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Abstract—The smart grid is a modern power grid that achieves
high efficiency and robustness through sophisticated information
and communications technology. Demand response has great
potential in helping balance demand and supply in a smart
grid, cutting generation cost and carbon footprint, and improv-
ing system stability. Auctions represent a natural and efficient
approach for carrying out demand response between the power
grid and large electricity users, microgrids, and electricity storage
devices. This work explores the modelling and design space of
demand response auctions, targeting expressive power, truthful
information revelation, computational efficiency, and economic
efficiency. We present a randomized auction that explores the
underlying problem structure of demand response, and prove
that it is truthful, runs in polynomial time, and achieves (1+ ϵ)-
optimal social cost for an arbitrarily small constant ϵ. The
key technique lies in the marriage of smoothed analysis and
randomized reduction, which makes its debut in this work among
literature on mechanism design, and can be applied to problems
where social welfare optimization is NP-hard but admits a
smoothed polynomial-time algorithm.

I. INTRODUCTION

The smart grid, emerging as a convergence of ICT with
power system engineering, is a modern electric power grid
infrastructure for enhanced efficiency and reliability through
automated control, communication, sensing and metering, and
the strategic optimization of demand, energy, and network
availability [1], [2]. As in a traditional power grid, the
quintessential problem in a smart grid is the realtime balance
between supply and demand. Imbalances are to be corrected
within seconds, to avoid frequency deviations that threaten
grid stability [3]. Demand response facilitates cost savings
by reducing and temporally shifting peak loads, arbitraging
between periods of over- and under-generation. Essentially all
power grids dispatch generators in a merit order, and wholesale
electricity prices are in line with the highest marginal cost.
As a result, significant economic benefits can be gleaned
from a seemingly small reduction in peak consumption, as
illustrated in Fig. 1. It was observed that in a regional power
grid within the USA Eastern Interconnection, a 10% peak
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demand shedding translates into $28 billion annual savings
in electricity cost [4].

Supply Demand
Reduction

Quantity of Electricity

Demand 1

Demand 2Cost
Reduction

Cost  of
Electricity
Supply

Fig. 1. Benefit of demand response: a small reduction in peak consumption
(and hence peak generation rate) leads to significant cost savings and carbon
footprint reduction. Electricity generation cost is non-linear, and the marginal
cost per Watt increases as the generation rate increases.

In its definition of demand response, the Federal Energy
Regulatory Commission (FERC) envisions both elastic and
emergent versions: “changes in electric usage by end-use

customers from their normal consumption patterns to incentive

payments designed to induce lower electricity use at times

of high wholesale market prices or when system reliability

is jeopardized.” The first demand response model we study
(Sec. III) assumes emergent demand response with a fixed
target of demand reduction, while the richer problem of elastic
demand response is considered later in Sec. VI.

A demand response target, measured as the reduction in net
electricity consumption, can be achieved through three types
of actions:

⋄ Demand curtailing and temporal shifting. Large electricity
users exemplified by data centres are ideal candidates for
participating in demand response. In 2013, U.S. data centers
consumed an estimated 91 billion kilowatt-hours of electricity,
equivalent to the annual output of 34 large (500-megawatt)
coal-fired power plants. They incur $9 billion in electricity
bills and emit 97 million metric tons of carbon pollution per
year [5]. At the same time, computing tasks are often elastic
by nature [6], making temporal workload shifting feasible.

⋄ Onsite generation. Another salient characteristic of a modern
smart grid is the growing penetration of distributed generation
[7], where microgrids and large users are in procession of their
own generation units that include renewable generation with
unstable output (wind, solar) and stand-by generation that can
be started and tuned on-demand (diesel, fuel cell). Such quick-
start generation can contribute to a demand response process
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by increasing the output level during peak demand periods.

⋄ Electricity release to the grid. Recent technology advances
are making active (e.g., batteries) and passive (e.g., Plug-in
Electric Vehicles, or PEVs) electricity storage economically
feasible. Ideally, these devices are charged during periods of
low demand and low prices, and discharged at periods of high
demand and high prices. A demand response auction provides
the necessary catalyst that makes such electricity arbitrage
practically possible.

While a vast literature from the past three decades focus on
engineering challenges of demand response [8], [9], they often
fail to address a fundamental question of practical importance:
why would individual loads, microgrids and storage devices

voluntarily respond to grid instability at their own cost? As
admitted by the UK government [10]: “an effective market

mechanism must be created to reward installation of the

(demand response) technology fairly.”

The evolution of a traditional power grid to the smart grid
makes demand response auctions particularly suitable. First,
the two-way information communication infrastructure enables
realtime bid submission and auction result declaration [1]. Sec-
ond, agents in the grid now have their own intelligence module
based on software algorithms, and are capable of submitting
demand response bids and executing auction algorithms [1].
Large scale realtime auctions in a network environment have
now proven practically feasible. Thousands of ad impression
auctions are executed on the Internet by Google per second, or
billions per day [11]; myThings, the personalized retargeting
company in Europe, handles over 50 million realtime bids
per day [12]; Plethora Mobile receives up to 40, 000 bids per
second for audience targeting opportunities [13].

A main alternative to auction is pre-defined electricity
price offers, e.g., a substantially high metering price for
discouraging consumption when supply is tight [4]. While
straightforward, fixed price schemes have their limitations.
First, what price to offer is always a tricky question; the grid
may end up resorting to heuristic guesses and trial-and-error.
Second, it is hard to predict by how much the demand would
decrease as a result, problematic for emergent demand re-
sponse. Third, on-site generation and electricity release need to
be considered and priced separately. A well designed demand
response auction automatically resolves all three problems.
First, when properly designed, an auction discovers the market
price of a demand response bid automatically. Second, a
demand response target can be explicitly set and achieved in an
auction. Third, it is natural to implement a unified type of bid
that models all three options of demand response: curtailing
electricity consumption, on-site generation, and electricity
discharges by storage devices.

This work explores the modelling and design space of
demand response auctions in a smart grid, and aims to test
the limits of the performance of such auction mechanisms,
in terms of expressive power, truthful information revelation,
computational efficiency, and economic efficiency. First, we
consider both emergent demand response where a fixed target
in net demand reduction is to be achieved, and elastic demand
response where the grid has a concave utility function over

a range of flexible reduction ranges. We model demand
response bids in both forms of demand reduction and supply
augmentation. Quick-start generation at the power grid itself,
with linear or non-linear generation cost, is further included.
Second, we require that the auction be truthful — all demand
response participants achieve their respective maximum utility
by biding truthfully, regardless of other bidders’ strategies.
Third, for practical feasibility, we assume that computational
power at the grid is not unlimited, and the auction algorithm
must execute in polynomial-time. Fourth, we aim at tuning
the auction algorithm to elicit desirable behaviors from agents
in the grid, such that a demand response goal is met with
minimum possible grid-wide cost.

