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Abstract—Recent years witness the proliferation of
Infrastructure-as-a-Service (IaaS) cloud services, which
provide on-demand resources (CPU, RAM, disk) in the form
of virtual machines (VMs) for hosting applications/services of
third parties. Given the state-of-the-art IaaS offerings, it is
still a problem of fundamental importance how the Application
Service Providers (ASPs) should rent VMs from the clouds
to serve their application needs, in order to minimize the
cost while meeting their job demands over a long run. Cloud
providers offer different pricing options to meet computing
requirements of a variety of applications. However, the challenge
facing an ASP is how these pricing options can be dynamically
combined to serve arbitrary demands at the optimal cost. In this
paper, we propose an online VM purchasing algorithm based
on the Lyapunov optimization technique, for minimizing the
long-term-averaged VM rental cost of an ASP with time-varying
and delay-tolerant workloads, while bounding the maximum
response delay of its jobs. In stark contrast with the existing
studies, the proposed algorithm enables an ASP to optimally
decide the amount of reserved, on-demand and spot instances
to purchase simultaneously. Rigorous analysis shows that our
algorithm can achieve a time-averaged resource cost close to
the offline optimum. Trace-driven simulations further verify the
efficacy of our algorithm.

I. INTRODUCTION

As a major type of cloud services, Infrastructure-as-a-
Service (IaaS) cloud offerings provide abundant and elastic
computing resources for third party usage, which has re-
markably revolutionized the way of enabling scalable and
dynamic Internet applications. More and more Application
Service Providers (ASPs) are launching their applications
in clouds, without the need for building and maintaining
their owned IT infrastructures. The leading online content
provider Netflix [1] offers on-demand Internet video service
and receives enormous streaming requests from its worldwide
subscribers every minute. With Amazon EC2 [2], Netflix can
run critical encoding tasks, to serve its clients’ video demands,
with a number of VM instances configured with the selected
encoding software, and shut them down when completed [3].

Cost management is still a crucial task in such a switch to
cloud-based services. VM instance purchases from the clouds
play a critical role for cost management of an ASP. Under the
pay-as-you-go pricing model, a practical problem for ASPs is
how to minimize the VM purchasing cost while guaranteeing
a good service performance. Cloud vendors usually offer
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TABLE I
PRICING OF RESERVED INSTANCE, ON-DEMAND INSTANCE AND SPOT

INSTANCE (LINUX, US WEST) IN AMAZON EC2, AS OF APR 25, 2015.

Instance Type Pricing Option Up-front Hourly

m3.medium
1-year reserved $372 $0.0425
on-demand $0 $0.070
spot $0 $0.008

m3.large
1-year reserved $751 $0.0857
on-demand $0 $0.140
spot $0 $0.0255

multiple pricing options that allow the flexibility to optimize
costs [4]. The commonly adopted cloud pricing schemes are
(1) reserved instance pricing, (2) on-demand instance pricing,
and (3) spot instance pricing. With reserved instances, users
pay an one-time upfront fee and reserve instances with a
significantly lower hourly charge for a 1-year or 3-year term.
On-demand instances enable users to pay a fixed hourly rate
with no long-term usage commitment. Spot instances, offered
by Amazon EC2 [2], allow users to bid whatever price they
want for spare instances with no upfront commitment and
to run them at an hourly rate substantially lower than the
on-demand rate, whenever their bid price is larger than the
spot market price. A pricing example of reserved instance,
on-demand instance and spot instance is given in Table I.

While reserved instances are more beneficial for application-
s with long-term steady or predictable workload, on-demand
instances are more recommended for applications with short-
term spiky or unpredictable workload. Spot instances could
act as complements of reserved and on-demand instances
to achieve further cost savings. However, the spot price is
fluctuating all the time in tune with the demand and supply
levels. Fig. 1 shows a significant variation in Amazon EC2 spot
prices for Linux/UNIX instances of type r3.xlarge from Mar
27, 2015, to Apr 24, 2015. We observe that at times the spot
price exceeds even the on-demand price. Thus purchasing spot
instances risks frequent job interruptions during the execution,
and is more suitable for time-flexible or delay-tolerant appli-
cations. Simply operating the entire workload with only one
pricing option can be highly cost-ineffective. Since gaps do
exist among different pricing schemes, it is quite desirable yet
challenging for ASPs to intermingle different pricing options
based on their own demand, in order to optimize the long-
term-averaged cost. In particular, with time-varying demands,
one ASP should answer two basic questions at any decision-
making instant: (1) how many instances to purchase, and (2)
which type to purchase (reserved, on-demand, spot or all)?
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Fig. 1. The variation in Amazon EC2 spot prices for Linux/UNIX r3.xlarge
instances in the US-West-2c region from Mar 27, 2015, to Apr 24, 2015.

Amazon EC2 introduced one customized service, AWS
Trusted Advisor, to help users realize more cost reduction [5].
The AWS Trusted Advisor can make recommendations on
whether the customer can save money with a more suitable
VM instance, by drawing on the previous usage data aggre-
gated across all consolidated billing accounts with complex
data mining and machine learning techniques. There have
been some efforts on IaaS cost management in terms of
uncertain demand [6][7], but they require a priori knowledge
of the workloads or accurate prediction of future information.
Even though some statistics may be obtained using dynamic
programming techniques, it suffers from high computation
complexity, and hence not suitable for online decision making
in practice [8][9]. In addition, very few studies have addressed
the randomness of the spot prices, and more importantly, how
to achieve cost optimization under this price uncertainty.

