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A B S T R A C T

As mobile terminals proliferate and mobile Internet traffic explodes, demand for efficient and high capacity
cellular access escalates. Two fundamental techniques are being implemented to help meet such a demand. The
first is virtualization based, centralized cloud processing. Baseband signals are sampled and transmitted through
front-haul links to a mobile cloud, for processing by mobile base station instances deployed in an on-demand
fashion. User and channel information are aggregated to the cloud, facilitating optimized decision making. The
second is the separation of infrastructure ownership from service provisioning in cellular networks. The “Tower”
company now specializes in deployment and maintenance of the cloud-radio access network (C-RAN) infra-
structure. Mobile operators focus instead on their sole business of wireless service provisioning. Mobile operators
lease C-RAN resources that include spectrum resources at remote radio heads, front-haul bandwidth and mobile
base station instances. This work proposes a natural auction approach for inter-operator resource sharing, where
each operator bids a capacitated sub-network of the C-RAN. Drawing from the theories of Maximal-in-Range
auctions and efficient graph algorithms, we design and test a C-RAN resource auction that is truthful, poly-
nomial-time computable, and achieves close-to-optimal social welfare.

1. Introduction

As mobile devices and applications proliferate and mobile access to
the Internet grows, demand on capacity and efficiency of cellular net-
works escalates. The transition from 4G (LTE and LTE-Advanced) to 5G
cellular technologies in the upcoming years aims to provide sub-
stantially enhanced system capacity and data transmission efficiency
through a number of new technologies that include cloud computing
based radio access networks (C-RAN) and network function virtuali-
zation (NFV) [30]. The fundamentally new technologies in future cel-
lular networks demand new resource management algorithms and
protocols that work in concert with infrastructure and hardware
changes. This work draws the community’s attention to the problem of
virtualized resource sharing among mobile operators in a C-RAN, and
designs and tests auction based solutions.

An important infrastructure revolution in cellular networks is the
deployment of C-RAN, for cloud computing based, centralized in-
formation processing and system optimization. A traditional base sta-
tion (BS) includes a complex signal processing unit, for A/D D/A con-
version [31]. The processing capacity of the BS needs to be large

enough even in peak hours. However, traffic volume at a BS fluctuates
dramatically across the temporal domain, and peak traffic volume may
be substantially higher than average. As a result, the utilization of an
individual BS is rather low. As inter-BS sharing of processing resources
is infeasible in the traditional cellular infrastructure, considerable
processing capacity and energy are wasted. The cloud radio access
network (C-RAN) is a new cellular network infrastructure based on
cloud computing and NFV [32]. Remote Radio Heads (RRHs) at BSs are
to be greatly simplified, with functions pushed toward mobile clouds
(data centres) that each manages a group of BSs. Analog signals from
RRHs are sampled, quantized, and transmitted through a front-haul
network to the cloud. The cloud hosts a pool of virtual BS instances for
processing baseband signals with functions such as channel coding and
modulation. Virtual BS instances are provisioned in an elastic fashion,
following realtime demand from RRHs. Centralized information and
processing in the C-RAN further facilitates system-wide optimization
and cost-saving, such as centralized management, cooperative com-
munication and joint decoding [21].

Another important trend in cellular networks is service-infra-
structure separation, i.e., the separation of infrastructure ownership
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from cellular service provisioning. Constructing and operating BSs re-
presents a major expense of traditional mobile operators. For example,
carriers in China spent more than $200 billion US to maintain and build
BSs from 2008 to 2012, but the utilization rate of the processing re-
sources and fibre-optic links is only 1/3 [2]. The creation of the
“Tower” company was recently witnessed in a few markets around the
world since 2013 [3]. In China, a national Tower company was created
in July 2014, taking over BSs from three major mobile operators [3].
The Tower company is responsible for designing, building and main-
taining BSs. It further operates regional data centres that manage BSs
and process baseband signals. In the US, AT&T sold their BS subsystem
in October 2013 to Crown Castle, currently the largest provider of
shared cellular infrastructure in the US with approximately 40,000 BS
towers [1]. The vision of 5G and beyond is that the Tower company is
dedicated to the deployment and ownership of the C-RAN infra-
structure. Mobile operators are freed from infrastructure maintenance,
and focus explicitly on their core business of providing the best mobile
Internet service. Using virtualization technologies, mobile operators
lease resources (spectrum resources at BSs, virtual BS instances and
front-haul bandwidth) from the Tower company to serve their custo-
mers.

Similar to the cloud computing market where long term contracts
and short term auctions complement each other for meeting customers’
need of virtual machine instances, mobile operators are expected to
sign long term contracts for baseline service coverage, and acquire
additional resources in short term through auctions to cover temporal
and spatial demand spikes. This work proposes an auction based market
mechanism for such short-term C-RAN resource leasing. Such a C-RAN
auction has a salient feature that separates itself from wireless spectrum
auctions [12] and virtual machine auctions [26] that have been ex-
tensively studied — the bid of each mobile operator is naturally ex-
pressed as a sub-network of the C-RAN, and the C-RAN faces a sub-
network packing problem in social welfare maximization. We study the
C-RAN resources auction under two front-haul models: point-to-point,
i.e., every BS has its own fibre to the cloud, and daisy chain, i.e., BSs
share fibre links to the cloud in groups.

The underlying sub-network packing structure renders the C-RAN
auction NP-hard, even if truthful bids are given for free. The key
techniques we employ for designing an efficient and truthful auction
include (a) exploiting the planarity of the C-RAN topology, and (b)
Maximum-in-Range (MIR) auction theory. First, we design an exact
algorithm to maximize social welfare over a given solution space of
feasible C-RAN resource allocation. The time complexity of the exact
algorithm is highly dependent on the structure of the feasible solution
space to which it is applied, and is exponential over the entire feasible
solution set. Second, our auction pre-commits to a set of carefully
chosen solutions of social welfare maximization problem, such that (a)
the chosen set is well-structured and allows polynomial-time max-
imization of the social welfare using the exact algorithm, and (b) the set
is sufficiently large and effective, so the optimal solution inside this set
approaches global maximum sufficiently closely. An alternative view to
the second step is that the exact algorithm together with the pre-
commit-ment step constitutes an approximation scheme to the C-RAN
welfare maximization problem. Third, we adapt VCG-style payments to
work in concert with the exact algorithm and the pre-commitment step,
and show that the auction is truthful. The end result is a C-RAN re-
source auction that is truthful, polynomial-time computable, and
guarantees −(1 ϵ) economic efficiency. We next provide a more de-
tailed overview of the key steps.

We formulate the C-RAN social welfare maximization problem as an
integer linear programming problem, which is proven to be NP-hard
even for a constant number of BSs or a constant number of mobile
operators. We first design an exact algorithm for computing an optimal
allocation among a given feasible solution set. The exact algorithm
exploits the unique planar topology of a C-RAN, and combines dynamic
programming and planar graph bisection techniques in an algorithm

that is as computationally efficient as possible, while guaranteeing
output optimality. The running time of the exact algorithm is ex-
ponential on the original solution space, and is proven to be polynomial
on the well-structured subspace of solutions that we pre-commit to.