We present the design of demand response auctions that
consider all three types of bids, execute in polynomial time,
and achieve near-optimal social welfare. A key technique is
the combination of smoothed analysis with randomized MIDR
auction design. This is enabled by a pair of associated pertur-
bations that facilitates the design of a smoothed polynomial
time algorithm and turns it into a truthful auction. This new
technique of designing smoothed polynomial-time auctions
is applicable to a broad range of auction design problems,
where social welfare optimization can be modelled into a
linear integer program that is NP-hard in general, but admits
a smoothed polynomial time algorithm.

In the rest of the paper, we review related literature in
Sec. II, and define the demand response problem in Sec. III.
Sec. IV designs a smoothed polynomial-time demand response
algorithm, and Sec. V converts the algorithm into an FPTAS
auction. Simulation studies are presented in Sec. VII, and
Sec. VIII concludes the paper.

II. RELATED WORK

Over the past decade, demand response has been exten-
sively studied for various management objectives in power
grids. Logenthiran et al. [2] use a day-ahead load shifting
technique to help providers reshape the load profile and reduce
peak demand. They formulate demand side management as
minimizing the gap between objective consumption and actual
consumption, with a heuristic evolutionary algorithm adopted.
Qian et al. [14] propose a real-time pricing scheme that
helps reduce the peak load and realize demand response
management in smart grid systems. Shi et al. [15] consider
residential demand response in a power distribution network
with power flow and system operational constraints, and pro-
pose a distributed scheme can to compute an optimal demand
schedule. Saber et al. [16] study two possible models to utilize
PEVs: the load-leveling model and the smart grid model,
and show that the latter with renewable energy sources is a
promising approach. Different from the above literature, this
work focuses on the auction design that provides the necessary
financial catalyst for realizing demand response. More impor-
tantly, these existing demand response mechanisms sidestep
the computational challenges by avoiding making win-lose
decisions and assume mandatory participation of every agent,
which compromises optimal social welfare.

A series of recent work start to examine the design of
auction mechanisms for realizing demand response in smart
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Auction Truthful Voluntary Approx. ratio Type of DR
this work ✓ ✓ ✓ 1 + ϵ DC, OG, ER
[2], [14], [15] ✗ N/A ✗ No guarantee DC
[16] ✗ N/A ✗ No guarantee ER
[17] ✓ ✓ ✗ No guarantee DC
[18] ✓ ✓ ✓ Not a constant ER
[19] ✓ ✓ ✓ Not a constant DC
[20] ✗ N/A ✓ close to 3 OG
[7] ✓ No guarantee ✓ Not a constant OG

TABLE I
COMPARISON BETWEEN EXISTING DEMAND RESPONSE LITERATURE AND THIS WORK. DC = DEMAND CURTAILING AND TEMPORAL SHIFTING; OG =

ONSITE QUICK-START GENERATION; ER = ELECTRICITY RELEASE TO THE GRID.

grids. Samadi et al. [17] propose a VCG mechanism that
aims to maximize the social welfare of a smart grid. Their
design requires users to report their energy demand, and
computes each user’s electricity bill payment. They verify
that their mechanism guarantees economic efficiency and user
truthfulness. Zhou et al. [18] propose an truthful online auction
to incentivize the participation of storage devices in power
demand response. The approximation ratio of their primal-
dual approach is not a constant, but is close to 2 in typical
scenarios. Another recent work [19] study datacenter demand
response where geo-distributed clouds participate in demand
response activities at multiple power grids. A decentralized
mechanism is designed for each datacenter to elicit truthful
bids and to determine the winning ones. Again, mandatory
participation in the demand response is assumed in the first
work [17]. Although latest studies [18], [19] model voluntary
participation, most of them provide no proven guarantee for
approximation ratio in social welfare. Our work is among
the first that applies smoothed analysis techniques to design
auction mechanisms, and guarantees (1+ϵ)-optimal social cost
for an arbitrarily small ϵ.

On the optic of integrating microgrids into a modern smart
grid, Lu et al. [20] propose an online algorithm for the
microgrid generation scheduling problem, which achieves a
small competitive ratio below 3. Moreover, a few studies have
started to investigate auction design for microgrids. An auction
framework for electricity trading between a power grid and
microgrids is presented by Zhang et al. [7]. Both grid-to-
microgrid and microgrid-to-grid energy sales are studied, with
truthful bidding guaranteed for the latter case only. The above
literature models the voluntary participation of agents, but does
not always guarantee truthful bidding, and cannot provide a
guarantee of near-optimal social welfare. Table I summarizes
the comparison between existing literature and this work.

A polynomial-time approximation scheme (PTAS) [21] is
a type of approximation algorithm for NP-hard problems. It
takes two parameters: ϵ > 0 and problem size n, and produces
a solution that is (1 + ϵ)-optimal for minimization problems,
or (1 − ϵ)-optimal for maximization problems. The running
time of a PTAS is required to be polynomial in n, but can
be exponential to 1

ϵ . If we further require the complexity
to be polynomial in both n and 1

ϵ
, a PTAS become a fully

polynomial-time approximation scheme (FPTAS).

Smoothed analysis [22] is a relatively new technique for
analyzing the expected running time of an algorithm with
a randomly perturbed problem instance. It originates from

attempts to understand and analyze the behavior of algorithms
that have a bad worst-case performance but a good perfor-
mance in practice, such as the simplex algorithm for linear pro-
gramming. To our knowledge, this work is the first that adopts
the idea of smoothed analysis to mechanism design. Dough
and Roughgarden [23] studied mechanism design where social
welfare maximization has a packing structure. They show that
if an FPTAS exists when truthful bids are known, then such
truthful bids can be elicited through a truthful auction that
retains the FPTAS property. While this work has been inspired
in part by their randomization techniques, we do not require
the existence of an FTPAS in the first place. We resort to the
art of smoothed polynomial-time algorithm design instead.