To the contrast, we seek to integrate all available pricing
schemes and design effective online algorithms for the long-
term operation of ASPs. We formulate the long-term-averaged
VM cost minimization problem of an ASP with time-varying
and delay-tolerant workloads in a stochastic optimization mod-
el. An efficient online VM purchasing algorithm is designed
to guide the VM purchasing decisions of the ASP based on
the Lyapunov optimization technique. Lyapunov optimization
provides a framework for designing algorithms with perfor-
mance arbitrarily close to the optimal offline performance over
a long run of the system, without the need for any future
information. It has been widely applied to resource allocation
optimization in data centers [10][11]. Different from these
existing studies, our online VM purchasing algorithm does not
require any prior knowledge or assume any distribution of the
workload. Moreover, it addresses the possible job interruption
due to uncertain availability of spot instances. To our best
knowledge, this work is the first effort on jointly leveraging all
three common IaaS cloud pricing options, in order to exploit
the highly-coveted cost advantages of cloud computing.

The rest of the paper is organized as follows. We review
related literature in Sec. II, describe the system model in
Sec. III, design the online algorithm in Sec. IV, present the
simulation results in Sec. V, and conclude the paper in Sec. VI.

II. RELATED WORK

We now provide a snapshot of the related work. There
has been a growing interest in cost management of clouds.

Sharma et al. [12] propose a cost-aware capacity provision-
ing mechanism for ASPs to choose server configurations
and reconfigurations in order to minimize the rental cost of
cloud infrastructure. Qiu et al. [13] propose an optimization
framework for dynamic, cost-minimizing migration of content
distribution services into a hybrid cloud infrastructure that
spans geographically distributed data centers. Khanafer et
al. [14] model the cost optimization problem of a cloud
file system as a variant of classical Ski-Rental problem, and
propose new randomized algorithms to generate significant
cost savings. Setty et al. [15] provide a cost-effective resource
provisioning scheme for deploying publish/subscribe services
in the cloud, so as to minimize the total cost of VM acquisition
and bandwidth consumption, while ensuring a good subscriber
satisfaction. Roh et al. [16] formulate a concave game taking
into account both the resource pricing of clouds and resource
competition of ASPs, and investigate the characteristics of the
equilibrium point.

There have been some works discussing the strategic combi-
nation of different cloud pricing options. Leslie et al. [17] and
Lu et al. [18] exploit cost-effective hybrid resource provision-
ing approaches for deploying applications on on-demand and
spot VMs. Menache et al. [19] propose an online learning
algorithm for allocating on-demand and spot VM instances
for batch applications. The candidate policy weights are dy-
namically adjusted through learning from performance on job
executions, spot prices and workload characteristics, in order
to reinforce best performing policies. Hong et al. [7] study
the costs of margins, which are a pool of servers kept active
for unpredictable potential workload surges, and propose a
dynamic programming approach for minimizing the margin
cost. Then a VM purchasing strategy combining reserved and
on-demand VMs is designed to achieve optimal true cost.
However, the proposed approaches are possible only when a
priori knowledge of the workload is available. Zhao et al. [6]
analyze the time-varying spot prices in Amazon EC2 and show
that the spot price is highly unpredictable. Then a stochastic
resource rental planning model is proposed to take spot price
uncertainty into account, and a hybrid VM renting approach
based on on-demand and spot VM instances is provided. The
demand in the planning horizon is simply assumed to be
known. Wang et al. [9] design an instance reservation strategy
via a cloud brokerage mechanism to minimize the total cost of
both reserved and on-demand VM instances. A cloud broker
can aggregate the demands from a large number of users to s-
mooth out individual demand bursts, and time-multiplex partial
usage in the same instance-hour. The proposed method suffers
from the prohibitive complexity of dynamic programming and
relies on workload prediction. Based on [9], Wang et al. [8]
further propose a deterministic algorithm and a randomized
online reservation algorithm blending the two pricing options
without any knowledge of future demand. However, spot VMs
are not leveraged for achieving more cost reductions and more
flexibility in VM acquisition. Also in general, these schemes
do not provide any tradeoff guarantee between the cost and
the service performance. Our design addresses these issues.

147



VM VM VM VMVM

Customer

Cloud Provider
ASP

Service Request

Fig. 2. System overview.

III. SYSTEM MODEL

As illustrated in Fig. 2, we consider an ASP providing
services to its customers over the Internet. Instead of using
its own resources, the ASP accepts and processes job requests
with VMs purchased from an IaaS cloud provider. The system
runs in a time-slotted fashion with time slots of equal lengths
indexed by t = 0, 1, . . ., where each t is a decision-making
instant of the ASP. In practice, a slot t could be one hour.