Given the exact algorithm, an obvious solution is to apply it together
with the VCG auction framework to obtain a truthful C-RAN auction.
However, such a VCG auction can handle only very small C-RAN
topologies. Empirical results show that the computation time of the
VCG auction for a C-RAN system with a few layers of BSs already ex-
ceeds one minute. A key step in our C-RAN auction design is to utilize
the exact algorithm on a well-structured subspace of solutions, ob-
taining a much more efficient approximation scheme. Our empirical
studies suggest that our C-RAN auction algorithm can handle a C-RAN
topology consisting of thousands of base stations in seconds. The idea in
our approximation scheme design (solution subspace selection) is based
on the observation that the running time of the exact algorithm is ex-
ponential to the parameter k, for a C-RAN topology that is k-outerplanar
(k layers of BS cells). Instead of working directly on a k-outerplanar C-
RAN, the auction examines instead a sequences of dissected outerplanar
graphs, each with a series of k′-outerplanar components, where k′ is a
constant smaller than k. Our approximation scheme is parameterized by
a tunable constant ϵ, based on which we can tradeoff between solution
optimality and computational complexity.

Given the approximation scheme, our final step towards the C-RAN
auction design is to apply the MIR auction design technique that has
recently witnessed a number of successful applications [4,22]. We take
a retrospect on the approximation scheme, verify that it effectively pre-
commits to a well-structured subset of feasible solutions. The approx-
imation ratio analysis provides a guarantee that the optimal solution in
the subset is indeed close to the optimal solution in the entire feasible
solution set. The approximation scheme can therefore be combined
with a VCG-style payment mechanism to become an MIR auction,
which is efficient, elicits truthful bids for C-RAN resources from mobile
operators, and guarantees close-to-optimal social welfare.

To verify the efficacy of the proposed C-RAN auctions for inter-
operator resource sharing, we have conducted extensive real-world
trace-driven simulation studies, verifying the time efficiency, the social
welfare performance, and details in the resulting resource allocation in
both point-to-point and daisy chain front-haul models. Simulation re-
sults for large scale C-RAN systems show that the proposed auctions can
handle C-RAN graphs with up to thousands of BSs; the resource allo-
cation from the auction achieves about 99% of maximum social wel-
fare. That suggests in real world systems, the performance of the auc-
tion algorithm can be much better than the guaranteed approximation
ratio, which corresponds to the theoretical worst case.

In the rest of the paper, we review background and related work in
Section 2, and describe the C-RAN system model in Section 3. Sections 4
and 5 present the auction schemes for C-RANs with point-to-point front-
hauls and daisy chain front-hauls, respectively. Section 6 presents
performance evaluation. Section 7 concludes the paper.

2. Background and related work

Resources for lease through the C-RAN auction include spectrum
resources, virtual BS instances and front-haul bandwidth. Although
existing studies abound on spectrum auctions [10,12] and cloud re-
source auctions [34,37], this work is the first that tailors a truthful
auction for the C-RAN system to allocate all three types of resources,
which has a unique sub-network packing structure.

We briefly overview the background on C-RAN spectrum resources.
Current mobile networks support both frequency-division duplex (FDD)
and time-division duplex (TDD) modes [16]. FDD splits the channel
frequency into many small subcarriers spaced at 15kHz, and then
modulates each individual subcarriers using a digital modulation
scheme (e.g., 64-QAM). TDD splits a subcarrier into alternating time
periods for downlink and uplink transmission. In future mobile
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networks that use spectrum bands up to 60 GHz [39], a unit of spectrum
resource may consist of hundreds of continuous subcarriers, and the
number of available spectrum resources in each BS is limited by its
channel bandwidth.

We next review related literature and background of the C-RAN
system. A regional C-RAN includes three components: (i) base stations,
(ii) a mobile cloud (data centre), and (iii) the front-haul network.

Base stations: BSs equipped with RRHs are used to transmit/re-
ceive signals to/from user equipments (UEs). Signal processing func-
tionalities, while traditionally located on BSs, are virtualized and run
remotely as mobile BS instances in the cloud data centre. The main
technical challenge on BSs becomes making RRHs power-efficient and
scalable [5,7].

Front-haul: The C-RAN front-haul transmits signals between BSs
and the cloud, usually through a fibre network. The front-haul is a
capacity bottleneck of the C-RAN, since bandwidth requirement is
significantly higher for transmitting baseband sampling data [9]. The
front-haul can have either a point-to-point topology or a daisy chain
topology [9,21]. In a point-to-point C-RAN, each BS is connected di-
rectly to the cloud. When bandwidth requirement for baseband signal
transmission rises to dozens of Gbps in the future mobile networks, this
solution could be expensive as demand for the number of fibres per BS
increases quickly. In a daisy chain C-RAN, through wavelength-division
multiplexing (WDM), neighbour BSs are connected to a multiplexer/
demultiplexer, and share optical links to the cloud. Besides physical
implementation of the front-haul, some researchers investigate the
transmission scheme in the front-haul. Sundaresan et al. [28] propose
an intelligent configuration of the front-haul that deploys appropriate
transmission strategies to maximize the traffic demand satisfied on the
RAN.

The mobile cloud: The mobile cloud hosts and allocates a pool of
virtual BS instances. A virtual BS instance is a virtual machine that
specializes in signal processing functionalities (PHY, MAC, and network
layer) traditionally found at BSs. Zhu et al. [40] introduce the steps of
building a virtual BS pool and implement the first working prototype on
a multi-core IT platform. Other studies focus on the design of resource
allocation in the cloud data centre. Bhaumik et al. [8] analyse real-
world trace data and show that the use of homogeneous computing
resources for processing signals from BSs has the potential to save
computing resources. Pompili et al. [24] present novel reconfigurable
solutions for provisioning and allocation of virtual BSs, and discuss
their pros and cons. Tang et al. [29] investigate a cross-layer resource
allocation problem for C-RAN to minimize the overall system power
consumption.

Auction mechanisms for cloud resource sharing have been ex-
tensively studied. Zhang et al. [35] apply a decomposition technique to
design a randomized combinatorial auction for dynamic cloud resource
provisioning. Sun et al. [27] propose a Nash equilibrium based cloud
resource allocation algorithm by using a double auction method.
However, they provide no proven guarantee for the approximation ratio
in social welfare. Zhang et al. [36] aim to maximize total revenue while
minimizing the energy cost for the cloud resource allocation problem.
Different from the above literature, this work focuses on the allocation
of C-RAN resources to mobile operators, targeting social welfare max-
imization. We propose a truthful auction for the operators to lease three
types of virtualized resources from a tower company. The design of the
auction applies algorithmic methods for manipulating a type of graphs
known as k-outerplanar graphs, which naturally characterizes the cel-
lular topology found in a C-RAN.

Along the direction of mechanism design for C-RAN resource
sharing, Zhu et al. [38] design a combinatorial auction mechanism to
jointly address the hierarchical resource allocation problem in 5G
networks. Gu et al. [14] propose the first online auction to jointly al-
locate C-RAN resources. They assume bidders arrive online and bid for
current resources. The above literature ignore the role of links that
connect neighbour BSs. Moreover, our mechanism achieves

−(1 ϵ)-optimal social welfare, which significantly outperforms other
mechanisms.

Our C-RAN auction design was partly inspired by a general tech-
nique of Baker [6] for designing approximation algorithms over k-
outerplanar graphs. They propose a decomposition technique to work
on k-outerplanar graphs. When applied to the maximum independent
set problem, their algorithm guarantees +k k( / 1)-approximation. Be-
sides such k-outerplanar graph partitioning, our C-RAN auction design
further requires an entirely different algorithm for processing the par-
titioned sub-graphs and MIR auction theory for converting approx-
imation algorithms into truthful auctions.