III. SYSTEM MODEL AND PRELIMINARIES

We consider a smart grid system where a power grid is
connected with agents that include microgrids, large electricity
users (e.g., data centers), and storage devices (e.g., batteries,
PEVs), as illustrated in Fig. 2. When the power grid predicts a
time period in which supply may fail to meet demand, it acts
as the auctioneer and initiates a demand response process by
calling for bids from agents through a reverse auction, a.k.a. a
procurement auction. Each agent’s bid is a pair (em, bm). Here
em is the power it can supply to the power grid or the amount
of power consumption (in W) it is willing to shed. bm is the
corresponding remuneration asked for. The power grid is in
possession of its own stand-by generators (e.g., diesel), which
can be turned on to supply electricity as well.

Power Grid

Diesel Generator

Plug-in Electric Vehicles

Microgrid I

Microgrid II Data Center

Sell/reduce
 energy 

Sell/reduce energy 

Sell energy 
to grids

Sell/reduce
 energy 
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Fig. 2. An illustration of the demand response auction in a smart grid.

Let [M ] denote the integer set {1, 2, . . . ,M}. Assume M
agents participate in the auction. D is the demand response
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target, i.e., power shortage (in W) in the upcoming time
period. We define c and zmax as the unit cost (in $ per W)
and maximum available power (in W) of the grid’s diesel
generators. We also assume that any (M −1) agents’ bids can
cover the demand response target, i.e.,

∑

m∈[M−n] em ≥ D,
∀n ∈ [M ]. At the end of the auction, the auctioneer announces:
(i) A binary number xm corresponding to each agent m, where
xm is 1 if the grid accepts its bid, and 0 otherwise. (ii) A
payment pm to each winning agent m. Finally, the power grid
determines the total output rate z of its stand-by generators.

Let vm be the true cost of em, which is private information
known to agent m itself only. Let b−m be the set of all bids
expect that of agent m. The utility of agent m is:

um(bm, b−m) =

{

pm − vm if xm = 1

0 otherwise

In term of strategic behaviours, an agents is assumed to be
selfish and rational, with a natural goal of maximizing its own
utility. An agent may choose to misreport its cost (bm ̸= vm),
if doing so leads to a higher utility. The auctioneer instead
aims to maximize the social welfare of the entire grid, for
which it is important to elicit truthful bids from agents.

Definition (Truthful auction): An auction is truthful if for
any agent m, its dominant strategy is to report the true cost
vm of em, regardless of other agents’ bids. In other words,
for all bm ̸= vm and b−m, the following always holds:
um(vm, b−m) ≥ um(bm, b−m).

Definition (Social welfare, social cost): The social welfare
in a demand response auction is the aggregate utility of
the grid (−

∑

m∈[M ] pm − cz) and the bidding agents
(
∑

m∈[M ](pm − vmxm)). Payments between agents and the
grid cancel themselves, and the social welfare is equal to
−
∑

m∈[M ] vmxm − cz. Maximizing the social welfare is
equivalent to minimizing the social cost

∑

m∈[M ] vmxm+ cz,
which in turn is equivalent to minimize

∑

m∈[M ] bmxm + cz
under truthful bidding.

Social Cost Optimization in A Demand Response Auction.

Under the assumption of truthful bidding, the social cost
minimization problem for demand response can be modelled
by the following mixed integer linear program (MILP):

Minimize
∑

m∈[M]

bmxm + cz (1)

Subject to:
∑

m∈[M]

emxm + z ≥ D (1a)

xm ∈ {0, 1}, ∀m ∈ [M ] (1b)

0 ≤ z ≤ zmax (1c)

Constraint (1a) guarantees that the successful bids and the
diesel generation are together sufficient to cover the grid’s
demand response target D. Constraint (1b) models binary
decision making. Constraint (1c) limits the output of the diesel
generators by their maximum capacity.

MILP (1) is a generalization of the NP-hard problem of

M # of agents [M ] integer set {1, . . . ,M}

1⃗ all-one vector 0⃗ all-zero vector

P perturbation matrix ŷ P T yp

α parameter in (0,1) ϵ ϵ = αM

bm asking price of em b̃m perturbed bm
vm cost of em pm payment to agent m

z output rate of diesel generators

c unit cost of diesel generators

D demand response target

em power agent m can supply/reduce

xm agent m’s bid successful (1) or not (0)

Dc Dc =
∑

m∈[M] em −D

(x, z1) a feasible solution of MILP (1), x = [x1 . . . xM ]T

(y, z2) a feasible solution of MILP (2), y = [y1 . . . yM ]T

P(m) Pareto optimal set for the first m agents

βm parameter in [0,α/M ]

(y∗, z∗) optimal solution for MILP (2)

(yp, zp) optimal solution for MILP (5)

D(y, z) a solution (y, z)’s distribution function

(xf , zf ) final solution for MILP (1)

γ maxi,j∈[M]{bi/bj}

T (xf , zf ) bTxf + czf , total cost with the solution (xf , zf )

minimum knapsack [24], and is hence unlikely to have optimal
polynomial-time algorithms. We are interested in polynomial-
time demand response auctions that are truthful and can
approach the optimal social cost as closely as possible. A table
of notations is provided below for ease of reference.

IV. THE SMOOTHED POLYNOMIAL-TIME ALGORITHM

In this section, we first formulate a complementary problem
to MILP (1) in Sec. IV-A, such that a feasible solution to the
complementary problem can be easily converted to a feasible
solution to MILP (1). Then we design an exact algorithm to
solve the complementary problem in Sec. IV-B. Sec. IV-C
applies the smoothed analysis technique to perturb bidding
prices bm. With a carefully designed perturbation matrix, the
exact algorithm to the complementary problem can be utilized
to return a (1+ϵ)-optimal solution to MILP (1), with expected
polynomial running time.

A. A Complementary Problem to MILP (1)

Let’s define Dc =
∑

m∈[M ] em − D. A complementary
MILP to MILP (1) is:

Maximize
∑

m∈[M]

bmym − cz (2)

Subject to:
∑

m∈[M]

emym − z ≤ Dc (2a)

ym ∈ {0, 1}, ∀m ∈ [M ] (2b)

0 ≤ z ≤ zmax (2c)

Let (x, z1) and (y, z2) be solutions to (1) and (2), respectively,
where x = [x1 x2 . . . xM ]T and y = [y1 y2 . . . yM ]T . Let
y = 1⃗−x and z2 = z1. Clearly, if (x, z1) is a feasible solution
to MILP (1), then (y, z2) is a feasible solution to MILP (2).
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Consequently, (x, z1) is an optimal solution to MILP (1) if

and only if (y, z2) is an optimal solution to MILP (2), where
1⃗ is a M × 1 vector of 1’s.

