate
between the sharding ratios. To simplify implementation,
we always insert All-To-All operations at the boundaries
of segments, regardless of whether the sharding ratios are
the same or not between the two segments. As a result, there
are synchronization points at segment boundaries, and each
stage is entirely within a model segment. In this way, for
each segment, we can solve the optimization problem in (3)
independently to determine the optimal sharding ratios for
tensors in that segment.

6 Implementation
HAP is implemented on PyTorch 1.13.1 [33] with 2789 lines
of Rust code for the program synthesizer, 69 lines of Rust
code for the load balancer, and 362 lines of Python code for
the profiler, collective operations, and the user API. Fig. 12
shows the modules we implemented in HAP . The single-
device program is represented as a PyTorch fx [37] graph.
The cluster specification contains the information of the vir-
tual devices (GPUs and machines), including the profiled
flops-per-second of the devices and the latency and band-
width of each collective primitives on this cluster. The pro-
gram synthesizer (Sec. 4) and the load balancer (Sec. 5) are
run on CPU to identify the optimal distributed program 𝑄

and sharding ratio 𝐵. We use CBC [13] to solve the sharding
ratio optimization problem.

At the begining of model training, HAP broadcasts 𝑄 and
𝐵 to all workers (virtual devices), which run them on the
PyTorch runtime. Each worker first initializes the original
single-device model in CPU using the same seed. For each
Parameter-Shard(𝑑) operation in 𝑄 , the 𝑗-th worker shards
the corresponding parameter along its 𝑑 dimension and only
keeps the slice corresponding to the portion of

∑𝑗−1
𝑥=1 𝐵𝑥 to∑𝑗

𝑥=1 𝐵𝑥 . The sharded parameters are loaded to GPU for train-
ing.
In each training iteration, the workers each load a mini-

batch of input data according to their sharding ratios. Then
they execute 𝑄 and synchronize with each other when ex-
ecuting collective communications. After running 𝑄 , each
worker applies the gradient to its own parameter shards. The
collective communication operations are implemented using
PyTorch’s API with the NCCL [18] backend.
When HAP is run on a virtual device which represents a

machine, program 𝑄 sent to the machine is replicated to all

Single-device
Program

Cluster
Specification

Program
Synthesizer Load Balancer

Distributed
Program Q

GPU 0 GPU 1

PyTorch Runtime

GPU 0 GPU 1

GPU 2 GPU 3

NVLink

Virtual Device 1 Virtual Device m

Sharding Ratios B

Q B1

PyTorch Runtime

Q Bm

Collective
Communication

Figure 12. HAP Implementation.

GPUs in themachine. Regular data-parallel training is carried
out among GPUs in the machine. Each collective operation
in 𝑄 is replaced by a three-step communication operation:
the tensors for communication are first aggregated from all
GPUs to GPU 0 using Gather or Reduce; GPU 0 participants
in the global collective communication using the aggregated
tensor; and then GPU 0 broadcasts the result to other GPUs
in the machine using Scatter or Broadcast.

The user API ofHAP is analogous to the built-in DDPmod-
ule of PyTorch: the user calls hap.HAP function with a single-
device PyTorch model and a Python Dict of device speci-
fication, and the function returns a distributed model that
can run on the cluster with PyTorch’s torch.distributed
module. We plan to open-source HAP to the community.

7 Evaluation
7.1 Experimental Setup
Testbed.We conduct experiments on 8 machines in a public
cloudwith 64 GPUs in total. Twomachines are each equipped
with 8 NVIDIA V100 GPUs and NVLink. The others are each
equipped with 8 NVIDIA P100 GPUs. Inter-machine band-
width is about 10.4Gbps, as measured with iperf3 [12]. The
cluster provides network isolation and stable bandwidths.
Benchmarks. We train 4 representative DNN models as
listed in Table 1. VGG19 [42] is a convolutional neural net-
work (CNN) for image classification. ViT[10] is a Transformer-
based neural network for image classification. BERT-Base
[9] is a Transformer-based model for language modeling.
Bert-MoE adds MoE layers to the BERT-Base model by re-
placing a feed-forward module every two layers in a similar
way as in GShard [22]. We follow the convention of scaling
MoE models with the number of devices, thus the model size
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Figure 13. Per-iteration training time on heterogeneous clusters.