3. System model and preliminaries

We consider a cloud radio access network (C-RAN) in a geographical
region where M BSs are connected to a cloud data centre via optical
fibre links (front-haul). Each BS hosts RRHs that transmit and receive
signals. The signal processing units of the BSs are virtualized into vir-
tual BS instances and are moved from the cell site into the cloud data
centre, for resource consolidation and virtualization. The data centre
maintains a virtual BS instance pool, and allocates virtual BS instances
and each base station’s spectrum resources. Mobile network operators
lease resources for data transmissions from a Tower company that owns
the C-RAN infrastructure. They sign a long-term contract (e.g., six
months) with the Tower company for covering a baseline demand.
Short-term leases of additional resources are conducted through auc-
tions, for meeting transient demand hikes (e.g., half an hour). We
consider the short-term C-RAN resource auction in two representative
C-RAN models: point-to-point front-haul and daisy chain front-haul.

We consider the general case where the mobile operator bids for not
only resources at the BSs but also links between certain BS pairs. Such
inter-BS links play an important role in C-RAN control and optimiza-
tion. For example, Coordinated multipoint (CoMP) is a promising
technology in LTE and 5G to reduce the interference and improve the
transmission data rate, which is a main element on the LTE roadmap
beyond Release 9 [18]. Neighbour BSs coordinate in communication
session by sharing data and information such as channel state in-
formation [17]. It is natural and practical to consider direct commu-
nication links, either fibre or wireless, between neighbour BSs [19].
Control messages such as handover messages can also be transmitted in
a timely fashion via such inter-BS links.

3.1. C-RAN with point-to-point front-haul

Fig. 1 illustrates a C-RAN with point-to-point front-haul where each
BS is connected directly to the cloud [15]. Let [N] be the set of num-
bered mobile operators ⋯ N{1, 2, , } with cardinality N. A C-RAN is
modelled by a node-capacitated graph =G ( , )M E . Each node ∈m M

( = MM ) is an abstraction of the spectrum resources at BS m, the
potential processing resource pool for BS m in the cloud, and front-haul
links between BS m and the cloud. E is the set of links between BSs.
Direct communication between BSs has rather low data rate, hence we
assume no capacity limits on links in E .

Assume that one virtual BS instance controls a unit spectrum re-
source and the data generated by a spectrum resource is 1 unit per
second. Let Rm denote the available amount of spectrum resource in

Fig. 1. C-RAN with point-to-point front-haul.
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base station m. We relax the capacity limit for the number of virtual BS
instances in the cloud, under the assumption that the C-RAN capacity
bottleneck lies in the front-haul and the BSs [9,25]. With point-to-point
front-haul, inter-BS front-haul capacity competition is non-existent, and
we further assume that the bottleneck lies at the network of BSs.

3.2. C-RAN with daisy chain front-haul

Fig. 2 shows a C-RAN with daisy chain front-haul [15]. Let g denote
a transmission group in the C-RAN system where several BSs share
optical links to the cloud. We assume that the maximum number of
hops between two BSs in a group is limited by a threshold l. In Fig. 2, up
to six base stations are cascaded towards the cloud ( =l 2). This model
results in inter-BS competition of front-haul capacity. Let Cg denote the
capacity (in units per second) of the shared optical links of group g.

3.3. The C-RAN resource auction

During each round of the C-RAN auction, an operator who predicts a
resource shortage submits to the cloud a bid that corresponds to a ca-
pacitated subnetwork of the C-RAN graph. The bid submitted by op-
erator n is of the format (rn, m, wn, m, cn, e). Here rn, m is the number of
unit spectrum resources requested at BS m, which implies an equal
number of virtual VM instances and an equal number of front-haul link
capacity units. wn, m is the willingness to pay for the resources at node
m. If an operator n receives two adjacent BS nodes m1 and m2, then
further having access to the link e between m1 and m2 results in an extra
gain from link e, owing to the benefit of CoMP. Let cn, e denote the
average MIMO multiplexing gain and average diversity gain that op-
erator n received from link e.

The cloud may accept either the bid subgraph in its entirety, or an
induced sub-graph of the bid subgraph. The mobile operator n is willing
to pay the summation of node utilities wn, m over all node m plus the
summation of link utilities cn, e over all links e in the accepted sub-
graph. The cloud solves a subgraph packing problem to decide the re-
source allocation S, and compute the payments for winning operators. S
includes two types of binary number: xn, m is 1 if operator n successfully
receives recourses at BS m, and 0 otherwise; yn, e is 1 if operator n
obtains link e, and 0 otherwise. The accepted sub-graphs packed to-
gether have to respect node capacities in the original C-RAN graph. Let
pn be the payment of operator n, ∀n∈ [N]. Table 1 lists notation for ease

of reference.
Fig. 3 shows a simple C-RAN graph with 3 BSs. Assume three op-

erators submit bids. Each BS is labelled with the amount of desired
resources and valuation, and each inter-BS link is labelled with its va-
luation. The amount of available spectrum resources at each BS is 10.
Each operator’s bid subgraph is shown in the figure. The optimal re-
source allocation is highlighted in each operator’s bidding subnetwork.

Let ′wn m, be the true valuation of operator n’s desired recourses at
each BS m and ′cn e, be the valuation of each inter-BS link e. Each op-
erator’s valuation is private information known to itself only. The utility
of operator n is:

∑ ∑= ⎛⎝⎜ ′ + ′ ⎞⎠⎟ −∈ ∈u w c w x c y p( , ) .n n m n e
m M

n m n m
e E

n e n e n, , , , , ,

Following the convention in algorithmic game theory, operators are
assumed to be selfish but rational. They are interested in maximizing
their own utility and may not report their true valuations, i.e.,≠ ′w wn m n m, , and ≠ ′c c ,n e n e, , if doing so leads to a higher utility. The
auctioneer instead wishes to maximize the aggregate social “happi-
ness”. Towards that goal, it is important for the auctioneer to elicit
truthful bids from operators.

Definition 1. (Truthful action): A C-RAN auction is truthful if for any
operator n, reporting the true node and link valuations maximizes its
utility, regardless of other operators’ bids. That is, for all ≠ ′w wn m n m, ,
and ≠ ′c c ,n m n m, , the following is always true:′ ′ ≥u w c u w c( , ) ( , ).n n m n e n n m n e, , , ,

Definition 2. (Social welfare): The social welfare in the C-RAN auction
is the sum of the aggregate operators’ utility
∑n∈ [N](∑m∈M ′ + ∑ ′ −∈w x c y p )n m n m e E n e n e n, , , , and the C-RAN’s revenue
∑n∈ [N] pn. Since Payments between C-RAN and operators cancel
themselves, the social welfare is equal to
∑n∈ [N] ∑ ′ + ∑ ′∈ ∈w x c y( )m M n m n m e E n e n e, , , , .

4. C-RAN auction: point-to-point front-haul

We first consider resource allocation in the C-RAN with a point-to-
point front-haul. We formulate the allocation problem into an integer
linear program (Section 4.1). An exact algorithm based on dynamic
programming is designed (Section 4.2), and an approximation scheme
(Section 4.3) utilizes the exact algorithm on a well-structured solution
subspace to return (1-ϵ)-optimal social welfare. Finally, the approx-
imation scheme is transformed into a truthful MIR auction
(Section 4.4).

4.1. Social welfare maximization for C-RAN with point-to-point front-haul

Under truthful bidding, the social welfare maximization problem in
the C-RAN resource auction with a point-to-point front-haul can be
formulated into the following integer linear program (ILP):

∑ ∑ ∑⎛⎝⎜ + ⎞⎠⎟∈ ∈ ∈w x c yMaximize
n N m M

n m n m
e E

n e n e
[ ]

, , , ,
(1)

Subject To:

Fig. 2. C-RAN with daisy chain front-haul.

Table 1
Summary of notations.