B. An Exact Algorithm to the Complementary Problem

We next design an algorithm to solve the complementary
problem in MILP (2). The algorithm is exact in that it always
returns the optimal solution, but it may not terminate in poly-
nomial time. The solution consists of two sets of values: y and
z2. A naive approach is to enumerate all the possible combina-
tions of y, and complement each with a z2: if

∑

m∈[M ] emym
is already smaller than Dc, then z2 is set to zero; otherwise,
z2 =

∑

m∈[M ] emym − Dc. The optimal solution is the
one with the maximum value in (

∑

m∈[M ] bmym − cz2).
However, this is inefficient since the number of possible y’s
grows exponentially as the size of the input increases. Let
b = [b1 b2 . . . bM ]T , e = [e1 e2 . . . eM ]T . Our first idea
is to only enumerate the “good” y’s and ignore the “bad”
ones, based on the following observation: a vector y cannot
be optimal if it is dominated by another vector y′, i.e., if bT y′

is larger than bT y and eT y′ is smaller than eT y. We formalize
the concept of “good” vectors using Pareto optimal vectors:

Definition (Pareto optimal vector): A vector y is Pareto

optimal if there does not exist a vector y′ dominating y, i.e.,
̸ ∃y′ such that bT y′ ≥ bT y and eT y′ ≤ eT y, with at least one
inequality being strict.

Lemma 1: Let P(m) be the set of all Pareto optimal vectors
when only the first m agents are considered. If y(m) ∈ P(m),
then the vector obtained from y(m) by removing its m-th
element is a Pareto optimal vector in P(m − 1), ∀m ∈
[2, 3, . . . ,M ].
Proof: Consider a vector y(m) ∈ P(m). By the definition
of Pareto optimal vectors, y(m) is not dominated by another
vector. By way of contradiction, suppose that a vector y(m−1)

obtained by removing the last element y(m)
m from y(m) is

not Pareto optimal. Then there exists a Pareto optimal vector
y(m−1)′ dominating y(m−1). In addition, y(m−1)′ + y(m)

m (i.e.,

the vector obtained by appending y(m)
m to the end of y(m−1)′

) dominates y(m), which leads to a contradiction. ⊓+
Lemma 1 suggests that the Pareto optimal set P(m) can be

computed from P(m− 1). Furthermore, it must be contained
in the set P(m−1)+0 ∪ P(m−1)+1, where P(m−1)+0
is obtained by appending 0 as the m-th element to each vector
in P(m− 1), similar for P(m− 1)+1. An exact algorithm is
shown in Algorithm 1, adopting the classic dynamic program-
ming method for constructing the Pareto optimal set. First, it
initializes an empty set A and constructs the bottom set P(1)
at line 1. By the definition of a Pareto optimal vector, both
solution 1 (accept the first agent’s bid) and 0 (reject the the first
agent’s bid) are included in the set P(1). Then a for loop in
lines 2-5 computes P(2), . . . ,P(M). At each iteration, P(m)
is derived by eliminating all the dominated vectors (line 4)
from the set P(m − 1) + 0 ∪ P(m − 1) + 1. Another for

loop in lines 6-12 computes the value of variable z2. For each
y in Pareto optimal set P(M), if the total eT y is smaller
than or equal to Dc, z is set to zero to maximize the cost.

Otherwise, z2 is set to the gap between eT y and Dc. If z2
satisfies constraint (2c), the value of y and z2 is stored in the
set A at line 10. Line 13 returns the solution with maximum
objective value among all the feasible solutions in set A.

Algorithm 1 An Exact Algorithm for MILP (2)

Input: b, e,Dc

Output: optimal solution y∗ and z∗ to MILP (2)

1: A = ∅; P(1) = {0, 1};
2: for all m ∈ [2, 3, . . . ,M ] do

3: Merge P(m−1)+0 and P(m−1)+1 into P(m)′ such
that P(m)′ is sorted in non-decreasing order of social cost;

4: Construct P(m) = {y(m) ∈ P(m)′| ̸ ∃y(m)′ ∈ P(m)′ :

y(m)′ dominates y(m)};
5: end for

6: for all y ∈ P(M) do

7: if eT y ≤ Dc then z2 = 0;
8: else z2 = eT y −Dc;
9: end if

10: if z2 ≤ zmax A = A ∪ (y, z2) then;
11: end if

12: end for
13: Return y∗, z∗ = argmax(y,z2)∈A bT y − cz2

Lemma 2: The number of Pareto optimal vectors |P(m)|
does not decrease when m increases, i.e., P(1) ≤ · · · ≤
P(M).
Proof: In Algorithm 1, |P(m)| is computed from P(m)′

by pruning the non-Pareto optimal vectors. When we merge
P(m−1)+0 and P(m−1)+1 into P(m)′, if all solutions in
P(m−1)+0 are retained in P(m), then |P(m)| ≥ |P(m−1)|.
If some solutions in P(m−1)+0 are eliminated, then there are
other solutions in P(m−1)+1 that dominate them. Therefore,
we can always find a vector to replace the removed one. That
finishes the proof of |P(m)| ≥ |P(m− 1)|. ⊓+

Lemma 3: Upon termination, Algorithm 1 returns an optimal
solution (y∗, z∗) to MILP (2).
Proof: We first prove that the vector y∗ in the optimal solution
set (y∗, z∗) for MILP (2) must be a Pareto optimal vector
in P(M). Otherwise, there exists a Pareto optimal vector y′

that dominates y∗, i.e., bT y′ ≥ bT y∗ and eT y′ ≤ eT y∗ with
at least one inequality being strict. Therefore, y∗ is not an
optimal solution to MILP (2), which is a contradiction. Hence,
the optimal y∗ comes from Pareto optimal set P(M). In
Algorithm 1, we subsequently calculate the corresponding z2
for each Pareto optimal vector in P(M) to satisfy constraints
(2a) and (2c), and output the one with maximum objective
value as the final (optimal) solution. ⊓+

Theorem 1: The running time of Algorithm 1 is polynomial
to the number of Pareto optimal vectors, and is O(M |P(M)|).
Proof: Lines 1 in Algorithm 1 can be executed in O(1) steps.
The running time of line 13 is polynomial to |P(M)|. During
each iteration of the first loop, line 3 constructs set P(m)′ by
merging the two sets P(m− 1) + 0 and P(m− 1) + 1. Both of
the these sets are sorted in non-decreasing order of cost due to
the assumption of P(m− 1). Thus, we can compute P(m)′ in
O(|P(m−1)|) steps such that it is also sorted. Given this order
of vectors in P(m)′, the set P(m) can be founded in linear time
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at line 4. The running time of the second loop (lines 6-12) is
polynomial to the number of vectors in the Pareto optimal set
P(M). In summary, the overall time complexity of Algorithm
1 is upper bounded by