8 16 24 320
0.5

1

1.5
2

Number of GPUs

Pe
r-
ite

ra
tio

n
tim

e
(s
) VGG19

8 16 24 320

0.5

1

Number of GPUs

ViT

8 16 24 320
0.5

1

1.5
2

Number of GPUs

BERT-Base

8 16 24 320
1
2
3
4

Number of GPUs

BERT-MoE

HAP DP-EV DeepSpeed TAG

Figure 14. Per-iteration training time on homogeneous clusters.

Table 1. Benchmark models
Model Task Parameters (Millions)
VGG19[42] Image Classification 133
ViT[10] Image Classification 54
BERT-Base[9] Language Model 102
BERT-MoE[9] Language Model 84 + 36m

depends on the number of devices𝑚. We adopt weak scaling
and set the global batch size proportional to the number of
devices, with per-device batch size 32 for BERT-MoE and 64
for other models.

We use Cifar-10 [21] dataset for image classification tasks
and WikiText-2 [26] dataset for language modeling tasks.
Baselines. We compare HAP with four relavent designs: (1)
DP-EV is data parallelism with even sharding ratios. (2) DP-
CP is data parallelism with sharding ratios proportional to
the computation speed of the devices. We use PyTorch’s DDP
module [24] to implement DP-EV and DP-CP. (3) DeepSpeed
[36] supports ZeRO-based [35] data parallelism and imple-
ments intra-op model parallelism for MoE layers. (4) TAG
[56] is a heterogeneity-aware DNN training system. TAG
supports data parallelism and inter-op model parallelism.
It optimizes communication by selecting parameter-server
[23] or All-Reduce for gradient synchronization and auto-
matically applying sufficient factor broadcasting.

HAP , DP-EV, DP-CP, and DeepSpeed are based on PyTorch
and use the same implementation of the benchmark models.
TAG is implemented on TensorFlow [1]. We were only able
to train VGG19 and BERT-Base with TAG. Due to replicating
the whole model on all devices, DP-CP and DP-EV causes
out-of-memory errors when training BERT-MoE.

7.2 Training Speed-up on Heterogeneous Clusters
We first evaluate HAP and the baselines on the heteroge-
neous cluster with 8 machines. As shown in Fig. 13, HAP
significantly outperforms the DP baselines when training
VGG19. VGG19 comprises layers of different computation-
to-communication ratios. In particular, the fully-connected
layers in VGG19 is very communication-intensive as com-
pared to the convolution layers. HAP adopts model paral-
lelism to reduce the communication time and achieves up
to 2.41x speedup in the case of 32 GPUs. TAG puts these
layers exlusively on one device in the case of 8 GPUs to elim-
inate communication. However, this method does not work
with more GPUs. HAP achieves similar performance to DP-
CP when training ViT while consistently outperforming the
baselines when training BERT-Base, with a 28% speedup in
the case of 64 GPUs. When training BERT-MoE, HAP finds a
strategy that performs similarly to the expert-designed MoE
sharding strategy implemented in DeepSpeed.

7.3 Training Speed-up on Homogeneous Clusters
In this experiment, we assess the performance of HAP and
baselines on a homogeneous subset of our testbed consist-
ing of 4 machines, each equipped with 8 P100 GPUs. Since
all devices have the same computational power, DP-CP is
equivalent to DP-EV and therefore is not included in this ex-
periment. As demonstrated in Fig. 14, HAP still outperforms
all baselines across all models, achieving up to 217%, 19%,
22%, and 13% speedup when training VGG19, ViT, BERT-
Base, and BERT-MoE, respectively, compared to the best
baselines.
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Figure 15. Ablation study.