N # of operators [N] integer set ⋯ N{1, , }

M # of base stations pn payment of operator n
V(S) social welfare achieved by the allocation S
G =G ( , ),M E the C-RAN graph
rn, m amount of requested resources by operator n at BS m
wn, m bidding price of rn, m resources in operator n’s bid
cn, e bidding price of link e in operator n’s bid′wn m, valuation of rn, m resources in operator n’s bid′cn e, valuation of link e in operator n’s bid
xn, m operator n receives resource at BS m (1) or not (0)
yn, e operator n bids link e successfully (1) or not (0)
Rm available spectrum resources at base station m
Cg capacity of shared fibre for transmission group g

Fig. 3. Operators bid subnetworks of the C-RAN.
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∑ ≤ ∀ ∈∈ r x R m,
n N

n m n m m
[ ]

, , M
(1a)

≤ ∀ ∈ ∀ ∈ ∀ ∈y x n N m e e, [ ], ,n e n m, , E (1b)

∈ ∀ ∈ ∀ ∈x n N m{0, 1}, [ ],n m, M (1c)

∈ ∀ ∈ ∀ ∈y n N e{0, 1}, [ ],n e, E (1d)

Constraint (1a) is the channel capacity constraint at each BS. Con-
straint (1b) guarantees that a link between two BSs is assigned to an
operator only when the cloud allocates spectrum resources in both BSs
to that operator. Constraints (1c) and (1d) model binary decisions.

Theorem 1. The C-RAN social welfare maximization problem in ILP (1) is
NP-hard, even if the number of BSs or the number of operators is constant.

Proof. If the input C-RAN system has only one base station, then the
social welfare maximization problem defined in ILP (1) degrades into
the classic knapsack problem [11] that is known to be NP-hard.

If the number of operators (N) is a constant instead, the problem is
also NP-hard. We prove this by reducing ILP (1) to the problem of
maximum independent set in planar graphs, which is proven NP-
Complete [11]. Next, we provide a sketch of the proof. Given a planar
graph, we construct an instance of ILP (1) with five operators, where
the first operator has very small valuations on links but large valuations
on nodes, and the other four operators each has small valuations on
nodes but extremely large valuations on links, such that an optimal
solution must assign all the links to at least one of the other four op-
erators. We then set the capacity constraint on each node in a way such
that if the first operator wins the bids at two adjacent nodes, any one of
the other four operators cannot gain the profit of that link. In an op-
timal solution of the constructed instance, the nodes with resources
allocated to the first operator must form a maximum independent set of
the planar graph. □

The number of mobile operators (N) in a given C-RAN is usually no
more than 5 in most regions in the world [33], but the number of BSs
may vary widely. Given Theorem 1, it is unlikely to find an efficient
algorithm that can compute the optimal allocation for large C-RAN
systems.

4.2. An exact algorithm for C-RAN resource allocation

We now design an exact algorithm that always returns an optimal
allocation in a given solution space, with a running time exponential in
the number of BS layers. The algorithm adopts the classic dynamic
programming approach to solve ILP (1). Note that there are direct links
only between BSs in neighbouring cells, hence the C-RAN graph=G ( , )M E is a k-outerplanar graph (planar graph with k “layers” of BS
cells) as defined below.

Definition 3. (k-outerplanar graph): An outerplanar graph has a
crossing free embedding in the plane such that all the vertices belong
to the unbounded face of the embedding. A k-outerplanar graph has a
planar embedding, and, deleting the vertices on the outer face results in
a −k( 1)-outplanar graph. Note that a 1-outerplanar graph is an
outerplanar graph.

The basic idea of the exact algorithm is to first build a set Λ of
feasible allocations for a few BSs, and then gradually expand the set to
all BSs, while keeping the optimal allocation on the already-examined
BSs included in the set.

We first consider a set G′ of BSs located in a continuous area, and let
Λ include all possible allocations for these BSs. Each time we append
one more BS to G′. The key observation is that for a fixed resource
allocation of the “boundary” BSs of G′, i.e., BSs that are adjacent to
some BS not in G′, the allocation of inner BSs will not affect future
allocations of BSs not in G′. Therefore, we keep Λ containing all possible
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allocations for the boundary BSs, and for each of them, we are able to
fix the optimal resource allocation for the inner BSs. The process is
repeated until G′ contains all BSs. The most time consuming step is the
enumeration of all possible allocations of boundary BSs. Therefore, we
try to keep the boundary of G′ small during the expansion of G′. Because
the entire C-RAN is a k-outerplanar graph, we are able to expand G′ to
include all BSs while maintaining at most 2k BSs in the boundary of G′.
The detailed algorithm is shown in Algorithm 1.

At line 5 of Algorithm 1, when we consider adding a neighbour BS
into the set Go, the new boundary has to include exactly 2k BSs. Under
this condition, only one BS becomes the inner BS, and we can easily
compute the best allocation (definition in line 8) of it and save that in
the feasible solution set Λ. In line 8, the term agree is defined as follows:
Let A be a partial allocation that allocates resources of BSs in ⊆B M to
operators. Then given a set B′⊆B and two partial allocations A and A′,
we say A agrees with A′ on B′ if ∀ ∈ ′ = ′m B A m A m, ( ) ( ), i.e., both al-
locations assign the resources in B′ to the same operators. Note that
when we compute A′, only +k2 1 nodes (in mc ∪ Bn) need to be con-
sidered. The best allocations for other BSs in Gn can be found in Λ as Λ
contains the best allocation of Go that agrees with every possible allo-
cation of Bo on Bo. In line 16, V(S) denotes the social welfare achieved
by the allocation S.

Fig. 4 illustrates how Algorithm 1 conducts resource allocation.
Here a 2-outerplanar graph models a C-RAN system with 11 BSs. First,
we construct Go as the set of BSs {2, 5, 3, 6}. Common BSs between Go

and the rest of G are boundary BSs {2, 5, 3, 6}, and they are inserted
into set Bo. First round, {1, 5, 3, 6}→ 2: Merger a neighbour BS 1 into
Go. The new BS set is denoted as Gn and the new boundary BSs {1, 5, 3,
6} are contained in set Bn. The common BS mc between Bn and Bo is BS
2. BS 2 becomes an inner BS and therefore we can save the allocation of
BS 2. Given an allocation of BSs in {1, 5, 3, 6}, we can compute the best
allocation of BS 2 that maximizes the social welfare of the subnetwork
induced by BSs {1, 5, 3, 6, 2}. If this particular allocation (for BSs {1, 5,
3, 6, 2}) satisfies constraints (1a) and (1b), it is saved into set Λ′. After
checking every possible allocation of {1, 5, 3, 6}, we obtain a set Λ′ that
contains allocations of BSs in {1, 5, 3, 6, 2}. Then let = ′Λ Λ, =G Go n and=B Bo n. Second round, {4, 5, 3, 6}→ {1, 2}: BS 4 is added into Gn,
which becomes {4, 5, 3, 6, 1, 2}. Boundary BSs are {4, 5, 3, 6} and=m 1c . Similarly, for every allocation of {4, 5, 3, 6}, there is a best
allocation of {1, 2} that maximizes the social welfare of Gn. Further-
more, for every possible allocation of {4, 5, 3, 6, 1}, we can find an
allocation of {1, 5, 3, 6, 2} in set Λ that agrees with it on {1, 5, 3, 6},
and then merge them to obtain an allocation of {4, 5, 3, 6, 1, 2} and add
that to Λ′. The process is repeated until all BSs are processed. At the
end, Algorithm 1 outputs the allocation with the maximal social wel-
fare.

Theorem 2. Upon termination, Algorithm 1 returns an optimal allocation
for ILP (1).

Proof. An optimal allocation includes the resource allocation of all BSs.
An allocation A with respect to a set of BSs ⊂N M is a candidate if it
agrees with an optimal solution on the node setN . We use the notation
A N to denote the part of allocation A on nodes N .