A. Job Model
There are total G types of jobs served by the ASP. Each job,

or service request from a customer of the ASP, is characterized
by a three-tuple (sg, lg,mg). Here, sg ∈ [1, S] represents the
type of the required VM, where S is the maximum number of
VM types, and each type comprises a different configuration of
CPU, memory, and storage; lg is the Service Level Agreement
(SLA) of the type-g job, specified by the maximum response
delay for scheduling a job, i.e., the time-span from when
the job arrives to when it is dropped or starts to run on
the scheduled VM; mg is the number of time slots required
and is referred to the workload of one type-g job. During its
execution, a job could be suspended and resumed later.

B. Scheduling Model
A FIFO queue is maintained at the ASP to store the

unscheduled workload, Qg , for each job type g ∈ [1, G]. In
every time slot, jobs arrive at the ASP. Let rg(t) ∈ [0, rmax

g ]
denote the number of type-g jobs that arrive at the beginning
of each time slot t, where rmax

g is the maximum value of
rg(t). We assume that rg(t) is an i.i.d stochastic process across
time slots. Upon arrival of rg(t) type-g jobs, mgrg(t) units of
workload are appended to Qg. The ASP then decides how
to distribute the awaiting jobs. We use ug(t) to represent the
number of type-g jobs successfully scheduled in time slot t.
When a type-g job is scheduled for processing, the job departs
from its queue and starts to run on a type-sg VM. Let ug(t−)
denote the number of type-g jobs scheduled before t, which
are still running at t. For each newly scheduled type-g job
at t or each leftover type-g job at t, one unit workload is
deducted from Qg at the end of time slot t. When a job’s
maximum response time cannot be met, it is dropped. Let
Dg(t) ∈ [0, Dmax

g ] be the number of type-g jobs dropped

by the ASP in time slot t, where Dmax
g is the maximum

number of type-g jobs allowed to be dropped in one time
slot. The drop of Dg(t) type-g jobs introduces mgDg(t) units
of workload reduced from Qg. Denote Qg(t) as the total
unscheduled workload of type-g jobs in time slot t. Thus, it
evolves over time following the dynamics specified by

Qg(t+ 1) =max{Qg(t)− ug(t)− ug(t
−)−mgDg(t), 0}

+mgrg(t), (1)

assuming that the initial queue is empty, i.e., Q(0) = 0.
In order to satisfy the SLA constraint, we define the

following virtual queues, each associated with a workload
queue Qg. We use the ϵ−persistence queue technique [20]
to create virtual queue Zg(t), which starts from Zg(0) = 0
and evolves as

Zg(t+ 1) =max{Zg(t) + 1{Qg(t)>0} · [ϵg − ug(t)− ug(t
−)]

−mgDg(t)− 1{Qg(t)=0}u
max
g , 0}, ∀g ∈ [1, G].

(2)

Here, ϵg is a constant that ensures Zg(t) grows whenever there
is unscheduled workload in Qg, and umax

g is the maximum
number of type-g jobs that could be processed simultaneously
by the ASP, with 0 ≤ ug(t) + ug(t−) ≤ umax

g . Indicator
function 1{Qg(t)>0} is 1 when Qg(t) > 0 and 0 otherwise.
Similarly, 1{Qg(t)=0} is 1 when Qg(t) = 0 and 0 otherwise.
Length of a virtual queue reflects the cumulated response
delay of workloads from the respective workload queue. If
the system can bound the maximum lengths of the workload
queues and virtual queues with properly set ϵg, then the
maximum response delay of jobs can be bounded.

C. VM Provisioning Model

The system deploys a hybrid VM provisioning mechanism
through an integration of three different pricing options: (1)
reserved instances, (2) on-demand instances, and (3) spot
instances. After observing the VM demands of all jobs being
processed, including newly scheduled jobs and leftover jobs,
the ASP makes a decision to reserve as(t) ∈ [0, amax

s ] type-
s VMs in time slot t (i.e., reserved instances), ∀s ∈ [1, S],
where amax

s is the reservation limit of type-s instances per
time slot. Let N denote the fixed number of time slots
any reserved VM is reserved for (i.e., the reservation pe-
riod). Each reserved type-s instance will stay effective in
the whole reservation period [t, t + N − 1]. So the total
number of type-s reserved VMs remaining effective at t is∑t

τ=t−N+1 as(τ). The aggregated reserved resource may be
insufficient to accommodate all job demands. The ASP may
also launch additional bs(t) ∈ [0, bmax

s ] on-demand type-s
VMs, ∀s ∈ [1, S], to serve the residual demand, where bmax

s

is the on-demand limit of type-s instances per time slot.
Spot VMs can also be launched as an alternative to reserved

or on-demand VMs. After observing the current spot price,
the ASP bids for spot instances and use them whenever its
willingness-to-pay is larger than the spot price. How to set
the bid prices depends on the ASP’s evaluation on a number
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of operational factors. In this paper, we set the bid price for
type-s spot VMs as the price of type-s on-demand VMs. The
rationale is that it is more cost-efficient to launch spot VMs
only when the current spot price is smaller than the current
on-demand price. Let fs(t) ∈ [0, fmax

s ] denote the number of
type-s spot VMs the ASP obtains in time slot t, where fmax

s

is the upper limit. Different from on-demand and reserved
instances, spot instances are priced in real-time as illustrated
in Fig. 1. So the ASP should always prepare for the possibility
that its spot instances are terminated when the spot prices
exceed the bid prices. Since the bid price is the same for
each type-s spot VM started at the same time slot, all type-s
spot VMs acquired at t will be terminated once the spot price
exceeds the bid price. We consider that the interrupted jobs
due to terminated spot VMs will be served immediately by
newly launched on-demand VMs. In case that an out-of-bid
event occurs for type-s spot VMs during time slot t, fs(t)
on-demand VMs will be instantly purchased to carry on the
leftover workloads of the interrupted jobs. We assume that
the switch time from terminated spot VMs to newly launched
on-demand VMs is negligible.