∑M−1
m=1 O(|P(m)|) + O(|P(M)|). By

Lemma 2, O(
∑M−1

m=1 |P(m)|) + O(|P(M)|) ≤ O(M |P(M)|) +

O(|P(M)|) = O(M |P(M)|). ⊓+

C. The Smoothed Polynomial-Time Algorithm

We next design a randomized algorithm with expected
polynomial running time for MILP (1), based on randomized
perturbation. The basic idea is to first construct a set of feasible
solutions to the complementary problem (2) through the exact
Algorithm 1, then randomly output a solution from this set
following a well-designed distribution, such that the gap
between the expectation of the chosen solution and the optimal
solution is very small. Next, we utilize the complementarity
between MILP (2) and MILP (1) to compute a corresponding
feasible solution to MILP (1), and prove that the expectation
of our solution is away from optimum by at most an additive
factor ϵmaxm∈[M ] bm, where ϵ is a small parameter that can
be arbitrarily close to zero. In order to compute the feasible set
efficiently, we use a perturbation matrix to perturb the input
bids based on smoothed analysis techniques.

Given an approximation parameter α ∈ (0, 1), we draw M
random variables uniformly from [0,α/M ], forming a vector
β = [β1 β2 . . . βM ]T . Define a perturbation matrix:

P = (1− α)I +
β1⃗T

M
, (3)

where I is a M×M identity matrix. We utilize the pertur-
bation matrix to perturb the cost vector b into a new vector
b̃ = Pb, such that each new cost b̃m can be expressed as:

b̃m = (1− α)bm +
βm

∑M
j=1 bj

M
,∀m ∈ [M ]. (4)

The perturbed complementary problem is:

Maximize
∑

m∈[M]

b̃mym − cz (5)

Subject To: Constraints (2a)(2b)(2c).

Algorithm 1 can be executed to solve the above perturbed
problem (5), and it outputs an optimal solution (yp, zp). The
value of the objective function is POBJ = b̃T yp − czp.

Let (y∗, z∗) and OBJ2 = bT y∗−cz∗ be the optimal solution
to the complementary problem in (2) and the value of the
corresponding objective function, respectively. We then have:

POBJ = b̃T yp − czp = (Pb)T yp − czp ≥ (Pb)T y∗ − cz∗

= bT ((1− α)I +
1⃗βT

M
)y∗ − cz∗ ≥ (1− α)bT y∗ − cz∗

= OBJ2 − αbT y∗ (6)

The first inequality holds because (yp, zp) is the optimal
solution to the perturbed problem (5). We can observe that
a possible solution to problem (2) is (ŷ = PT yp, zp), which
has only a small loss αbT y∗. However, (ŷ, zp) may not be
a feasible solution because PT yp may have fractional entries
due to the setting of P . Hence, constraint (2b) is violated, and
constant (2a) may not be satisfied either. Although we can not
use (ŷ, zp) directly as the solution for problem (2), we can

design a randomized algorithm that outputs a sample following
a well-designed distribution, such that the expectation of the

random sample equals (ŷ, zp). As a result, our approach can
solve problem (2) with a small loss αbT y∗ in expectation.

Let y be a M-dimensional all-zero vector 0⃗, then (0⃗, zp) is a
feasible solution to (5). If we assume em ≤ Dc, ∀m ∈ [M ], let
l1, l2, . . . , lM denote basis vectors, i.e., lmm = 1 and lm

′

m = 0,
∀m′ ̸= m. Then for any m, (lm, zp) lies in the feasible set of
(5). Note that (yp, zp) is also a feasible solution to (2) because
the constrains in MILP (5) are identical to those in MILP (2).
The final output for MILP (2) is (yf , zf), where yf is a sample
randomly produced from the set {yp, l1, l2, . . . , lM , 0⃗} and
zf = zp. The final output follows the distribution D(yf , zf):

D(yf , zf ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Pr[yf = yp, zf = zp] = 1− α

Pr[yf = lm, zf = zp] =

∑M
j=1 βjy

p
j

M
,∀m ∈ [M ]

Pr[yf = 0⃗, zf = zp]

= 1− Pr[yf = yp]−
M
∑

m=1

Pr[yf = lm].

(7)
We can verify that the expectation of yf is equal to ŷ:

E[yf ] = (1− α)yp +

∑M
j=1 βjy

p
j

M
(

M
∑

m=1

lm) = P T yp = ŷ (8)

Thus, the expected value of the objective function when
(yf , zf) follows the distribution D(yf , zf) is

E[bT yf − czf ] = bT ŷ − czp ≥ OBJ2 − αbT y∗ (9)

We know that MILP (2) is a complementary problem to MILP
(1). A solution (xf , zf) to MILP (1) can be obtained by letting
xf = 1⃗ − yf and zf = zp. According to the assumption
∑

m∈[M−n] em ≥ D, ∀n ∈ [M ] (Sec. III), (xf , zf) must be a
feasible solution to MILP (1). Algorithm 2 is our randomized
algorithm that utilizes this property to solve the original
MILP (1). We next analyze the approximation guarantee of
Algorithm 2.

Theorem 2: The expected social cost of the solution (xf , zf )
returned by Algorithm 2 is at most an additive ϵmaxm∈[M ] bm
more than the optimal social cost, where ϵ = αM .
Proof: Define OBJ1 as the optimal social cost of problem (1).
The expected objective value returned by Algorithm 2 is

E[bTxf + czf ] = E[bT (1⃗− yf ) + czp]

=
∑

m∈[M]

bm −E[bT yf − czp] ≤
∑

m∈[M]

bm − (1− α)bT y∗ + cz∗

= (
∑

m∈[M]

bm − bT y∗ + cz∗) + αbT y∗

≤ OBJ1 + ϵ/M
∑

m∈[M]

bm ≤ OBJ1 + ϵ max
m∈[M]

bm. (10)

⊓+
We next show in Lemma 4 and Theorem 3 that the expected

running time of Algorithm 2 is polynomial to the input size.
Intuitively, the time complexity of Algorithm 2 depends on
the number of Pareto optimal vectors, for which we establish
an upper-bound that is a polynomial of M and 1

ϵ
.