We prove the theorem by showing that at the end of each iteration

of the do while loop in Algorithm 1, the set Λ contains a candidate that
agrees with the optimal allocation on Go. When Go grows to G and the
do while loop terminates, one candidate in Λ is an optimal solution, and
it will be selected as the return value at line 13.

After the first iteration, Λ contains all possible allocations for nodes
in Go, which must contain a candidate. Now assume at the beginning of
the ith iteration of the do while loop, Λ contains a candidate. Let A*
denote the optimal solution, and A*|Go be the candidate. We show that
after the execution of the current iteration, Λ still contains a candidate.
In line 7, we enumerate all possible allocations A of Bn. Consider the
case that A agrees with A*. In line 8, we choose A′ that maximizes the
social welfare on nodes Gn and agrees with A, then the welfare of al-
location ′ ∪ −A A G G* ( )n must be at least that of A*, which implies′ ∪ −A A G G* ( )n is also an optimal solution. Therefore, the set Λ also
contains a candidate. □

Theorem 3. The computation complexity of Algorithm 1

is ⎜ ⎟⎛⎝ − ⎞⎠⌊ ⌋ +( )O M k( 2 ) N
N

k

/ 2

2 1
.

Proof. Lines 1 and 2 can be executed in O(1) steps. Line 3 deletes 2k BSs
and initializes set Λ, which also takes constant time. Lines 5 to 11 are
the body of the do while loop and will be executed −M k2 times, since
the size of ′M is −M k2 at the beginning and its size is decremented by
one at line 11. During each iteration of the do while loop, running time
of line 5 and line 6 is O(1). Lines 7 to 9 are a for loop that processes each
possible allocation for BSs in Bn. There are 2k BSs inside Bn, and each
BS’s resource can be shared among N operators. Hence, the total
number of possible allocations is (2N)2k, where 2N is the number of
allocations for one BS. Note that all the bids wn, m and cn, e, ∀n, m, e, are
non-negative, the optimal social welfare can always be achieved with
each node choosing a maximal allocation. Hence, we only need to
consider all the maximal allocations for each BS. It can be proven that
the number of different maximal allocations for one BS is no more than

⌊ ⌋( )N
N / 2 [20].
At line 8, the number of possible allocations that agree with A on Bn

is ⌊ ⌋( ),N
N / 2 as only mc needs to be considered here. The allocation for

other BSs can be found in Λ within O(1) steps. Then finding the one

with maximal social welfare takes ⎜ ⎟⎛⎝ ⎞⎠⌊ ⌋( )O N
N / 2 steps. Checking the

constants can be finished within O(1) steps. In summary, the number of

steps to execute the for loop is ⎛⎝ + ⎞⎠⌊ ⌋ ⌊ ⌋( )( ) ( )O O (1)N
N

k N
N/ 2

2

/ 2 . The

running time of line 10 and line 11 is O(1). Therefore, the running time

of the entire loop is ⎜ ⎟− ⎛⎝ ⎛⎝ + ⎞⎠ + ⎞⎠⌊ ⌋ ⌊ ⌋( )( ) ( )M K O O O( 2 ) (1) (1) ,N
N

k N
N/ 2

2

/ 2

or ⎜ ⎟⎛⎝ − ⎞⎠⌊ ⌋ +( )O M k( 2 ) N
N

k

/ 2

2 1
. Line 13 examines ⌊ ⌋( )N

N

k

/ 2

2
allocations and

outputs the optimal one, and the running time is ⌊ ⌋( )N
N

k

/ 2

2
. In summary,

the computation complexity of Algorithm 1 is

⎜ ⎟⎛⎝ − ⎞⎠⌊ ⌋ +( )O M k( 2 ) N
N

k

/ 2

2 1
. □

4.3. A fast approximation scheme for C-RAN resource allocation

Theorem 3 reveals that the running time of Algorithm 1 is ex-
ponential in the number of layers k of the C-RAN graph. In a C-RAN
system, a cloud can support up to the order of 1,000 base stations [21].
That translates into more than 20 layers in the cellular topology. When
k>6, the computation time is not acceptable even if only a small
number of operators participate in the auction, motivating the design of
a polynomial-time approximation algorithm. Aiming at a truthful auction
at the end, we restrict our attention to Maximum-in-Range (MIR) algo-
rithms [22]. An MIR algorithm works on a subset of feasible solutions,
and outputs a solution that maximizes the social welfare over the givenFig. 4. Algorithm 1 applied to a 2-outerplanar graph. Each node represents a BS.
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subset. The algorithm itself has to be maximizing without approxima-
tion loss (important for truthfulness), the room for manipulation lies in
the choice of the subset of feasible solutions to perform optimization
over.

Our design of the approximation scheme applies a decomposition
technique, which divides a given k-outerplanar graph into a series of k′-
outerplanar graphs with k′< k, and then calculates the optimal allo-
cation for each k′-outerplanar graph. The final output is the allocation
with maximal social welfare among them. The possible allocations on
those k′-outerplanar graphs form the feasible solution set we pre-
commit to. If we choose k′ as a small constant, the algorithm can run in
polynomial time. We can achieve −(1 ϵ)-optimal social welfare with
ϵ→ 0 as k′→ k and k→∞. We present the detailed approximation
scheme in Algorithm 2.

At line 1 of Algorithm 2, we label each layer of BSs from the outside
to the core, as illustrated in Fig. 1. The value of k is set at line 2 based on
the value of ϵ. A for loop from line 3 to line 7 decomposes G into +k 1
subgraphs that can be solved by Algorithm 1. Line 8 selects the allo-
cation with the maximal social welfare.

Fig. 1 shows a C-RAN system with 3 layers. Assuming 5 operators
participating in the C-RAN auction, Algorithm 1 takes more than
11 · 107 steps. Alternatively, Algorithm 2 can be applied to compute an
allocation within 11 · 105 steps. The speedup is already 100× in such a
tiny network. First, Algorithm 2 calculates the value of k for the ap-
proximation ratio − =1 ϵ 0.33. We obtain =k 2 in this example. Then it
decomposes the C-RAN graph in Fig. 1 into three subnetworks G1, G2

and G3 as shown in Fig. 5. Here each Gi has one or two components that
are at most 2-outerplanar. Algorithm 1 is applied on each k′-outerplanar
graph (k′∈ {1, 2}). The allocation of G2 is the union allocation of its two
components. The one among the three allocations with the maximal
social welfare is the final solution.

Theorem 4. Given an input C-RAN =G ( , ),M E Algorithm 2
achieves −(1 ϵ)-optimal social welfare as defined in ILP (1).

Proof. Let S and α be the optimal allocation and the optimal social
welfare obtained by S for ILP (1), respectively. The social welfare comes
from two parts: contribution from BSs and contribution from links. For
any BS ∈m ,M let αm be the contribution of m to the social welfare
induced by S. For any link ∈e ,E let αe be the contribution of e to the
social welfare induced by S. The optimal social welfare is= ∑ + ∑∈ ∈α α α .m m e eM E

For any Pi (line 4), let βi be the partial social welfare of S when we
consider only the contribution from BSs in Pi and links with at least one
point in Pi, then = ∑ + ∑∈ ∈ ∩ ≠∅β α α .i m P m e e P ei iE

If we add all partial social welfare βi together, the sum of them is at
most two times the optimal social welfare (∑ ≤=+ β α2i

k
i1

1 ), as each BS in∑ =+ βi
k

i1
1 is counted once and each link is counted at most twice. In lines 6

of Algorithm 2, the algorithm that optimizes the social welfare on the
network induced by M\Pi must return welfare of at least −α βi. In line
8, the allocation with the largest social welfare among the solutions for
network M\Pi is outputted, and the corresponding social welfare is at
least:
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Fig. 5. Decomposition in Algorithm 2: an illustration using the C-RAN in Fig. 1.
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□

Theorem 5. The running time of Algorithm 2 is

⎜ ⎟⎛⎝ ⎞⎠⌊ ⌋ −( )O M ,N
N

2
/ 2

14
ϵ and is polynomial to M with N being a constant.

