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Abstract—Online microblogging sites have become increasingly
important platforms for information diffusion in today’s world,
where users post short messages and follow various messages
posted by people that they are interested in. It is intriguing
to qualitatively study the temporal dynamics of an information
cascade in a microblogging system, in terms of the number
of users influenced at any given time, which may provide
valuable input to facilitate emerging applications such as online
advertising and content distribution. In this paper, we model
information diffusion in a microblogging network as an age-
dependent branching process, based on practical observations
from Tencent Weibo, a popular microblogging site in China. This
model enables careful characterization of the diffusion topology,
the different delays for users to respond to new information, and
the evolution of the size of the information cascade over time.
We derive the expected cascade size at any time. We validate
our model based on Tencent Weibo traces, and demonstrate its
effectiveness in capturing information diffusion dynamics in the
real world.

I. INTRODUCTION

With their rapid proliferation in today’s Internet, online so-
cial networks have remarkably revolutionized how individuals
communicate and connect with each other. As a major type
of online social networking services, online microblogging
(e.g., Twitter, Weibo) allows users to post short messages,
including texts, images, and links to videos. Such a short
message is generally referred to as a microblog. Followers of
a microblog user read the microblog and may further repost
it, resulting in cascading-style information diffusion [1]. By
March 21 2013, the leading microblogging service, Twitter,
had achieved in total 200 million active users who were
creating more than 400 million tweets on a daily basis [2].
Online microblogging is gaining an increasingly important role
in information dissemination in today’s society [3].

A thorough understanding of the dynamics of information
cascade in a typical microblogging system can provide valu-
able guidelines for operating emerging applications such as
online advertising and content distribution. It is especially
useful and intriguing to characterize the temporal evolution of
cascade sizes and the influential factors underneath. A number
of studies have been devoted to modeling information diffusion
in online social networks [4]. The epidemic model has been
a popular choice among these work. Leskovec et al. [1]
investigate the blog link propagation using an SIS (Susceptible-
Infectious-Susceptible) epidemic model. With an SIS model,
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the epidemic is assumed to persist in the system and ultimately
infect everyone, which is inconsistent with the fact that most
information cascades in an online social network tend to be
extremely small [5]. Cheng et al. [5] propose an enhanced
SIIRP (Susceptible-Immune-Infectious-Recovered-Permanent)
model to accommodate diverse user behaviors in online social
video sharing. However, a constant transition probability from
one stage of user behavior to another stage is assumed, which
may be insufficient for capturing the temporal dynamics of
the cascade, and only descriptive analysis of the information
diffusion process is provided. Another representative category
of work investigates the influence maximization problem, i.e.,
finding K nodes which will influence the most number of
other nodes in the network, using influence models. Kempe
et al. [6] base their study on two basic influence models,
Independent Cascade (IC) Model and Linear Threshold (LT)
Model. Yang et al. [7] propose a linear influence model, which
uses an influence function at each node to quantify how many
subsequent infections can be attributed to that node, as learned
by regression methods. Most studies in this category focus
on the final coverage of the influence cascade, but not the
temporal dynamics of the diffusion process.

We seek a simple yet effective model based on the branch-
ing process, to analytically study the temporal dynamics of
information cascades. One representative branching process
model is the Galton-Watson process model. Li et al. [8] build
a modified Galton-Watson model to capture the branching
factor and share rate derived from measurement results on
information diffusion in a social website. Wang et al. [9]
extend the classic Galton-Watson branching model with a
killing process to describe the process of information spread-
ing in a microblogging network, where a detailed description
of temporal dynamics is not provided. In addition, the standard
Galton-Watson process is mainly determined by one random
variable, the distribution of the number of offsprings, which is
insufficient for capturing the temporal dynamics of information
diffusion.

In this paper, we apply an age-dependent branching process
[10] to characterize cascade dynamics in a microblogging
system. We first carefully study a large volume of traces from
Tencent Weibo [11], one of the largest microblogging websites
in China. The empirical observations from our measurement
study provide practical and useful guidance in modeling real-
world microblog diffusion using the highly abstracted age-
dependent branching process. To the best of our knowledge,



Fig. 1. Example diffusion cascades in Tencent Weibo.

we are among the first to apply such an age-dependent
branching process model to carefully investigate the temporal
dynamics of microblog propagation. Two key parameters, the
distribution of the followers’ repost delays and the distribution
of the degrees in the diffusion tree, are chosen to characterize
the diffusion process. We derive the expected cascade size
at any time. We validate our model based on Tencent Weibo
traces, and demonstrate its effectiveness in capturing diffusion
dynamics in the real world.