At each time slot, the total supply of VMs purchased should
always accommodate the total demand of job scheduling:

t∑

τ=t−N+1

as(τ) + bs(t) + 1{βs>γs(t)}fs(t)

≥
∑

g:sg=s

[ug(t) + ug(t
−)], ∀t, ∀s ∈ [1, S]. (3)

IV. DYNAMIC COST MINIMIZING ALGORITHM

A. Problem Formulation

A number of cost parameters are associated with the VM
cost optimization. When dropping one job, a penalty is en-
forced to compensate for the customer’s loss. Let σg denote
the penalty to drop one type-g job. For reserved instances, a
user needs to make a one-time payment for the reservation,
and the charging policies slightly differ across different types
of reserved instances [21]. We limit our discussions to reserved
instances with fixed costs, which represent a common case in
IaaS clouds. The total cost of a reserved instance is abstracted
as a one-time upfront reservation fee, which is denoted as αs

for a type-s reserved VM.
We assume that the length of each time slot t matches the

duration of one billing cycle for on-demand and spot instances,
e.g., one hour. Let βs denote the price of running one type-s
on-demand VM per billing cycle. To model the availability of
spot VMs during one time slot, we use Ps(t) ∈ [0, 1] to denote
the probability that a termination event may happen within
[t, t+1] for the type-s spot VMs acquired at t, which could be
dynamically estimated based on historical price series, within
a window of past time slots of a certain size. Let γs(t) denote
the spot price at t of running one type-s spot VM for one
billing cycle. We consider two cases: (1) Case 1: a type-s
spot VM successfully runs for one entire time slot and is
charged at γs(t) for the billing cycle [t, t+1], which happens

with probability 1 − Ps(t). (2) Case 2: a type-s spot VM
is terminated during [t, t + 1] with probability Ps(t), and is
replaced immediately by a newly launched type-s on-demand
VM to process the leftover workloads. Spot instances will not
be charged for any partial billing cycle of usage, while partial
billing cycle consumed by on-demand instances is charged as
a full billing cycle. Thus the expected VM cost in Case 2
should be [1− Ps(t)]γs(t) + Ps(t)βs.

Given the system model and cost model, the total VM cost
to accommodate all demand in time slot t is given by

Cost(t) =
∑

s∈[1,S]

{αsas(t) + βsbs(t)

+ 1{βs>γs(t)}[Ps(t)βsfs(t)

+ (1− Ps(t))γs(t)fs(t)]}+
∑

g∈[1,G]

Dg(t)σg. (4)

The time-averaged expected VM purchasing cost is

Costav = lim
T→∞

1

T

T−1∑

t=0

E[Cost(t)]. (5)

Therefore, the VM cost minimization pursued by the ASP can
be formulated as follows

min Costav (6)
s.t. 0 ≤ rg(t) ≤ rmax

g , ∀g ∈ [1, G], ∀t; (7)
0 ≤ ug(t) + ug(t

−) ≤ umax
g , ∀g ∈ [1, G], ∀t; (8)

0 ≤ Dg(t) ≤ Dmax
g , ∀g ∈ [1, G], ∀t; (9)

0 ≤ as(t) ≤ amax
s , ∀s ∈ [1, S], ∀t; (10)

0 ≤ bs(t) ≤ bmax
s , ∀s ∈ [1, S], ∀t; (11)

0 ≤ fs(t) ≤ fmax
s , ∀s ∈ [1, S], ∀t; (12)

Constraints (1)-(3),

where umax
g = N ∗amax

sg +bmax
sg +fmax

sg . The objective of our
optimization problem is to make dynamic job scheduling and
VM acquiring decisions, so as to minimize long-term time-
averaged VM cost. Important notations are summarized in
Table II, for the ease of reference.

B. Online Algorithm Design

We now design an online algorithm to solve the cost
minimization problem in (6). To minimize the time-averaged
objective function in (6) based on decisions at each time slot,
we resort to the drift-plus-penalty framework in Lyapunov
optimization [20], a classical technique for transforming a
long-term time-average optimization problem into a series of
similar one-shot optimization problems. In each time slot t,
we have a set of queues Θ(t) as

Θ(t) = {Qg(t), Zg(t)|g ∈ [1, G]}. (13)

Define Lyapunov function as follows

L(Θ(t)) =
1

2

∑

g∈[1,G]

[(Qg(t))
2 + (Zg(t))