Lemma 4: For the perturbed complementary maximiza-
tion problem (5) with perturbation matrix P produced from
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equation (3), the expected number of Pareto optimal vectors
E[|P(M)|] is upper bounded by 1 + M4

α
.

Proof: Let c(y) be the social cost under vector y and perturbed
cost b̃. Let e(y) = eT y. Each Pareto optimal vector has a total
cost in [0,Mbmax] because each agent’s perturbed cost is at
most bmax. Assuming that no two vectors are identical, we
can partition [0,Mbmax] into small intervals such that there is
at most one Pareto optimal vector in each small interval. As
a result, the expected number of Pareto optimal vectors is:

E[|P(M)|] = 1 + lim
N→∞

N−1
∑

n=0

Pr[∃y ∈ [P(M)] :

c(y) ∈ (
Mbmaxn

N
,
Mbmax(n+ 1)

N
]].

Where the additional 1 corresponds to the vector 0⃗, which
is Pareto optimal by definition. To estimate the probability in
each interval, we first define some variables. Let yn∗ be the
vector that has the largest e(y) and satisfies c(y) ≤ Mbmaxn

N
,

i.e., yn∗ = argmax{e(y)|c(y) ≤ Mbmaxn
N

}. For n ≥ 0, yn∗ must
always exist. Let yn̂ = argmin{c(y)|e(y) > e(yn∗) ∩ c(y) >
Mbmaxn

N
} be the vector that has the smallest cost such that

e(y) > e(yn∗) and c(y) > Mbmaxn
N

.
If c(yn̂) exists, then we define a random variable

Λ(Mbmaxn
N

) = c(yn̂)− Mbmaxn
N

, and claim that,
Claim 1: If and only if Λ(Mbmaxn

N
) ≤ Mbmax

N
, there

exists a Pareto optimal vector y such that c(y) ∈

(Mbmaxn
N

, Mbmax(n+1)
N

].
Proof: Assume there is a Pareto optimal vector with the cost

in (Mbmaxn
N

, Mbmax(n+1)
N

], and let yn be the Pareto optimal
vector with the smallest cost in (Mbmaxn

N
, Mbmax(n+1)

N
]. Then

according the definition, yn = yn̂ and Λ(Mbmaxn
N

) = c(yn) −
Mbmaxn

N
∈ (0, Mbmax

N
]. Conversely, if Λ(Mbmaxn

N
) ≤ Mbmax

N
, yn̂

must be a Pareto optimal vector whose cost lies in the range
of (Mbmaxn

N
, Mbmax(n+1)

N
]. ⊓+

Hence, we can rewrite the expected number of Pareto
optimal vectors as:

E[|P(M)|] = 1 + limN→∞

∑N−1
n=0 Pr[Λ(Mbmaxn

N
) ≤ Mbmax

N
].

Furthermore, we define y(n,m−) as the vector that re-
jects agent m’s bid and has a cost of at most Mbmaxn

N
.

Let S(n,m−) = {y|c(y) ≤ Mbmaxn
N

∩ ym = 0} be the
set of all y(n,m−). Further define y(n∗,m+) as: y(n∗,m−) =

argmax{e(y)|c(y) ≤ Mbmaxn
N

∩ ym = 0}. We define another
variable y(n̂,m+) as y(n̂,m+) = argmin{c(y)|e(y) > e(yn∗,m−)∩
c(y) > Mbmaxn

N
∩ ym = 1}. Similarly, we define a random

variable Λm(Mbmaxn
N

) = c(yn̂,m+) − Mbmaxn
N

when yn̂,m+

exists, then we have the following claim:
Claim 2: When Λ(Mbmaxn

N
) is defined, there exists an index

m ∈ [M ] such that Λ(Mbmaxn
N

) = Λm(Mbmaxn
N

).
Proof: When Λ(Mbmaxn

N
) is defined, there exist the corre-

sponding yn̂ and yn∗. Because c(yn∗) < c(yn̂), there must
exist at least one agent’s bid, indexed by m ∈ [M ], being
accepted by yn̂ but rejected by yn∗ i.e., yn̂m = 1, yn∗m = 0. We
claim that for this index m, Λ(Mbmaxn

N
) = Λm(Mbmaxn

N
).

In order to prove it, we first observe that yn∗ = yn∗,m−

This is due to the reason that yn∗ is the vector with the
highest e(y) among all vectors with cost at most Mbmaxn

N
.

It is belong to the set Sn,m−, it is in particular the vector
with the highest e(y) among all vectors that reject agent m’s
bid and have the cost at most Mbmaxn

N
. Similarly arguments

can be applied to prove yn̂ = yn̂,m+. This directly implies
that Λ(Mbmaxn

N
) = Λm(Mbmaxn

N
). ⊓+

Claim 3: : ∀m ∈ [M ], Pr[Λm(Mbmaxn
N

) ≤ Mbmax
N

] ≤ M3

αN
.

Proof: In the perturbed MILP (5), the value of b̃m lies in

[(1 − α)bm, (1 − α)bm +
α

∑M
j=1

bj

M2 ] since βm is drawn from

[0,α/M ]. The length of the interval is
α

∑M
j=1

bj

M2 , which is no

smaller than αbmax

M2 as
∑M

j=1 bj ≥ bmax. The density of b̃m
is upper-bounded by M2

αbmax
everywhere in the interval [(1 −

α)bm, (1− α)bm +
α

∑M
j=1

bj

M2 ].
In order to prove this lemma, we exploit the randomness

of cost b̃m for a given m, other agents’ cost b̃j , j ̸= m,
can be considered as arbitrarily fixed parameters. Then the
vectors from set Sn,m− are fixed and hence also the vector
yn∗,m− is fixed. Let S = {y|e(y) > e(yn∗,m−) ∩ c(y) >
Mbmaxn

N
∩ ym = 1}. If the vector yn∗,m− is fixed, then

set S is also fixed. yn̂,m+ is the vector with the minimal
cost in set S. To prove Claim 3, we only need to find
the probability of c(yn̂,m+) ∈ (Mbmaxn

N
, Mbmax(n+1)

N
]. Because

other agents’ costs can be considered as fixed parameters,
the value of b̃m determines whether c(yn̂,m+) lies in the
interval (Mbmaxn

N
, Mbmax(n+1)

N
] or not. We can rewrite this

event as {Mbmaxn
N

<
∑

j ̸=m b̃j + b̃m ≤ Mbmax(n+1)
N

]}. Let
λ = Mbmaxn

N
−

∑

j ̸=m b̃j , then the above event is the same
as the event b̃m ∈ (λ,λ + Mbmax

N
]. Hence, the probability of

this event is upper-bounded by Mbmax
N

× M2

αbmax
= M3

αN
. ⊓+

Combining Claim 1, Claim 2 and Claim 3, we have:

Pr[∃y ∈ [P(M)] : c(y) ∈ (
Mbmaxn

N
,
Mbmax(n+ 1)

N
]]

= Pr[Λ(
Mbmaxn

N
) ≤

Mbmax

N
]

≤ Pr[∃m ∈ [M ] : Λm(
Mbmaxn

N
) ≤

Mbmax

N
]

=
M
⋃

m=1

Pr[Λm(
Mbmaxn

N
) ≤

Mbmax

N
]

≤
M
∑

m=1

Pr[Λm(
Mbmaxn

N
) ≤

Mbmax

N
] ≤

M4

αN
.