The rest of this paper is organized as follows. We present
our measurement observations in Sec. II, model the diffusion
process in Sec. III, evaluate the model using trace-driven
experiments in Sec. IV, and conclude the paper in Sec. V.

II. MEASUREMENT OF INFORMATION DIFFUSION IN A
MICROBLOGGING SYSTEM

We collected large datasets from the technical team of
Tencent Weibo, one of the largest microblogging websites
in China [11]. Tencent Weibo was launched in April 2010,
and had reportedly achieved 540 million registered users and
more than 100 million active users on a daily basis by the
end of 2012. On its platform, a user can post messages,
images, and links to videos as microblogs. The followers of
the user, i.e., users who are socially connected to the user in
the microblogging system, can repost a microblog, leading to
an information diffusion cascade.

A. Dataset Description

Our datasets contain 20-day runtime traces of the system
during October 9 to 29, 2011. Each entry in the traces
corresponds to one microblog, including (i) the ID, name and
IP address of the user who posted the microblog, time stamp
when the microblog was posted, (ii) the ID of the parent user
from which the microblog was received and the ID of root
user who initiated the microblog, if it is a repost, as well as
(iii) contents of the microblog. Our trace collection focused on
microblogs containing links to videos shared in external video
sharing websites, e.g., a link to a video on YouKu [12]. In
particular, we collected about 2 million microblogs containing
links to over 350 thousand videos in the 20-day span. In
addition, we also collected the profiles of users who posted
these microblogs, which include the lists of their followers.
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Fig. 2. Distribution of the number of followers of users, and the number of
reposts to their microblogs.

B. Key Observations

1) Tree-like Microblog Propagation with No Repeated Re-
posting: Fig. 1 presents example diffusion cascades of dif-
ferent microblogs in Tencent Weibo. Each dot represents a
user, and an arrow represents the diffusion from one user to
a follower. We made the following observations: (1) Most of
the diffusion cascades are trees (where a root node is the user
who initially posts the microblog), and there is rarely a circle
in the diffusion graph, indicating that it is very unlikely for
a user to repost the same microblog twice; (2) A dominating
fraction of the diffusion trees are very small, e.g., there is a
large fraction of 2-node trees.

2) Power-law Distributions of the Number of Followers and
the Number of Reposts: Fig. 2(a) illustrates the distribution of
the number of followers of 63, 546 users, randomly selected
in our traces. Each sample represents the percentage of users
(indicated by the y value) with the same number of followers
(denoted by the x value). We see that this distribution is highly
skewed. The number of users with very large numbers of
followers is small. The distribution can be fitted by a power-
law distribution y = 0.1982x−1.324.

Fig. 2(b) plots the distribution of the number of reposts by
the followers of the 63, 546 users, summarized from reposts
of all the microblogs posted by those users. Each sample
represents the percentage of microblogs (y value) with the
same number of reposts (x value). Similarly, we observe that
this distribution can be fitted by a power-law distribution
y = 0.3181x−2.146.

3) Evolution of Cascade Size: We plot the evolution of
three microblogs, carrying links to three representative types
of videos, in Fig. 3. Each curve represents the cumulative
number of reposts of one microblog over time. The numbers
of reposts to all the three microblogs stop increasing at certain
time points, indicating that a cascade in a microblogging
system typically has a limited duration. We observe that the
three curves share similar growth patterns, that after a fast
increase in the first several hours, the cascade size remains at
a stable level. This observation indicates that in representative
microblog diffusion, information spread is most effective at
the early stage.

4) Gamma Distribution of the Response Delays: A follower
of a user may not repost a microblog immediately after the
user has posted/reposted the microblog, as the follower may
not be online at the time and will only find out the post
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Fig. 4. CDF of response delays of
all reposts in our traces.

later. We define the period from when a user posts/reposts
a microblog to the time when a follower of the user reposts
the microblog, as the response delay of the follower for this
specific microblog. Such a response delay is a key factor
to decide the microblog diffusion process. Fig. 4 illustrates
the cumulative distribution function (CDF) of the response
delays for all microblogs in our traces. We observe that this
distribution can be well fitted using the CDF of a Gamma
distribution Gamma(k, θ), where k = 0.336 is the shape
parameter and θ = 5.967× 10−6 is the scale parameter.