2], (14)
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TABLE II
IMPORTANT NOTATIONS

sg type of the VM required by one type-g job
mg number of time slots required by one type-g job
lg maximum response delay for scheduling one type-g job
rg(t) number of type-g jobs arriving at the beginning of t
Dg(t) number of type-g jobs dropped by the ASP at t
ug(t) number of type-g jobs scheduled for processing at t
ug(t−) number of running type-g jobs left over before t
Qg(t) length of workload queue for type-g jobs at t
as(t) number of new type-s reserved VMs at t
N reservation period for reserved VMs / length of a super time

frame
bs(t) number of launched type-s on-demand VMs at t
fs(t) number of obtained type-s spot VMs at t
αs upfront reservation fee for one type-s reserved VM
βs price for running one type-s on-demand VM per billing cycle
γs(t) spot price at t of running one type-s spot VM for one billing

cycle
σg penalty for dropping one type-g job
Ps(t) estimated probability of a termination event in time span [t,

t+1] for type-s spot VMs obtained at t

where the constant 1
2 is added for the convenience of math-

ematical derivations. Next, we define the one-slot conditional
Lyapunov drift as follows

∆(Θ(t)) = E[L(Θ(t+ 1))− L(Θ(t))|Θ(t)]. (15)

Following the framework of Lyapunov drift-plus-penalty
algorithm, we add the VM purchasing cost as a penalty
function to obtain the drift-plus-penalty term

∆(Θ(t)) + V Cost(t), (16)

where V > 0 is a user-defined positive constant that can be
understood as the weight of the VM purchasing cost in this
expression, and can be tuned to different values to indicate
the tradeoff between the cost and the SLA guarantee. The
following lemma defines such an upper bound on this drift-
plus-penalty term.

Lemma 1: Let V > 0, and let ϵg > 0. Then the drift-plus-
penalty term satisfies the following inequality:

∆(Θ(t)) + V Cost(t) ≤
B +

∑

g∈[1,G]

Qg(t)[mgrg(t)− ug(t)− ug(t
−)−mgDg(t)]

+
∑

g∈[1,G]

Zg(t)[ϵg − ug(t)− ug(t
−)−mgDg(t)]

+ V
∑

s∈[1,S]

{αsas(t) + βsbs(t)

+ 1{βs>γs(t)}[Ps(t)βsfs(t) + (1− Ps(t))γs(t)fs(t)]}
+ V

∑

g∈[1,G]

Dg(t)σg, (17)

where B = 1
2

∑
g∈[1,G]{[ϵg]2 + (mgrmax

g )2 + 2[umax
g +

mgDmax
g ]2}.

Proof: Detailed proof is provided in [22].
Different from previous work using Lyapunov optimiza-

tion [10][11], we seek to model the more general scenario
in which a job may take more than one time slot to finish
and the ASP can choose any pricing option at every time

slot. In each time slot t, the ASP observes the queues Qg(t)
and Zg(t), and the number of left-over jobs ug(t−), and then
decides the optimal values of Dg(t), ug(t), as(t), bs(t) and
fs(t) to minimize the the upper bound shown on the right-
hand side of inequality (17). We can get the following one-
shot optimization problem to be solved by the ASP in each
time slot t:

min ϕ1(t) + ϕ2(t) (18)
s.t. Constraints (1)-(3), (8)-(12),

where

ϕ1(t) =
∑

g∈[1,G]

Dg(t)[V σg −mgQg(t)−mgZg(t)]

ϕ2(t) = V
∑

s∈[1,S]

{αsas(t) + βsbs(t)

+ 1{βs>γs(t)}[(1− Ps(t))γs(t)fs(t) + Ps(t)βsfs(t)]}
−

∑

g∈[1,G]

ug(t)[Qg(t) + Zg(t)].

After careful derivation, minimization problem (18) can be
decoupled to two independent optimization problems dealing
with (a) job dropping, and (b) job scheduling and VM pur-
chasing, respectively.

(a) Job Dropping. The number of dropped jobs Dg(t),
∀g ∈ [1, G], is obtained by solving the following optimization
problem:

min Dg(t)[V σg −mgQg(t)−mgZg(t)] (19)
s.t. Constraint (9).

The optimal solution of problem (19) is:

Dg(t) =

{
Dmax

g if Qg(t) + Zg(t) >
V σg

mg

0 if Qg(t) + Zg(t) ≤ V σg

mg

.

It indicates that one type-g job with more dropping penalty
and less workload is less likely to be dropped.

(b) Job scheduling and VM purchasing. The decisions on
the number of jobs to schedule, the number of reserved VMs
to purchase, the number of on-demand VMs to launch, and
the number of spot VMs to acquire, all at t, can be obtained
by solving the following optimization problem:

min V
∑

s∈[1,S]

{αsas(t) + βsbs(t)

+ 1{βs>γs(t)}[(1− Ps(t))γs(t)fs(t)

+ Ps(t)βsfs(t)]}−
∑

g∈[1,G]

ug(t)[Qg(t) + Zg(t)]

(20)
s.t. Constraints (3)(8)(10)(11)(12).