Therefore, we have: E[|P(M)|] ≤ 1 + limN→∞

∑N−1
n=0

M4

αN
=

1 + M4

α
. ⊓+

Theorem 3: The expected running time of Algorithm 2 for
solving MILP (1) is polynomial.
Proof: In Algorithm 2, lines 1-2 generate the perturbation
matrix P , and their running time is polynomial to M . Lines
4-5 output a random solution yf according to the distribution
D(yp), and the running time is polynomial as well. Line 6
takes one step to compute xf and returns the result. Now, we
only need to examine the running time of line 3. Combining
Theorem 1 and Lemma 4, the expected running to solve the
perturbed MILP (5) is

O(ME[|P(M)|]) ≤ O(M(1 +
M4

α
)) ≤ O(M5 1

α
) = O(M6 1

ϵ
).

Hence, the overall expected running time of Algorithm 2 is
O(M6 1

ϵ ). ⊓+

Note that Algorithm 2 is effectively a randomized additive

FPTAS, since it solves MILP (1) with expected polynomial-
time, and outputs a solution that is at most an additive
ϵmaxm∈[M ] bm more than the optimal social cost.
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Further define γ = maxi,j∈[M ]{bi/bj}. We have that
maxm∈[M ] bm/OBJ1 ≤ γ, as OBJ1 includes at least one
agent’s bid. Thus, the expectation of social cost achieved by
Algorithm 2 is: E[bTxf+czf ] ≤ (1+γϵ)OBJ1 . In other words,
Algorithm 2 can achieve (1 + γϵ)-optimality where ϵ can be
arbitrarily close to zero. With γ being a constant, Algorithm
2 becomes a randomized FPTAS that can output a (1 + ϵ)-
optimal solution.

Algorithm 2 A Smoothed Polynomial-Time Algorithm for
MILP (1)

Input: α ∈ (0, 1), b, e,Dc

Output: A solution (xf , zf) for MILP (1)

1: Generate β = [β1 β2 . . . βM ]T uniformly randomly from
the interval [0,α/M ] ;

2: Compute the perturbation matrix: P = (1 − α)I + β1⃗T

M
;

3: Run Algorithm 1 with the input (Pb, e,Dc), and obtain
output (yp, zp);

4: Produce a distribution function D(yf , zf) as shown in (7);
5: Choose (yf , zf ) according to the distribution function

D(yf , zf);
6: xf = 1− yf ; Return (xf , zf ).

V. AN FPTAS DEMAND-RESPONSE AUCTION

We now translate the smoothed polynomial-time algorithm
(Algorithm 2) into a truthful auction, adding truthfulness to the
algorithm while retaining its FPTAS property. This is achieved
through a recent technique of maximal-in-distributional range
(MIDR) algorithms [25], the second main technique in this
work besides smoothed analysis. An MIDR algorithm refers
to a randomized algorithm that outputs a sample from a set of
feasible solutions, according to a distribution that does not de-
pend on agent bids, achieving the largest social welfare among
all such distributions in the range. Combined with VCG-style
payments following a similar distribution, an MIDR algorithm
yields an auction that is truthful in expectation. We will still
utilize the complementarity between MILPs (1) and (2). First,
we generate a distribution range for MILP (2), then covert
it to one for MILP (1). Then we prove that our randomized
Algorithm 2 is an MIDR algorithm. At the end, a randomized
VCG-like payment scheme that works in concert with the
MIDR algorithm is designed to obtain a truthful demand
response auction.

Theorem 4: Algorithm 2 is an MIDR algorithm for the
original cost minimization problem in MILP (1).
Proof: An MIDR algorithm pre-commits to a distribution
range (a set of probability distributions over feasible solutions)
independent of agents’ bids, and returns a sample based on a
distribution that is from the distribution range to maximize
the expected social welfare. In a procurement auction, social
welfare maximization is equivalent to social cost minimization.
Therefore, an MIDR algorithm for MILP (1) is to output a
sample form a distribution that minimizes the expected social
cost over the distribution range.

First, we construct a distribution range for MILP (2), and
convert it to a distribution range for the original problem in

MILP (1). Let S denote the set of all feasible solutions (y′, z′)
of MILP (5). For each feasible solution (y′, z′) ∈ S, we can
construct a distribution for (y, z2) similar to the one in (7):

D(y, z2) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Pr[y = y′, z2 = z′] = 1− α

Pr[y = lm, z2 = z′] =

∑M
j=1 βjy′

j

M
,∀m ∈ [M ]

Pr[y = 0⃗, z2 = z′]

= 1− Pr[y = y′]−
M
∑

m=1

Pr[y = lm].

(11)

Where (y, z2) is a feasible solution for MILP (5) sampled
following distribution D(y, z2). Constraints in MILP (5) is
the same as those in MILP (2), hence (y, z2) is also a
feasible solution to MILP (2) and (y, z2) is independent
of agents’ bids. Therefore, we can construct a compact set
Ry = {D(y, z2), ∀(y′, z′) ∈ S} including all the distributions
indexed by feasible solution (y′, z′), and Ry is the distribution
range for MILP (2).