III. AN AGE-DEPENDENT BRANCHING PROCESS MODEL

Fig. 1 illustrates the tree-like cascades of microblog diffu-
sion, which enables us to apply a branching process to describe
each cascade. We aim to characterize the detailed temporal
evolution of the cascade size of a microblog, posted by its
source user at time 0. In particular, we seek to answer the
following question: How many users in total are expected to
have reposted the microblog after a certain time t?

A. Mapping a Microblog Diffusion Cascade to an Age-
Dependent Branching Process

A branching process models a population in which each
individual gives birth to a random number of offsprings
independently according to a certain probability distribution.
An age-dependent branching process is a more general type
of branching process, where the lifetimes of individuals are
considered based on a lifetime distribution [10]. In an age-
dependent branching process, the seed node born at time 0
remains active for a random lifetime according to a probability
distribution; at the end of its life, the seed node produces
a random number of offspring nodes following a probability
distribution, and turns inactive. Similarly, each offspring node
keeps active for a certain period of time, and then generates
more offsprings and turns inactive. The process results in a
branching tree of nodes, as illustrated in Fig. 5(2), where node
1 produces 3 offsprings at time d1, and each of the latter
produces one offspring after time d2, d3 and d4, respectively.
The blue and red nodes in the branching tree represent
inactive and active nodes, respectively. In such a standard age-
dependent branching process, all the offsprings of a node are
born at the same time. In the case of microblog diffusion,
followers of a user may well repost a microblog at different
times after the parent user has posted/reposted the microblog.
An example microblog diffusion process is given in Fig. 5(1):
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Fig. 5. Mapping between the microblog diffusion cascade and an age-
dependent branching tree.

seed user 0 posts a microblog at time 0, user 1 reposts it at time
d1, and then three followers of user 1 repost the microblog
further after d2, d3 and d4 time, respectively. Next, we map
the microblog diffusion process to the standard age-dependent
branching process, in order to study the temporal dynamics of
the microblog diffusion cascade by analyzing the evolution of
the corresponding branching tree.

The example microblog diffusion cascade in Fig. 5(1) is
mapped to the age-dependent branching process in Fig. 5(2)
as follows: each repost is mapped to a node in the branching
tree which is born at the time when the parent post/repost in
the microblog cascade occurs, e.g., repost 1 is mapped to tree
node 1 which is born at time 0, reposts 2, 3, 4 correspond to
tree nodes 2, 3, 4 which occur at the same time d1, and the
offspring repost 5 of repost 2 is mapped to the offspring node
5 of tree node 2 born further after time d2, and so on. The
seed user 0 in the microblog cascade is mapped to the seed
node 0 in the diffusion tree. Consider time t indicated by the
slash line in Fig. 5. Based on our mapping, the total number of
reposts in the diffusion cascade by time t equals the number
of inactive nodes in the branching tree at t (excluding node 0).
This mapping enables us to study the size of the microblog
diffusion cascade at any time based on the total number of
inactive nodes in the corresponding branching tree.

In addition, Fig. 5 shows the case that there is only one
repost (“1”) directly from the seed post (“0”). In the case that
multiple followers of the seed user repost the microblog, the
microblog cascade can be mapped to multiple stochastically
identical and independent branching trees, each initiated by
the seed node 0 in the branching process. The next subsection
will first focus on studying the expected size of one of the
branching trees (e.g., the one rooted at node ‘1’ in Fig. 5),
and then extend the result to the case of multiple trees.

B. The Temporal Dynamics of Microblog Diffusion Cascade
Let X(t), Y (t) and Z(t) denote the number of inactive

nodes, the total number of nodes and the number of active
nodes in a branching tree at time t, respectively. We use lower-
case notation x(t), y(t) and z(t) to represent the expectations
of random variables X(t), Y (t) and Z(t), respectively. Here
x(t) corresponds to the expected size at time t of a diffusion
cascade starting from one of the direct reposts of the seed post,
based on our mapping in Sec. III-A.