Proof. Line 1 takes M steps to determine the layer number of each BS.
Line 2 can be done in one step. The body of the for loop is iterated +k 1
times. Within the loop body, lines 4–5 can be done in O(1) steps.
Because each component has at most k layers, the running time of line 6

is ⎜ ⎟⎛⎝⌈ ⌉ − ⎞⎠⌊ ⌋ +( )O M k( 2 )K
k

N
N

k

/ 2

2 1
. Line 9 takes one step and line 8 can be

done in +k 1 steps. In summary, the running time of Algorithm 2 is

⎜ ⎟⎛⎝ + ⌈ ⌉ − ⎞⎠⌊ ⌋ +( )O k M k( 1) ( 2 ) ,K
k

N
N

k

/ 2

2 1
which is the same as

⎜ ⎟⎛⎝ ⎞⎠⌊ ⌋ −( )O M N
N

2
/ 2

14
ϵ . □

4.4. A truthful auction for C-RAN with point-to-point front-haul

We now transfer Algorithm 2 into a truthful auction, by tailoring a
VCG-type payment scheme.

Theorem 6. Algorithm 2 is an MIR algorithm for the social welfare
maximization problem in (1).

Proof. Recall that an MIR algorithm fixes the solution range, and
returns a solution from the range that achieves the highest social
welfare. We construct the solution range τ before the auction begins.

Let τ be the set of all feasible solutions for ILP (1) on Gi,≤ ≤ +i k1 1, where Gi is a subnetwork induced by BSs in ∖PiM . Note
that solutions in set τ are also feasible solutions to ILP (1) on the ori-
ginal C-RAN graph G. Lines 6 in Algorithm 2 compute the optimal al-
location Si for Gi, and then select the allocation Sf with the maximal
social welfare among all Si in line 8. It is clear that Sf also maximizes the
social welfare over set τ.

In summary, Algorithm 2 is an MIR algorithm that achieves the
maximal social welfare among all the solutions in the solution range τ
that the algorithm pre-commits to. □

Next, in order to design a truthful auction, we utilize an important
property of MIR algorithms: every MIR algorithm that works in concert
with the VCG-type payments induces a deterministic truthful me-
chanism [22]. As a result, the payment can be expressed as the fol-
lowing:

= − −−p V S V S v s( ) ( ( ) ( )).n n
f f n n

f (3)

Here pn is the payment of each operator n. −S n
f is the allocation output

by Algorithm 2 when we set operator n’s bidding price to 0 on each
node and each link. Therefore, −V S( )n

f is the social welfare when op-
erator n is excluded from the auction. Sf is the solution returned by
Algorithm 2 when every operator participates in the auction, and V(Sf)
is the social welfare of the solution Sf. sn

f is the allocation for operator n,
obtained from the entire allocation Sf. −V S v s( ) ( )f n n

f is the total social
welfare except operator n.

Theorem 7. Algorithm 2 combined with the payment rule in (3) is a truthful
auction.

Proof. An MIR allocation combined with a VCG-type payment rule
belongs to the family of VCG mechanisms [22], rendering a truthful
auction. It is well known that VCG mechanisms are truthful [13]. A
mechanism belongs to the VCG family if it maximizes the social welfare
on a finite set of allowed output and the payment is calculated
according to VCG formula [22]. We can observe that an MIR
allocation algorithm with a VCG-type payment is a VCG mechanism
where the set of allowable output is the solution range of its
algorithm. □
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The C-RAN auction mechanism is summarized in Algorithm 3.

Theorem 8. Algorithm 3 is a truthful auction mechanism for the social
welfare maximization problem in (1). It runs in polynomial time and
achieves −(1 ϵ)-optimal social welfare.

Proof. The theorem follows from Theorems 4, 5 and 7. □

4.5. Further improving social welfare

Algorithm 2 ignores several layers of BSs due to network decom-
position, which is an apparent waste of RRH resources. We can pursue a
higher social welfare in practice by introducing a post-processing step
to Algorithm 2, to allocate resources at the ignored BSs and their ad-
jacent links. Note that all the dropped layers form a 1-outerplanar
graph, we can call Algorithm 1 to efficiently compute the optimal re-
source allocation for such 1-outerplanar graphs. Specifically,
Algorithm 4 is inserted between line 6 and line 7 in Algorithm 2.

While Algorithm 2 + Algorithm 4 achieves higher social welfare,
the new allocation does not come from the solution range τ, and hence
the improved algorithm is not an MIR algorithm on τ. Next, we con-
struct a new solution range for Algorithm 2 + Algorithm 4 and prove
its MIR property in Theorem 9.

Theorem 9. Algorithm 2 + Algorithm 4 is an MIR algorithm.

Proof. First, let a joint allocation be the concatenation of feasible
allocations on graphs Gi and G ,Pi ≤ ≤ +i k1 1. Note that a joint
allocation is a feasible allocation for the original graph G. Let τ′
denote the set that contains all the joint allocations.

At line 3 in Algorithm 4, we can observe that Si is the optimal al-
location for graph Gi and S pi is the optimal allocation for graph GPi.
Combining them together provides a joint allocation with the maximal
social welfare for the graph ⋃G Gi Pi. Next, Sf is selected among all Si,
achieving the maximal social welfare among Si and therefore among all
the solutions in set τ′. If we fix τ′ to be the solution range, then
Algorithm 2 + Algorithm 4 is an MIR algorithm that returns an allo-
cation with maximal social welfare over this solution range. □

Theorem 10. Algorithm 2 + Algorithm 4 coupled with the payment scheme
in (3) is a truthful auction mechanism that runs in polynomial time and
achieves −(1 ϵ)-optimal social welfare.

Proof. The proof of truthfulness and the approximation guarantee are
similar to the proof in Theorems 4 and 7. The running time of the
improved algorithm is still polynomial as the subgraph GPi includes less
than ⌈ ⌉K

k outerplanar graphs, and the running time of the for loop is

⎜ ⎟⎛⎝ ⌈ ⌉ − ⎞⎠⌊ ⌋ +( )O M k2 ( 2 )K
k

N
N

K

/ 2

2 1
. The overall complexity of the

Algorithm 2 + Algorithm 4 is still

⎜ ⎟⎛
⎝⎜ ⎛⎝ ⌊ ⌋ ⎞⎠ ⎞

⎠⎟
−

O M N
N/2

.2
4
ϵ 1

□

5. C-RAN auction: daisy-chain front-haul

In this section, we study C-RAN resource allocation with a daisy-
chain front-haul. We model the virtualized resource allocation problem
for such C-RANs in Section 5.1, and design a truthful auction me-
chanism in Section 5.2.