7.4 Ablation Study
We examine the efficacy of various components of HAP by
comparing the throughput of benchmark models achieved
through the utilization of different parts of our designs. In
Fig. 15, DP-EV represents the throughput achieved without
any of our designs. “Q” denotes the additional throughput
obtained by employing HAP’s program synthesizer. “B” rep-
resents the throughput contributed by our load balancer, and
“C” is the speedup provided by communication optimiza-
tion. The findings indicate that the program synthesizer has
the greatest impact on the performance of HAP , whereas
the communication optimization does not yield noticeable
speedup in this experimental setup. This can be attributed
to the relatively small disparity in computational power be-
tween the GPUs. As discussed in Sec. 2.5, the communication
optimization is mostly effective when there is a significant
difference in sharding ratios between devices.

7.5 Case Study: Training Multiple Models
Hardware heterogeneity presents inherent challenges for dis-
tributed DNN training. Even with the optimizations of HAP ,
it is anticipated that there will be reduced hardware utiliza-
tion on heterogeneous clusters. We estimate this overhead by
simultaneously training multiple models on homogeneous
subsets of the cluster and use the total throughput as an esti-
mation of the potential throughput achievable if the cluster
were homogeneous. Specifically, in this experiment, we train
one model using two V100 machines while simultaneously
training another model using six P100 machines. We refer
to this approach as concurrent. We then compare the total
throughput achieved using concurrent with that of HAP , as
shown in Fig. 16. We normalize the throughput of different
models by comparing them to the total throughput achieved
by concurrent. Our results show that HAP achieves 64% to
96% throughputs compared to concurrent for the benchmark
models. The VGG19 model exhibits suboptimal utilization of
GPU resources when scaled to accommodate a higher num-
ber of devices due to its relatively small convolution layers.
As we scale the MoE model with the number of devices, the
BERT-MoE model trained with HAP is larger than the two
models trained using the concurrent method. The results
show that HAP facilitates the training of larger models that
may exceed the capacity of homogeneous subsets whilemain-
taining satisfactory throughput on heterogeneous clusters.
Given the current trend of large models, there is a growing
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Figure 16. Training multiple models.

demand for the ability to utilize all available resources to
train models of maximum size. Moreover, HAP enables the
prioritization of time-sensitive training tasks by fully lever-
aging all resources for their execution. For instance, with
HAP , users can employ the entire cluster to train a produc-
tion model before lower-priority research jobs. On the other
hand, concurrent limits the training of the production model
to a homogeneous sub-cluster, leading to increased latency.

7.6 Case Study: Uneven Placement of Experts
Expert parallelism, which partitions MoE layers on the ex-
pert dimension, is the dominating training strategy for MoE
models. Current training systems that adopt expert paral-
lelism allocate the same number of experts to all devices
[14, 22, 34]. If the number of devices does not evenly di-
vide the number of experts, the related tensors must be first
padded, resulting in inefficient use of computation power.
With uneven partitioning, HAP naturally supports sharding
MoE models with any number of experts onto a cluster with
any number of devices, as long as the total memory capacity
is sufficient.
To demonstrate the effectiveness of HAP , we conduct an

experiment using two machines, one with 2 NVIDIA A100
GPUs and the other with 2 NVIDIA P100 GPUs. We train
BERT-MoE with varying numbers of experts using HAP and
DeepSpeed. To maintain the same load of each expert, we
keep the number of tokens proportional to the number of
experts. The per-iteration training time is plotted in Figure
17. DeepSpeed has to pad the number of experts to a multi-
plier of 4, the number of available devices, while HAP can
provide a smooth performance curve. Further, HAP places
more experts onto A100 GPUs to maximumly exploiting its
computation power, bringing up to 64% speedup.

7.7 Cost Model Accuracy
HAP employs a cost model (Sec. 3.2) to evaluate distributed
program 𝑄 and sharding ratios 𝐵 during the optimization
loop. The accuracy of the cost model is critical in obtaining
the optimal distributed programs. In this experiment, we alter
the configurations (the number of layers, hidden width, and
sequence length) of the BERT-Base model to create different
variants and compare the cost estimated by our cost model
and the actual profiled per-iteration training time. As shown
in Fig. 18, the cost model tends to under-estimate the training
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time, but the estimated time is mostly linear to the actual
time, with a Pearson correlation coefficient of 0.970.