Problem (20) is a joint job scheduling and VM purchasing
problem. We can start with solving ug(t) by assuming already
known feasible assignments to as(t), bs(t), and fs(t). To
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minimize (20), we should maximally schedule jobs of type-g∗s ,
whose observed value of Qg(t) + Zg(t) is the largest among
all types of jobs requiring type-s VMs. We have

g∗s = argmaxg:gs=s[Qg(t) + Zg(t)], ∀s ∈ [1, S]. (21)

The number of type-g∗s jobs we can schedule at t is decided
by constraint (3), at

ug∗
s
(t) =as(t) + bs(t) + 1{βs>γs(t)}fs(t)

−
∑

g:sg=s

ug(t
−) + φs(t). (22)

Here, φs(t) =
∑t−1

τ=t−N+1 as(τ). Except type-g∗s jobs, no
other types of jobs are scheduled, i.e.,

ug(t) = 0, ∀g ̸= g∗s , ∀s ∈ [1, S]. (23)

Hence the second part of (20) can be expressed using variables
as(t), bs(t), and fs(t). Removing the constants, (20) can be
converted to the following equivalent VM purchasing problem

min
∑

s∈[1,S]

{as(t)[V αs −Qg∗
s
(t)− Zg∗

s
(t)]

+ bs(t)[V βs −Qg∗
s
(t)− Zg∗

s
(t)]

+ 1{βs>γs(t)}fs(t)[V (1− Ps(t))γs(t) + V Ps(t)βs

−Qg∗
s
(t)− Zg∗

s
(t)]} (24)

s.t. as(t) + bs(t) + fs(t) ≥
∑

g:sg=s

ug(t
−)− φs(t)

Constraints (8)(10)(11)(12).

Here, we show the solutions when βs > γs(t). The other case
βs ≤ γs(t) can be solved in a similar manner with fs(t) =
0. Based on real cases of Amazon EC2 [4], the following
inequality holds in general given the fact Ps(t) ∈ [0, 1]

[(1− Ps(t))γs(t) + Ps(t)βs] ≤ βs ≤ αs.

The objective function of (24) is linear in as(t), bs(t), and
fs(t). There are four cases in terms of the workload queue
length and the virtual queue length.

Case 1: Qg∗
s
(t)+Zg∗

s
(t) ≤ V (1−Ps(t))γs(t)+V Ps(t)βs.

The objective function is always non-negative. as(t), bs(t),
and fs(t) should be as small as possible.

Case 1.1:
∑

g:sg=s ug(t−)− φs(t) ≤ 0. The reserved VMs
remaining effective are sufficient to accommodate left-over
jobs. Then we have as(t) = bs(t) = fs(t) = 0.

Case 1.2: 0 <
∑

g:sg=s ug(t−)−φs(t) ≤ fmax
s . Spot VMs

should be launched to run left-over jobs with the reserved
VMs remaining effective. Then we have as(t) = bs(t) = 0
and fs(t) =

∑
g:sg=s ug(t−)− φs(t).

Case 1.3: 0 <
∑

g:sg=s ug(t−) − φs(t) − fmax
s ≤ bmax

s .
On-demand and Spot VMs should be launched to run left-
over jobs with the reserved VMs remaining effective. Then
we have as(t) = 0, bs(t) =

∑
g:sg=s ug(t−)− φs(t)− fmax

s ,
and fs(t) = fmax

s .

Case 1.4: 0 <
∑

g:sg=s ug(t−) − φs(t) − fmax
s − bmax

s ≤
amax
s . All three types of VMs should be acquired to accommo-

date left-over jobs. Then we have as(t) =
∑

g:sg=s ug(t−)−
φs(t)− fmax

s − bmax
s , bs(t) = bmax

s , and fs(t) = fmax
s .

Case 2: V (1−Ps(t))γs(t)+V Ps(t)βs < Qg∗
s
(t)+Zg∗

s
(t) ≤

V βs. Case 3: V βs < Qg∗
s
(t)+Zg∗

s
(t) ≤ V αs. Case 4: V αs <

Qg∗
s
(t)+Zg∗

s
(t). The solutions of these cases can be found in

our technical report [22].
The intuition here is to trade the queueing delay for cost

reduction by using the workload queue length and virtual
queue length as a guidance for making job scheduling and VM
purchasing decisions. Once as(t), bs(t) and fs(t) are decided,
the job scheduling decisions can be made based on Eqn. (22)
and Eqn. (23).

In the standard Lyapunov optimization framework [20],
decisions made at the current time slot do not have any
influence on decision making at the subsequent time slots. This
paper handles a more general case in which one scheduled
job will occupy VM resources for mg consecutive time slots,
directly affecting the job scheduling and VM purchasing
decisions in later times. We make the following design to
our cost minimization algorithm, in order to achieve provable
algorithmic optimality.

First, we group N time slots into a super time frame, where
N is the fixed reservation period for reserved instances. Let
mmax denote the maximum units of workload of all types of
jobs. We assume that N > mmax. The above job scheduling
and VM purchasing algorithm varies depending on which time
slot it is running at : at a time slot t ∈ [xN, (x + 1)N −
mmax], where x could be any non-negative integer, the above
algorithm remains the same; in a time slot t ∈ [(x + 1)N −
mmax +1, (x+1)N − 1], only jobs with mg ≤ (x+1)N − t
are considered in the selection of g∗s :

g∗s = argmaxg:gs=s,mg≤(x+1)N−t[Qg(t) + Zg(t)]. (25)

This design indicates that a new type-g job is scheduled only
if it can finish its service within the super time frame.

Second, we impose another constraint that instances re-
served at t will remain effective in the time span [t,N(⌊ t

N ⌋+
1)− 1] instead of [t, t+N − 1]. All instances reserved during
one super time frame will be cleared out at the end of that
super time frame. So within one super time frame, the ASP
uses reserved VMs over time in a nondecreasing manner.