5.1. Social welfare maximization for C-RAN with daisy-chain front-haul

Under truthful bidding, the social welfare maximization problem in
the daisy chain front-haul model can be formulated into the following
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integer linear program (ILP):

∑ ∑ ∑⎛⎝⎜ + ⎞⎠⎟∈ ∈ ∈w x c yMaximize
n N m M

n m n m
e E

n e n e
[ ]

, , , ,
(4)

Subject To:∑ ≤ ∀ ∈∈ r x R m M,
n N

n m n m m
[ ]

, ,
(4a)∑ ∑ ≤ ∀ ∈ ∀∈ ∈ r x C m g g, ,

m g n N
n m n m g

[ ]
, ,

(4b)≤ ∀ ∈ ∀ ∈ ∀ ∈y x n N m e e E, [ ], ,n e n m, , (4c)∈ ∀ ∈ ∀ ∈x n N m M{0, 1}, [ ],n m, (4d)∈ ∀ ∈ ∀ ∈y n N e E{0, 1}, [ ],n e, (4e)

Constraints (4a), (4c), (4d) and (4e) are the same as constants (1a),
(1b), (1c) and (1d). The capacity constraint of the front-haul is mod-
elled in constraint (4b). Note that ILP (1) is a special case of ILP (4).
Following Theorem 1, we know that ILP (4) is also NP-hard even if the
number of operators or the number of BSs is constant.

5.2. Truthful auction for C-RAN with daisy-chain front-haul

A new exact algorithm for solving ILP (4) is shown in Algorithm 5,
which extends from Algorithm 1. The difference is that, we can only fix
the optimal allocation of an inner BS when all BSs sharing a common
front-haul link with it have been included in Gn. As we expand the BS
set from Go to Gn, more and more transmission groups are entirely in-
cluded in Gn. We define the newly included groups (g⊆Gn and g⊈Go) as
unprocessed groups.

Next, we will use the 2-outerplanar graph in Fig. 4 to illustrate the
idea of Algorithm 5. We assume that BSs are divided into two groups:
{1, 4, 2, 5, 8} and {3, 6, 9, 7, 10, 11}. First, we construct Go to include a
set of BSs {2, 5, 3, 6}. Boundary BSs are {2, 5, 3, 6}. First round, Go

takes over a neighbour BS 1. The new BS set is denoted as Gn and the
new boundary BSs are {1, 5, 3, 6}. There doesn’t exist any unprocessed
group in Gn, so the algorithm continues to run. Second round, BS 4 is
added into Gn, which becomes {4, 5, 3, 6, 1, 2}. Boundary BSs are {4, 5,
3, 6}. Again, the algorithm continues to run as there still doesn’t exist
any unprocessed group. Third round, Bs 8 is included into Gn. Now=G {8, 5, 3, 6, 2, 1, 4}n and =B {8, 5, 3, 6}n . BSs 2, 1 and 4 become
inner BSs and therefore we can save the allocations for them. More
specifically, given an allocation of BSs in {8, 5, 3, 6}, we can compute
the best allocation of BSs {2, 1, 4} that agrees with it and maximizes the
social welfare of the subnetwork induced by BSs {8, 5, 3, 6, 2, 1, 4}. If
this particular allocation (for BSs {8, 5, 3, 6, 2, 1, 4}) satisfies con-
straints (4a), (4b) and (4c), it is saved into set Λ′. After checking every
possible allocation of {8, 5, 3, 6}, we obtain a set Λ′ that contains al-
locations of BSs in {8, 5, 3, 6, 2, 1, 4}. Then let = ′Λ Λ . The process is
repeated until all BSs are processed.

Theorem 11. The computation complexity of Algorithm 5

is ⎜ ⎟⎛⎝ ⎞⎠⌊ ⌋ + +( )O M N
N

k kl

/ 2

2 1
.

Proof. The for loop in Algorithm 5 is executed when there exist
unprocessed groups. The boundary of the current set of BSs Go is
divided into two sides each with k BSs. For example, in Fig. 4, Go’s
boundary includes two sides {3, 6} and {2, 5}. When we add a
neighbour node to the current subgraph Go, that node must be
adjacent to one side of Go’s boundary. Because the longest distance
between two BSs in one group is l, there must exist unprocessed groups
when kl BSs have been inserted into the first Go. At this point, we can
compute the allocations for +k kl2 BSs, and record the best allocation
for the inner BSs that are in group g. The process is repeated at most M
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times. Therefore the running time of Algorithm 5 is ⎜ ⎟⎛⎝ ⎞⎠⌊ ⌋ +( )O M N
N

k kl

/ 2

2

when l≥ 1. An extra 1 is added to the exponent to ensure correctness
when =l 0. □

Next, we design an approximation algorithm to solve ILP (4)
(Algorithm 6). The algorithm differs from Algorithm 2 slightly, to en-
sure that the front-haul capacity constraint is satisfied during the de-
composition. For instance, consider an input network G with eight
layers. When =ϵ 0.8 and =l 2, then =k 4. G is decomposed into five
subnetworks:= ∖ ∖ ∖ ∖ = ∖ ∖ ∖ = ∖ ∖ = ∖ ∖ = ∖ ∖G G G G G G G G G G1 2 7 8; 2 3 8; 3 4; 4 5; 5 6.1 2 3 4 5

Theorem 12. Algorithm 6 achieves −(1 ϵ)-optimal social welfare for ILP
(4).

Proof. The analysis of the approximation guarantee is similar to that in
Theorem 4. Recall that S and α are defined as the optimal allocation and
the optimal social welfare for ILP (4). βi is the partial social welfare
from the contribution of BSs in Pi and from links with at least one point
in Pi. When we add the +k 1 partial social welfare together,∑ ≤=+ β lα2i

k
i1

1 because every BS is counted at most l times and every
link is counted at most 2l times. As a result, the social welfare returned
by the approximation algorithm is at least: − ≥ −+( )α α1 (1 ϵ)l

k
2

1 . □

We further combine Algorithm 6 with the VCG-style payment in (3),
and a truthful auction is obtained. The workflow of the auction is si-
milar to that in Algorithm 3.

Theorem 13. Combining Algorithm 6 with the VCG-style payment in (3)
renders a truthful auction, which runs in polynomial time and
achieves −(1 ϵ)-optimal social welfare for ILP (4).

Proof. If we fix a solution range τ that includes all the feasible solutions
for ILP (4) on graph ≤ ≤ +G i k, 1 1,i the approximation algorithm is
an MIR algorithm that outputs an allocation with the maximal social
welfare among the solution range. It can work with the payment rule in
(3), for constituting a auction mechanism whose truthfulness is
guaranteed by the property of MIR algorithms. The time complexity
analysis is similar to that in Theorem 5. −(1 ϵ)-optimality is proved in
Theorem 12. □

Finally, implementing Algorithm 4 inside Algorithm 6 further im-
proves the social welfare in practice. Note that, when we compute the
allocation for graph G ,Pi the front-haul capacity constraints for graph
GPi need to be updated according to the allocation for graph Gi.
Algorithm 6 + Algorithm 4 is still an MIR algorithm that returns the
best allocation among a pre-committed solution range τ′. Here τ′ in-
cludes all the joint allocations. A joint allocation consists of one feasible
solution on Gi and one corresponding solution on GPi under the revised
front-haul capacity constraints. Hence, combining this MIR algorithm
with VCG payments in (3) still renders a truthful auction.

6. Performance evaluations

To thoroughly examine the performance of our auctions in large-
scale C-RANs, we carried out simulation studies driven by real world
traces. We set the number of required resource blocks rn, m according to
real world traffic loads [23]. As shown in Fig. 6a, the location of each
BS is classified into two types: a business cell or a residential cell. For
each cell, we generate the traffic load with the chosen peak hour ac-
cording to the reported distribution [23], which is usually in the eve-
ning for a residential cell and during the day time for business cell.
Figs. 6c and d show the traffic load at 10 A.M. and 10 P.M., respec-
tively.

Operator n offers wn, m for the resources at BS m, which is propor-
tional to the amount of resources rn, m. However, the normalized va-
luation wn, m/rn, m may vary for different operators and different BSs.
For the utility cn, e of an inter-BS link e, we assume that it is proportional
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to +r r ,n u n v, , where u and v are the two end points of link e.