7.8 Overhead of HAP
HAP adopts SPMD parallelism and exhibits constant search
and compiling time with respect to the number of devices.
Therefore, we assess the overhead of HAP by varying model
scales. We adjust the number of layers of the ViT model
and generate a distributed model with HAP . The sharding
ratio optimization takes less than 1ms and the majority of
overhead is attributed to the program synthesis process. As
shown in Fig. 19, the program synthesis time increases su-
perlinearly as the number of layers increases. Nevertheless,
for a model with 24 layers, HAP only takes a few seconds
to synthesize the distributed program, which is negligible
compared to the hours or even days of model training time.

8 Related Work
Inter-Operator Parallelism. Placing different parts of the
DNN model on different devices allows distributed training
on heterogeneous clusters [2, 27, 59]. Pure inter-operator par-
allelism falls short when a single operator in a model exceeds
the memory capacity of a single device, like in the increas-
ingly common MoE models. Inter-operator parallelism may
not scale well as each device is treated individually and the
decision space grows with the number of devices.
Unevenly-split Data Parallelism. VirtualFlow [31] splits
a mini-batch into virtual nodes and assigns multiple virtual
nodes to a single device. HeteroG [53] uses graph neural
networks and reinforcement learning to find the placement
and communication strategy for each operator in a hetero-
geneous cluster, supporting both inter-operator parallelism

and unevenly-split data parallelism. Data parallelism does
not support large operations that do not fit in a single device.
Asynchronous Data-Parallel Training. HetPipe [32] di-
vides the heterogeneous cluster into 𝑘 virtual workers; each
virtual worker employs pipeline parallelism internally, while
asynchronous data parallel training is carried out among vir-
tual workers using a parameter-server architecture. Prague
[25] adopts partial all-reduce with only a subset of workers
participating in parameter synchronization of each training
iteration. Devices with different speeds synchronize with
other devices at different paces. HAP focuses synchronous
training which achieves the same model convergence as
single-device training.
Heterogeneous SPMD Systems. AccPar [43] uses dynamic
programming to decide tensor partitioning among heteroge-
neous devices, but only considers three types of partitioning
for operators in CNN models. Pathways [5] places model
components on different TPU pods and uses gang sched-
uling for asynchronously execution of these components.
HAP systematically explores more sharding strategies with
program synthesis.
Collective Communication onHeterogeneous Clusters.
TACCL [39] models communication as an mixed integer lin-
ear programming problem and finds routing and scheduling
of each data chunk to minimize communication. BlueCon-
nect [8] decomposes All-Reduce to fit into heterogeneous
network hierarchy. HAP uses NCCL as the communication
library and automatically chooses communication primitives
during program synthesis. HAP may be used together with
the heterogeneity-aware communication optimizations to
further accelerate training on heterogeneous clusters.

9 Conclusion
This paper introduces HAP , an automated system for SPMD-
parallel training of large neural networks on heterogeneous
clusters. HAP novelly synthesizes a distributed program
on a distributed instruction set that emulates the single-
device program, and identifies the best sharding strategy
and communication methods in the distributed program.
Tensor sharding ratios are optimally set to balance the work-
load across devices, through iterative optimization with the
distributed program synthesis. We implement HAP using
PyTorch and demonstrate that it achieves up to 2.41x faster
training compared to existing methods on heterogeneous
clusters and can automatically find feasible SPMD strategies
to train large models.
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A Artifact Appendix
A.1 Abstract
HAP is implemented as a Python module that automatically
transforms a single-device tensor program into a distributed
program that can efficiently run on heterogeneous clusters.
The artifacts include the source code of HAP and a Docker
container that bundles all dependencies.