C. Performance Analysis

We next analyze the performance of the designed online
algorithm in terms of queueing delay bound, no job dropping
conditions and cost optimality.

Theorem 1 (Queueing Delay Bound): If mgDmax
g >

max{mgrmax
g , ϵg}, then each workload queue Qg(t) and

each virtual queue Zg(t) are upper bounded by Qmax
g =

V σg/mg +mgrmax
g and Zmax

g = V σg/mg + ϵg, respectively,
∀t, ∀g ∈ [1, G]. The SLA of each job can be guaranteed by
Qmax

g +Zmax
g

ϵg
, ∀g ∈ [1, G], if we set ϵg =

Qmax
g +Zmax

g

lg
.

Proof: Detailed proof is provided in [22].
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Theorem 2 (No Job Dropping Conditions): There is no job
dropping in each time slot if the two conditions are satisfied

amax
sg + bmax

sg + fmax
sg ≥ (

∑

g′∈G

mg′ )(mmaxrmax + ϵmax)

(26)

V σg

mg
≥ V αmax + (

∑

g′∈G

mg′ )(mmaxrmax + ϵmax), ∀g ∈ G.

(27)

Here, αmax = max{αs, ∀s ∈ S}, rmax = max{rmax
g , ∀g ∈

G}, and ϵmax = max{ϵg, ∀g ∈ G}.
Proof: With condition (26), we can prove Qg(t) +Zg(t) ≤

V αmax + (
∑

g′∈G mg′ )(mmaxrmax + ϵmax), ∀g ∈ G. Then
condition (27) can guarantee Qg(t)+Zg(t) ≤ V σg

mg
. According

to the optimal solution of problem (19), there is no job
dropping. Detailed proof is provided in [22].

We next prove the performance optimality of our online
algorithm. Define χ as the vector of time-averaged arriving
workload for different types of jobs, i.e.,

χg = lim
T→∞

1

T

T−1∑

t=0

mgrg(t).

A workload arrival rate vector χ is said to be supportable if
there exist job scheduling and VM purchasing algorithms with
no job dropping and no violation of the SLA requirements,
under which all workload queues can be stabilized. The set
of all supportable vectors of workload arrival rates is defined
as the capacity region C at the ASP. We call an algorithm
(1 + δ)-optimal if the algorithm can support any χ such that
(1 + δ)χ ∈ C for some δ > 0.

Theorem 3 (Performance Optimality): Suppose conditions
(26) and (27) are satisfied, and (1+δ)N

N−mmaxχ ∈ C for some δ >
0, under our online algorithm we have :

lim
κ→∞

1
κN

κ−1∑

x=0

(x+1)N−1∑

t=xN

E[Cost(t)]

≤ Cost
(1+δ)N

N−mmax +
B
V

+
(N −mmax)(N −mmax − 1)

2V N
B1

+
N − 1
2V

∑

g∈[1,G]

[(ϵg)
2 + (mg)

2(rmax
g )2]

+
mmax

N

∑

s∈[1,S]

(αsa
max
s + βsb

max
s + βsf

max
s )

+
(N −mmax)(N −mmax − 1)

2N

∑

s∈[1,S]

(fmax
s )(βs − γmin

s ),

(28)

where B is given in Lemma 1, γmin
s is the minimum spot

price for type-s spot VMs, and B1 =
∑

g∈[1,G][mgrmax
g +

2umax
g + ϵg]umax

g . RHS is the (1+δ)N
N−mmax -optimal cost plus a

constant. Note that 1-optimal cost is the offline optimum for
the cost-minimization problem in Eqn. (6).
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Fig. 3. The arrival pattern of one typical job type.

Proof: Detailed proof is provided in [22].
Theorem 1 and Theorem 3 show that, given a control

parameter V , our algorithm is O(1/V )-optimal with respect
to the average VM cost against the (1+δ)N

N−mmax -optimal offline
algorithm, while the queue length is bounded by O(V ). By
increasing V , the developed online algorithm can push the
time-average cost closer to the (1+δ)N

N−mmax -optimal value at the
expense of increasing the queueing delay at the ASP. Hence,
by appropriately selecting the control parameter V , we can
achieve a desired tradeoff between the VM cost and the
queueing delay. If V → ∞, N → ∞ and N

V < ∞, our
algorithm can achieve a time-averaged cost with a constant
gap to the 1-optimal cost, i.e., the offline optimum.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the pro-
posed online algorithm through trace-driven simulations under
realistic settings. We simulate an ASP which schedules and
processes workloads with VMs purchased from one IaaS cloud
provider like Amazon EC2 [2].

A. Simulation Setup
Job Types. We consider six types of VMs S = {m3.xlarge,

m3.2xlarge, c3.2xlarge, c3.4xlarge, r3.xlarge, r3.2xlarge}. A
job requiring some of the VMs lasts for different numbers of
time slots. The number of time slots a job needs the VMs
for, i.e., the workload, is chosen randomly from {1, 2, 3, 4}.
Hence, there are 24 types of jobs in total.