TABLE I
IMPORTANT NOTATION

X(t) the number of inactive nodes in a branching tree at t
Y (t) the total number of nodes in a branching tree at t
Z(t) the number of active nodes in a branching tree at t
x̃(t) the expected total size of a microblog cascade at t
x(t) the expected number of inactive nodes in a branching tree at

t / the expected size of a diffusion sub-cascade at t
y(t) the expected total number of nodes in a branching tree at t
z(t) the expected number of active nodes in a branching tree at t
pk distribution of the number of offspring nodes at each node
µ the reproductive number of nodes in a branching tree
G(τ) the cumulative distribution function of the lifetimes of nodes

in a branching tree / the cumulative distribution function of
response delays in a microblog cascade

F (s, t) probability generating function of Z(t)
Uµ(t) the renewal function
E(ω) the Laplace transformation of G(τ)
L(ω) the Laplace transformation of x(t)

Let P (R = k) = pk denote the probability density function
of the number of offsprings of a node in the branching tree,
i.e., the degree distribution, where R is the random variable
of the number of offsprings of a node. It corresponds to the
probability distribution of the number of reposts following a
previous repost in the microblog diffusion cascade. Let µ =∑∞

k=0 pkk denote the expected degree of each node, referred
to as a reproductive number of a node in the branching process.
Let G(τ) be the cumulative distribution function (CDF) of
the lifetimes of nodes in a branching process, corresponding
to the CDF of response delays in the microblog diffusion
process (e.g., that plotted in Fig. 4). The two distribution
functions are key parameters deciding the temporal dynamics
of the diffusion process. Our following analysis focuses on
the derivation of x(t), based on x(t) = y(t) − z(t). Table I
summarizes the important notation in this paper.

We first seek to derive the expected number of active nodes
in the branching tree, z(t), based on the two distribution
functions. We construct the probability generating function
(PGF) of Z(t), as F (s, t) =

∑∞
k=0 P (Z(t) = k)sk [10]. We

will make use of an important property of PGF of a random
variable, that the expectation of random variable Z(t), z(t),
is a bounded limit of ∂F (s,t)

∂s as s → 1 [10]. Especially, we
will derive the expression for F (s, t), in order to derive z(t)
based on this property.

We start by deriving the probability density function
P (Z(t) = k). We consider two cases according to the lifetime
of the seed node. (1) Case 1: the seed node is alive at time
t, so no offspring has been born by t, which happens with
probability 1−G(t) (since G(t) is the probability that a node
becomes inactive before t). Given that there is only one node
at time t, we have P (Z(t) = k) = [1 − G(t)]δ1k, where δ1k
is 1 if k = 1 and 0 otherwise. (2) Case 2: the seed node
becomes inactive at some time τ < t, with probability dG(τ),
and it produces j successors at time τ with probability pj .
In the remaining time t − τ , these j successors give birth to
a total of k offsprings. As the probability for one node to
produce k offsprings in time t − τ is P (Z(t − τ) = k), the
probability for j successors to do so is P ∗j(Z(t − τ) = k),
where P ∗j is the j-fold convolution of probability density

function P (Z(t− τ) = k). We can thus derive

P (Z(t) = k) =[1−G(t)]δ1k

+

∫ t

0
dG(τ)

∞∑

j=0

pjP
∗j(Z(t− τ) = k).

Hence the PGF of Z(t) can be derived as:

F (s, t) =
∞∑

k=0

P (Z(t) = k)sk

=[1−G(t)]
∞∑

k=0

skδ1k

+

∫ t

0
dG(τ)

∞∑

j=0

pj

∞∑

k=0

P ∗j(Z(t− τ) = k)sk.

We note that
∑∞

k=0 P
∗j(Z(t − τ) = k)sk = F j(s, t − τ),

where F j(s, t − τ) stands for the jth power of the PGF of
Z(t− τ), and

∑∞
k=0 s

kδ1k = s. We can thus derive

F (s, t) = s[1−G(t)] +

∫ t

0
h[F (s, t− τ)]dG(τ), (1)

where h[F (s, t − τ)] =
∑∞

j=0 pjF
j(s, t − τ). Since F (s, t)

is a convergent power series for any 0 < s < 1, we can
differentiate both sides of (1) over s and derive

∂F (s, t)

∂s
= [1−G(t)] +

∫ t

0
h

′
[F (s, t− τ)]

∂F (s, t− τ)

∂s
dG(τ).