6.1. C-RAN with point-to-point front-haul

We study the approximation ratio of Algorithm 2 with and without
the improvement of Algorithm 4, under different numbers of partici-
pating operators and base stations. The approximation ratios and
overall social welfare are shown in Fig. 7a–d. We can see that, in all the
tested scenarios, Algorithm 2 + Algorithm 4 achieves a social welfare
very close to the optimum social welfare.

In Fig. 7a, there are 91 base stations that form a cellular network of
6 layers, and we set =k 2 for both Algorithm 2 and Algorithm 2 +
Algorithm 4. We can see that the performance of Algorithm 2 is not
affected by the number of operators.

In Fig. 7b, we fix the number of operators to 3 and vary the number
of BSs from 91 (6 layers) to 271 (10 layers), with =k 2 in both algo-
rithms. The approximation ratio of Algorithm 2 + Algorithm 4 remains
very close to 1, whereas the approximation ratio of Algorithm 2 de-
creases slightly with small fluctuations as the number of BSs grows. This
is because in Algorithm 2, we discard the resources in some layers of
BSs. As the number of layers grows, an optimal solution is more likely to
require a joint consideration of several base stations in adjacent layers,
which is ignored in Algorithm 2. This explains the slight decrease of the
approximation ratio. The fluctuations are caused by the rounding effect,
as we drop ⌈ ⌉K

k layers for different K.
The overall social welfare obtained by each algorithm are illustrated

in Fig. 7c and d. We can see that the social welfare grows as the number
of BSs and the number of operators increase. This is because more BSs
brings more resources for allocation, and more operators expands the
allocation solution space.

Fig. 8a and b show the approximation ratios and social welfare
achieved by Algorithm 2 with and without the improvement of
Algorithm 4. Here the number of BSs is 91, the number of operators is 3,
and k vary from 2 to 5. The performance of Algorithm 2 becomes better
as k grows, because more layers of BSs are jointly considered to find a
good allocation. The guaranteed approximation ratios are marked with
dashed lines. Note that the approximation ratios observed in trace-
based simulations are much better than the theoretical ratio − +1 k

2
1 .

We further assume that the operators have different market shares,
i.e., they have different numbers of subscribers and hence require dif-
ferent amount of resources. For example, the United States has four
major telecom operators, Verizon, AT&T, Sprint and T-Mobile, with
market shares of about 30%, 30%, 15% and 15%; in Canada, there are
three operators, with market shares of 36%, 32% and 31% [33]. To test
the impact of different market shares, we conduct two sets of simula-
tions with market shares [50%, 30%, 20%] and [30%, 30%, 30%],
respectively. The results are shown in Fig. 9a–d.

Fig. 9a–c show the impact of market share in point-to-point front-
haul model when running Algorithm 2 + Algorithm 4. From Fig. 9a, we
can see that the utility of each operator is proportional to its market

Fig. 6. Cellular traffic load distribution.

Fig. 7. Performance of C-RAN auction under different number of operators and BSs.

Fig. 8. Performance of C-RAN auction under different values of k.

Fig. 9. Impact of different market shares: [50%, 30%, 20%] (left) and [30%, 30%, 30%]
(right).
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share. Another interesting observation is on the composition of the
utility. Larger the operator is, larger the utility that is from the inter-BS
links is. The reason is that larger operator’s bid covers more BSs and
links, and meanwhile, our solution assigns resources to large operator
to fully exploit the utility of links. Fig. 9b shows the probability of
winning its bid for each operator. We can see that our algorithms are
more likely to assign resources to large operators rather than small
ones, because large operators are more likely to enjoy the links. Fig. 9c
shows the resource allocation on some BSs, verifying the fact that larger
operators are preferred in the resource allocation. Fig. 9d shows the
approximation ratio for C-RAN with daisy chain front-haul. The dia-
meter of the transmission group l varies from 0 to 2. The approximation
ratio of the improved algorithm (Algorithm 6 + Algorithm 4) is very
close to 1 in both types of market shares.

The ratio of average node price to link price is a key factor that
affects the resource allocation. We scale node prices with different
factors to test how our algorithms perform in different scenarios. The
results are shown in Fig. 10a–d.

Fig. 10a shows the percentages of resources allocated to each op-
erator. As link utility decreases, resources allocated to each operator
become more proportional to its market share ([50%, 30%, 20%]). This
effect is verified by the operator’s probability of winning the bids,
which is shown in Fig. 10b.

Fig. 10c shows the approximation ratios of Algorithm 2 with and
without the improvement of Algorithm 4. Both algorithms perform
better with larger node prices. This is because if the utility of nodes is
larger, the interplay between adjacent BSs becomes less important,
which reduces the potential loss of our algorithms. Our algorithms can
then find the optimal allocation for each subnetwork.

Fig. 10d shows the utility of each operator with node to link price
ratio set to 2 (left) and 5 (right). We see that the node contributes more
utility and the utility of each operator tends to be proportional to their
market share.

6.2. C-RAN with daisy chain front-haul

We tested algorithms proposed for C-RAN with daisy chain front-
haul under same setting as in the previous section, and obtained similar
observations. Hence we omitted some figures here. Additionally, we
conduct a set of simulations that vary the maximum diameter l of the

transmission group from 0 to 2. For the case of =l 0, each group con-
tains only one BS, and we assume that its optical fibre has sufficiently
large capacity. We test the performance of Algorithm 6 + Algorithm 4
(Fig. 11a and b) and Alg. 6 (Fig. 11c and d), with different numbers of
operators, different numbers of BSs and different values of k. The value
of k in Fig. 11a and b is set to 2 and the value of Gg is a random number
that is less than the largest transmission rate of group g. We can see that
the social welfare becomes larger with more operators or more BSs. For
larger l, the optical fibres are shared by more BSs, which implies less
available resources for each BS. This explains the decrease of social
welfare as l increases.

A key factor affecting social welfare is the capacity of optical links
shared by BSs in the same group. We conduct another set of simulations
where the group link capacity is proportional to the largest transmission
rate of group g. The social welfare under different group link capacities
is shown in Fig. 12a. We can see that the social welfare almost grows
linearly as the group link capacities grow.

Fig. 12b shows the resource utilization ratio at a business cell (BS 1)
and a residential cell (BS 2). We can see that they have different traffic
load patterns and the maximum usage ratio is about 90% at their peak
hours.

7. Conclusion

As cellular infrastructure ownership is separated from cellular ser-
vice provisioning, mobile operators now need to lease resources from

Fig. 10. Performance of C-RAN auction under different node to link price ratios.
Fig. 11. Performance of C-RAN auction with daisy chain front-haul.

Fig. 12. Performance of C-RAN auction under different settings.
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the C-RAN to serve its customers. The underlying algorithmic structure
of such C-RAN resource auction is unique in that each operator’s bid
can be specified as a capacitated sub-network of the C-RAN, and the
auctioneer needs to solve a sub-network packing problem that is com-
putationally very hard. This work draws the community’s attention to
the emerging C-RAN resource sharing problem, and proposes a first
solution based on MIR auction theory. The proposed auction is truthful,
polynomial-time executable, guarantees −(1 ϵ)-optimal C-RAN-wide
social welfare, and is evaluated through simulation studies. Note that
the time complexity of our mechanism grows quickly with the increase
of the number of mobile operators (N), and is exponential to − 14

ϵ .
When there exists a high precision requirement in social welfare opti-
mization, it may not be practical to apply our mechanism to a large
number of mobile operators. A natural direction for future research is to
study fast C-RAN resource allocation algorithms for large scale input. It
will also be interesting to investigate the online C-RAN resource sharing
problem.
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