A.2 Description & Requirements
A.2.1 How to access. The source code of HAP is pro-
vided at https://github.com/ylxdzsw/hap. The “ae” branch
contains the version for artifact evaluation. A docker con-
tainer with all dependencies pre-installed is available at
https://hub.docker.com/r/ylxdzsw/hap.

A.2.2 Hardware dependencies. At least two GPUs are
required to run HAP . As HAP is designed for heterogeneous
clusters, multiple machines with different GPU models are
needed to fully show HAP’s capabilities. The minimum GPU
memory should be at least 12GB. We recommend a similar
setting as used in our experiments (Sec. 7.1), i.e., 2 machines
each equipped with 8 NVIDIA V100 GPUs and 6 machines
each equippedwith 8 NVIDIA P100 GPUs. The inter-machine
bandwidth is about 10.4Gbps.

A.2.3 Software dependencies. HAP is implemented on
PyTorch 1.13.1. All machines should use the same versions of
CUDA and NVIDIA drivers that are compatible with PyTorch
1.13.1. Rust 1.70.0-nightly and Coin CBC 2.9.9 are required
to build HAP from source. To reproduce the results of the
baselines, DeepSpeed 0.9.4 is also used.

All software dependencies are included and pre-compiled
in the Docker image. However, NVIDIA driver 515.43.04
needs to be separately installed on the host machines.

A.2.4 Benchmarks. The benchmark models and datasets
are included in the source code repository and Docker image.

A.3 Set-up
This set-up instruction uses the Docker image. To build HAP
from source, we refer to the “readme” file in the source code
repository.
First, ensure that NVIDIA driver 515.43.04 or higher has

been installed on the host machines. The installation can be
verified with the nvidia-smi command. All machines should
use the exact same version of NVIDIA driver. The driver can
be installed by following https://docs.nvidia.com/datacenter/
tesla/tesla-installation-notes/index.html.

Next, install Docker engine by following https://docs.docker.
com/engine/install. Then install nvidia-container-toolkit
(e.g., with apt-get install) and restart the docker dae-
mon (systemctl restart docker). After that, download the
Docker image of HAP using docker pull ylxdzsw/hap:ae.
The image is about 20GB. When finished, start a container in-
stance with docker run -d --shm-size="10.24gb" --name

hap --gpus all --network host -it ylxdzsw/hap:ae
/bin/bash. To access the container on the host machine,
run docker exec -it hap bash. Inside the container, run
/usr/sbin/sshd to start an ssh instance on port 3922 which
will later be used for communication between the containers.

Running HAP involves running the same script on all
machines in the cluster. To automate this process, we pro-
vide a helper script /root/hap/run_all. Running this script
on one of the machines starts the same script on all ma-
chines. By default it assumes 8 machines with host names
v1, v2, . . . , v8. The IP addresses of the machines are set in
/root/.ssh/config. Before using the script, first enter v1
and run ssh from the v1 to all machines (including v1 itself)
with ssh -p 3922 root@vx and save the ssh fingerprints.
Ensure that v1 can access all workers without further in-
teractions such as confirming fingerprints or typing pass-
words. When testing HAP on a single machine, one may edit
/root/hap/run_all to keep only the line with v1 and edit
/root/.ssh/config to set the ip address of v1 to 127.0.0.1.

Finally, check the set-up by running ./run_all worker.py
1 on the v1. It should run 100 iterations of training and
reports the average per-iteration time.

A.4 Evaluation workflow1

A.4.1 Major Claims.
• (C1): HAP outperforms the baselines in heterogeneous
clusters in terms of the per-iteration training time
when training the benchmark models. This is proven
in Sec. 7.2 and the results are shown in Fig. 13.
• (C2): HAP outperforms the baselines in homogeneous
clusters in terms of the per-iteration training time
when training the benchmark models. This is proven
in Sec. 7.3 and the results are shown in Fig. 14.
• (C3): HAP can generate distributed models within sec-
onds for the benchmark models, as shown in Sec. 7.8
and Fig. 19.