(2)

Because 0 < s < 1, F (s, t− τ) < 1. We have h
′
[F (s, t−

τ)] < h
′
[1] = µ. Since z(t) is a bounded limit of ∂F (s,t)

∂s as
s → 1, by taking limit s → 1 in both sides of (2), we have

z(t) = [1−G(t)] + µ

∫ t

0
z(t− τ)dG(τ). (3)

We can derive the expected total number of nodes in the
branching tree, y(t), by deriving the probability generating
function of Y (t), using very similar steps as how we have
derived z(t). We omit the steps due to space constraint, but
directly give the result:

y(t) = 1 + µ

∫ t

0
y(t− τ)dG(τ). (4)

Define a renewal function Uµ(t) =
∑∞

n=0 µ
nG∗n(t), where

G∗n(t) is the n-fold convolution of G(t). Eqn.s (3) and (4)
have the form of a renewal equation, for which the renewal
theory provides solutions [10]. For example, if γH(0+) < 1,
an equation of the form

S(t) = ξ(t) + γ

∫ t

0
S(t− τ)dH(τ) (5)

has a unique solution S(t) = ξ(t) ∗ Uγ(t) which is bounded
on any finite interval of t, where Uγ(t) =

∑∞
n=0 γ

nH∗n(t)
[10]. We can thus derive the expressions of z(t) and y(t) as
follows:

z(t) = [1−G(t)] ∗ Uµ(t), (6)



y(t) = Uµ(t). (7)
Based on (6) and (7), we finally derive

x(t) = y(t)− z(t) = G(t) ∗ Uµ(t). (8)

We can see that x(t) is decided by µ, the reproductive
number in the branching process (i.e., the expected degree
of nodes in the microblog diffusion cascade), and G(τ), the
distribution of lifetimes of nodes (i.e., the distribution of
response delays in the diffusion cascade).

Since Uµ(t) contains an infinite series of functions, it is
difficult to calculate x(t) based on the definition of convolution
directly. We further seek to compute an explicit expression
of x(t) using Laplace transformation. Let E(ω) denote the
Laplace transformation of distribution G(τ). Define

Vµ(t) = Uµ(t)− 1 =
∞∑

n=1

µnG∗n(t). (9)

Based on the basic properties of Laplace transformation
[13], we can derive that the Laplace transformation of Vµ(t) is

µE(ω)
1−µωE(ω) . Since G(t) is a CDF, we have x(t) = G(t)+G(t)∗
Vµ(t) = G(t) + Vµ(t) ∗G(t) = G(t) +

∫ t
0 Vµ(t−ψ)dG(ψ) =

G(t) +
∫ t
0 Vµ(t − ψ)G

′
(ψ)dψ. G

′
(t) is the corresponding

probability density function of G(t). We can obtain that the
Laplace transformation of G

′
(t) is ωE(ω). Hence, the Laplace

transformation of x(t) is:

L(ω) = E(ω)/(1− µωE(ω)). (10)

When the concrete forms of the distributions pk and G(τ)
are given, we can compute µ (the expectation of distribution
pk) and E(ω) (the Laplace transformation of distribution
G(τ)). Then we can derive L(ω) (the Laplace transformation
of x(t)) according to (10). Finally, we are able to compute the
explicit form of x(t), through inverse Laplace transform.

Recall that x(t) is the expected size of one of the branching
trees originated from seed node ‘0’, i.e., the expected size of
a cascade starting from one of the direct reposts following
the seed post in the microblog diffusion. Since the expect-
ed number of direct reposts from the seed post is µ, we
can derive that the overall size of a microblog cascade is
x̃(t) =

∑∞
k=0 pkkx(t) + 1 = µx(t) + 1, where 1 corresponds

to the seed post.

C. The Case of Time-varying Degree Distribution
In a microblogging system, the popularity of a microblog

may change over time, i.e., more users tend to repost the
microblog at the early stage after it is initially posted, and
less reposts may happen when it has been around for a while.
Our model in Sec. III-B can capture such a scenario with a
time-varying degree distribution pk, i.e., the expected repost
degree at a node, µ, can be larger when a microblog is newly
posted, and its value decreases over time.

Consider the staged variation of the degree distribution
pk: there exists a time sequence 0, T1, T2, . . .; the degree
distribution remains fixed within each interval (e.g. [0, T1],
(T1, T2]) but can vary from one interval to the next. We

calculate the cascade size as follows. The cascade size by time
T1, i.e., x̃(T1), can be derived using the method in Sec. III-B.
There are z(T1) active nodes in the branching tree at T1;
treating each active node as one new root node, we can further
estimate the size of the cascade tree rooted at each active node
beyond T1, i.e., x̃(t − T1), using the method in Sec. III-B,
and then the size of the entire cascade can be computed by
x̃(T1) + z(T1)x̃(t− T1), for t ∈ (T1, T2]. The similar method
can be applied to derive the cascade size when t > T2.

When the expected degree µ of the degree distribution
decreases to a very small value (≈ 0), the number of active
nodes approaches zero and the size of the cascade essentially
stops growing. The final cascade size can be derived using the
method described above.