Demand Curve. We conduct our simulations based on
Google cluster-usage traces [23], reflecting the resource de-
mands (CPU, memory, etc.) of jobs submitted to the Google
cluster. We translate the Google data into concrete hourly job
arrival rates as our input. One time slot is an hour. Fig. 3
shows job arrivals at the ASP for one typical job type.

Pricing. The cost parameters in the problem formulation
are all set according to Amazon EC2 pricing policies [4].
Specifically, the one-time payment for a reserved VM is
calculated by scaling down the total charge (upfront fee plus
hourly charges) of a real reserved instance with 1-year term
according to the ratio N/(365 ∗ 24). The hourly price for
running one on-demand VM is set as {$0.28 $0.56 $0.42 $0.84
$0.35 $0.7} for the six VM types, the same as the instances
hosted on Amazon EC2. We extract real spot prices of the six
VM types in the region US West (Oregon) of Amazon EC2
from Jun 22 to Jul 22, 2014 by Amazon EC2 CLI Tools [24].
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Fig. 4. The spot price fluctuations of three typical VM types.
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Spot prices are updated every 5 minutes. Fig. 4 illustrates
temporal variations in spot prices for three typical VM types,
in contrast with fixed on-demand prices.

B. Cost
We first run our online algorithm for 720 time slots with

parameters V = 3000, N = 24, ϵg = 50 ∗ mg and σg =
1000 ∗ αsg . We scale down the value of N due to the limit
of available spot price traces, but it still represents the main
characteristics of reserved instances. Fig. 5 shows the cost
and penalty incurred by dropped jobs of the ASP in each time
slot. We see that no penalty occurs under our setup, validating
Theorem 2 in Sec. IV.

For comparison purposes, we also implement a heuristic al-
gorithm that always maximally schedules type-g†s jobs, whose
observed value of Qg(t) is the largest among all types of jobs
requiring type-s VMs. Fig. 6 shows the costs achieved by
the two algorithms respectively. We observe that our online
algorithm outperforms the heuristic algorithm over time.

C. Impact of Spot Price Fluctuation
We illustrate the fractions of VM acquisition cost for three

typical VM types with our online algorithm in the upper figure
in Fig. 7. We observe that the VM acquisition cost comes
primarily from reserved and on-demand VMs. To further
understand the connection between spot price fluctuations
and cost savings, we next evaluate the VM acquisition cost
discount due to using and not using spot instances in our
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Fig. 6. Comparison of costs between our algorithm and heuristic algorithm.
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Fig. 7. Cost savings with and without spot VMs for different VM types.

online algorithm for three typical VM types. The lower figure
in Fig. 7 shows the cost advantage of our online algorithm
over another online algorithm No Spot that conducts VM
acquisition without spot VMs for comparison purposes. As
illustrated in Fig. 4, spot prices for the three typical VM
types present quite different temporal fluctuation patterns. But
we see that our online algorithm can bring more than 50%
cost savings for all three VM types, when spot instances are
exploited. Therefore our algorithm is robust to the fluctuation
of spot prices. We also observe that though the number of
spot instances exploited by our online algorithm is small
as compared to the numbers of reserved and on-demand
instances, the cost saving is huge, due to the very low prices
of spot instances.

D. Impact of V and N

We next study the scheduling delays experienced by jobs.
Fig. 8 shows the average response delays and maximum
response delays with our online algorithm under different
values of V . We see that both average response delay and
maximum response delay increase as V increases, confirming
the impact of V on the queueing delay in Theorem 1.

From Theorem 3, we note that the cost performance of the
proposed online algorithm depends on two critical factors, V
and N . Fig. 9 reveals how the time-averaged cost achieved by
our algorithm varies with different values of V and N . We see
that as V increases, the time-averaged cost decreases, verifying
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Fig. 8. Average and maximum response delays under different values of V.
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Fig. 9. Time-averaged costs under different values of V and N.

the O(1/V )-versus-O(V ) cost-delay tradeoff in Theorem 1
and Theorem 3. N is the reservation period and the length of
a super frame as well. Fig. 9 (b) suggests that the value of
N has relatively less impact on the time-averaged cost of our
online algorithm . When V increases, ϵ is properly set, and N
is large enough, the time-averaged cost is arbitrarily close to
the offline optimum plus a constant.

E. Characterizing Algorithm Robustness
As mentioned in Sec. IV, our algorithm needs to predict the

probability of the occurrence of a termination event for type-s
spot VMs in the coming time slot Ps(t), which is estimated
based on historical activity records of type-s spot VMs within
a window of a certain number of past time slots. Now we
explore the influence of the prediction window size on the cost
performance. In Fig. 10, we show the time-averaged costs with
different prediction window sizes. We can see that the cost
performance of our online algorithm is completely insensitive
to the prediction window size. Therefore, the proposed online
algorithm is robust in our estimation.

VI. CONCLUDING REMARKS

This paper investigates cost minimization strategies at ASPs
with arbitrary demands which provision application services
with VMs purchased from IaaS Clouds. We design a dynamic
algorithm for an ASP to schedule job service/drop, and to
decide the amount of reserved, on-demand and spot instances
to purchase simultaneously in the most economic fashion,
under time-varying job arrivals and fluctuating spot instance
prices. The proposed algorithm can obtain a time-averaged
VM purchasing cost with a constant gap from its offline
minimum, based on solid theoretical analysis and trace-driven
evaluations.
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