A.4.2 Experiments. Experiment (E1): [Heterogeneous Clus-
ter] [30 human-minutes + 4 compute-hours]: Train the bench-
mark models on a heterogeneous cluster and compare the
per-iteration training time of HAP and the baseline systems.

[Preparation]
Assuming that HAP has been set up on a heterogeneous

cluster following Sec. A.3, this experiments involves modify-
ing config.py and running HAP and the baselines.

First, we need to collect profiling data. The device flops can
be profiled by running python profiler.py. Execute this
command for each type of GPU and replace device_flops in
worker.pywith the actual profiling data. device_flops is an
array of the flops for all devices. For example, when using 2

1Submission, reviewing and badging methodology followed for the eval-
uation of this artifact can be found at https://sysartifacts.github.io/
eurosys2024/.
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V100 GPUs and 6 P100 GPUs, it should be set to an array of 8
elements, with the first two elements being the profiled flops
of the V100 GPU and the last 6 elements being the profiled
flops of the P100 GPU. The collective communication can
be profiled by running ./run_all profiler.py 8, which
automatically runs different collective operators across all
machines using 8 GPUs (the second argument to the script)
on each machine. Fill the profiling data in worker.py.
Next, modify config.py and run ./run_all worker.py

k to obtain the per-iteration training time of HAP , where k
is the number of GPUs to use on each machine. In config.py,
model_name is the benchmarkmodel, where Vvgg, Vtransformer,
Rtransformer and Rmoe correspond to the VGG19, ViT, BERT-
Base, and BERT-MoEmodels. world_size is the total number
of GPUs. master_addr should be set to the ip address of one
of the machines. cards_per_node is only used by the Deep-
Speed baseline and should be set to the number of GPUs to
use on each machine (same as k). Other fields should be kept
unchanged to reproduce the results reported in the paper.

To run theDP-EV baseline, change the unscaled_sharding_lengths
in ddp.py to an array of 1 (simulating the same device flops
on each device regardless of their actual types) and run
./run_all ddp.py k similar to running HAP . To run the
DP-CP baseline, fill unscaled_sharding_lengths with the
actual profiling data of each GPU type in the same way as
device_flops in worker.py.

To run the DeepSpeed baseline, use ./run_all_deepspeed
instead of ./run_all.

[Execution]
To collect the data for Fig. 13, vary k and the related fields

in config.py (model_name, world_size, and cards_per_node),
then run HAP and the baselines for each configuration.

[Results]
The experiment scripts print the average per-iteration

time and the standard deviation on screen. As the standard
deviation is relatively small in our experiments, we only re-
port the average per-iteration time in Fig. 12. The experiment
script also records the timeline in trace.json.gz, which can
be load into Chrome Trace Profiling Tool for further inspec-
tion. The results should confirm the claim C1.

Experiment (E2): [Homogeneous Cluster] [30 human-minutes
+ 4 compute-hours]: Train the benchmark models on a homo-
geneous cluster and compare the per-iteration training time
of HAP and the baseline systems.

[Preparation]
The preparation is same as in E1, except for that we now

use a homogeneous cluster.

[Execution]
Same as in E1.

[Results]
Same as in E1. The results should confirm the claim C2.

Experiment (E3): [Overhead] [5 human-minutes + 5 compute-
minutes]: Evaluate the time required by HAP to generate a
distributed program.

[Preparation]
This experiment requires only one machine and can run

without GPUs. Set model_name in config.py to Vtransformer
for the ViT model and vary the nlayers field to experiment
with models of different number of layers.

[Execution]
Run python master.py. This script compiles the model

without actually running it.

[Results]
The compile time is printed on the screen. The results

should confirm the claim C3.

A.5 Notes on Reusability
HAP can be extended to support new operators and cus-
tom semantic rules. To add support for a new operator, one
need to edit the file hap.rs and add a new handler in the
function initialize_parsing_handlers following the same
structure of the existing handlers. To add new rules for gen-
erating Hoare triples, edit the analyze_rgraph function in
hap.rs. The existing rules in the code can be used as exam-
ples.
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