IV. TRACE-DRIVEN PERFORMANCE EVALUATION

A. Experiment Setup

We simulate a microblogging network, where the number
of followers of a user in the network follows the power-law
distribution in Fig. 2(a). We simulate a microblog diffusion
process as follows. At time slot 0, we randomly pick one
node in the microblogging network as the seed user who
posts a microblog. A number of followers of this seed user
repost the microblog after a random response delay where
the number of followers is picked according to the offspring
distribution pk and the response delays follow the distribution
G(τ). The process repeats from the repost users: after a
user has reposted the microblog, a particular number of its
followers (who have not reposted the microblog) are randomly
selected to repost the microblog after certain response delays.
Both an exponential distribution and a Gamma distribution are
used in our experiments for the response delays. We compare
the simulation results with the calculated expected cascade
size x̃(t) from Sec. III-B and Sec. III-C, as well as with
statistics from the traces, wherever applicable. For every set
of parameters, the simulation is run for 104 times in order to
obtain converged statistics.

B. Experiment Results

1) Evolution of Cascade Size: We first study the effec-
tiveness of our model in capturing the evolution of cascade
size over time, by comparing the cascade sizes computed
using our model with those from the simulations. In this
set of experiments, we use exponentially distributed response
delays following G(τ) = 1 − e−aτ where a = 1 such that
the average response delay is 1 hour. We will examine the
case of the Gamma distribution from the traces in the next
subsection. We use the power-law distribution in Fig. 2(b)
as the degree distribution pk. Fig. 6 compares the cascade
sizes under different values of the expected degree µ. When
µ > 1, the diffusion cascade grows exponentially; when µ = 1,
the increase of the cascade size is approximately linear; when
µ < 1, the increase of the cascade size is slow and the total size
becomes stable soon (i.e., the cascade stops growing soon).
The simulation results that we show are the average of multiple
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Fig. 6. Comparison of the evolution of cascade sizes generated by simulations and our model.
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Fig. 7. Comparison of the evolution of cascade sizes generated by simulations
and our model: two-stage µ.
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Fig. 8. Distribution of final cascade sizes.

runs, which explains the fraction numbers in Fig. 6(a). In all
cases, the computed sizes fit well with the simulation results.

We plot in Fig. 7 the cascade size over time with µ changing
in two stages, i.e., a large µ = 2 in the early stage (i.e., t ≤ T1)
and a small µ = 0.5 in the later stage (i.e., t > T1). We observe
that the computed results based on our model in Sec. III-C also
fit well with the simulation results.

2) Final Cascade Size: Using the Gamma distribution in
Fig. 4 for G(τ) and a time-decaying µ according to Sec. III-C,
we further evaluate the final cascade size generated by sim-
ulations according to our model. We plot in Fig. 8(a) the
distribution of final cascade sizes from our simulations where
the value of µ decreases exponentially from one hour to
the next following µ(t) = µ0e−0.2t with an initial µ0 = 2
(its value remains fixed within each hour). The rationale
is that in our measurement study in Sec. II-B3, we have
observed exponential decreases of repost rates over time for
representative microblogs. Each sample in Fig. 8 (a) is the
percentage of cascades with the same final cascade size,
generated in our simulations. We observe that the final cascade
size follows a Zipf-like distribution. Using Weibo traces, we
also plot in Fig. 8(b) the distribution of final cascade sizes of
microblogs in Tencent Weibo. We observe that in the traces,
the final cascade sizes also closely follow a similar Zipf-like

distribution. This further validates that using a repost degree
distribution that varies in stages, our model is able to closely
capture the evolution of cascade sizes in real-world traces.

V. CONCLUDING REMARKS

Effective information diffusion modeling is critical for a
large variety of social applications in today’s world. This paper
presents our first step towards a qualitative understanding of
the information diffusion process in a microblogging system.
In particular, we reveal several facts on microblog propagation
based on a large-scale measurement study, which motivates our
adoption of an age-dependent branching process to investigate
the temporal dynamics of cascade sizes in a microblogging
network. We give detailed mathematical derivation of the
expected cascade size at any time during a microblog diffusion
process. We evaluate our model using trace-based simulation
experiments and demonstrate its effectiveness. In our model,
we have used time-invariant probability distribution of the
number of reposts pk and the CDF of response delays in the
microblog diffusion process G(τ). We leave the study of time-
varying pk and G(τ) for future work.
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