Let D(xf , zf) be the distribution that draws (yf , zf ) ac-
cording to distribution D(yf , zf) and outputs (xf = 1⃗ −
yf , zf = zf). Similarly, let D(x, z1) be the distribution that
draws (y, z2) according to distribution D(y, z2) and computes
a solution (x = 1⃗− y, z1 = z2). Then, the distribution range
Rx for MILP (1) includes all the possible D(x, z1). We have

E(xf ,zf )∼D(xf ,zf )[b
Txf + czf ]

= E(yf ,zf )∼D(yf ,zf )[b
T (1⃗− yf ) + czf ]

=
∑

m∈[M]

bm − bT (P T yp) + czp

=
∑

m∈[M]

bm − max
(y′,z′)∈S

(bT (P T y′)− cz′)

=
∑

m∈[M]

bm − max
(y′,z′)∈S

E(y,z2)∼D(y,z2)[b
T y − cz2]

= min
(y′,z′)∈S

E(y,z2)∼D(y,z2)[b
T (1⃗− y) + cz2]

= min
D(x,z1)∈Rx

E(x,z1)∼D(x,z1)[b
Tx+ cz1] (12)

The first two equalities above follow from the definition
of D(xf , zf) and yf ’s expected value in equation (8). The
third equality holds because (yp, zp) is the optimal solution
to the perturbed MILP (5). The fourth equality holds since
E(y,z2)∼D(y,z2)[y] = PT y′, which can be derived according
to (8). The last two equalities come from the definition of
D(x, z1) and Rx. In summary, Algorithm 2 is an MIDR
algorithm that achieves the smallest expected social cost
among all the solutions produced following the distributions
in the distribution range Rx. ⊓+

Next, towards designing a truthful-in-expectation auction,
we first describe an important property of an MIDR algorithm:
analogous to the VCG mechanism, there is a deterministic pay-
ment rule pvcgm that can be coupled with an MIDR algorithm
to yield a truthful-in-expectation mechanism, and

pvcgm = E[T (xf
−m, zf−m)− (T (xf , zf )− bmxf

m)], ∀m ∈ [M ]. (13)

Here pvcgm is the payment for each agent m. We do not need
to consider the payment to the power grid’s own quick-start
generators. (xf

−m, zf
−m) is the output of Algorithm 2 by setting

agent m’s asking price to infinity. T (xf
−m, zf

−m) is the total



9

social cost with agent m excluded from the auction. T (xf , zf)
is the total social cost when agent m participates and (xf , zf)
is the solution returned by Algorithm 2. We define xf

m as the
m-th element of xf , then T (xf , zf)−bmxf

m is the overall cost
except agent m, when every agent participates in the auction.

It is not always possible to compute the expected value
in (13) efficiently. Nonetheless, if the expectation of a ran-
domized payment scheme is equal to pvcgm , then this payment
also guarantees truthfulness in expectation [23]. Therefore, we
compute the payments as follows:

pm = T (xf
−m, zf−m)− (T (xf , zf )− bmxf

m),∀m ∈ [M ] (14)

Lemma 5: The payment scheme in (14) yields a truthful
auction in expectation.
Proof: Intuitively, the randomized MIDR auction is truthful
because both winner determination and payment computation
are bid independent, and it is known that an auction is truthful
if and only if it is bid independent. More specifically, It is
easy to observe that E[pm] = E[T (xf

−m, zf−m)−(T (xf , zf )−
bmxf

m)] = pvcgm . According to the properties of MIDR algo-
rithms [25], [23], such VCG-type payment renders an MIDR
algorithm truthful in expectation. ⊓+

Theorem 5: The randomized algorithm in Alg.3 combined
with the randomized VCG payment (14) is a truthful-in-
expectation mechanism, parametrized by ϵ, that runs in poly-
nomial time in expectation, and outputs a solution with ex-
pected social cost at most an additive ϵmaxm∈[M ] bm more
than the optimal value.
Proof: The theorem follows from Theorem 2, Theorem 3 and
Lemma 5. ⊓+

Algorithm 3 A Randomized Auction Mechanism

Input: α ∈ (0, 1), b, e,Dc

Output: A solution (xf , zf) to MILP (1) and payment pm
1: Run Algorithm 2 with the input (α, b, e,Dc), the output

is (xf , zf );
2: Compute the payment for each winning agent, pm =

T (xf
−m, zf

−m)− (T (xf , zf)− bmxf
m), ∀m ∈ [M ] ;

3: Return a solution (xf , zf ); Return the payment pm for
each winning agent m.

VI. EXTENSIONS AND DISCUSSIONS

A. Non-linear Cost in Electricity Generation

In the real world, the unit cost for the power grid to generate
its own power is not linear to the quantity of generation z. The
cost of stand-by generation is a function of the generation rate,
∆(z). It is determined by all the costs over the operation time
period t, and varies for different values of z. The objective
function of MILP (1) can be rewritten as:

Minimize
∑

m∈[M]

bmxm +∆(z)

For example, the total cost ∆(z) of a diesel generator to
generate zW power consists of the following components [26]:
∆(z) = It + Mt(z) + Ft(z) + Wt(z). During the generator’s
running time period t, It is investment cost, Mt(z) is operation
and maintenance cost, Ft(z) is fuel cost, and Wt(z) is waste
disposal and emission control cost. It is a constant value,

which is the one-time purchase cost of the generator amortized
to the running period t. Mt(z), Ft(z) and Wt(z) are functions
of the generation rate z.

The same strategy (Algorithm 3) can be adapted to such
a non-linear cost model for designing an FPTAS demand-
response mechanism. The difference lies in the last step in
Algorithm 1. It returns a solution (y, z2) ∈ A with maximum
value of bT y −∆(z2).

B. Elastic Demand Response

While the power grid may have a most preferred value for
the demand response target, such a target is often not the
only option, and a small variation is tolerable though less
preferred. In a real-world power grid, such deviation, up to
a certain threshold value, can be absorbed by the generating
plants through ex post primary frequency control [3]. Realtime
imbalances in grid-wide electricity demand and supply are
reflected in measured deviations in power frequency from its
nominal value (50 Hz in the majority of the world, 60 Hz
in North America and small parts of Asia). Generating units
are then regulated on a second-by-second basis to correct
such deviation in a closed-loop control fashion. Such primary
frequency control comes at its own cost [9], and we capture
that through a utility function of the power grid, which
associates each feasible demand response target value with
a difference level of preference:

Minimize
∑

m∈[M]

bmxm +∆(Z)− U(D) (15)

Subject To:
∑

m∈[M]

emxm + z ≥ D (15a)

xm ∈ {0, 1}, ∀m ∈ [M ] (15b)

0 ≤ z ≤ zmax (15c)

Dmin ≤ D ≤ Dmax (15d)

U(D) is the grid’s utility function that depends on the target
reduction D in power consumption. U(D) is often a concave
function in practice [17]. Dmin and Dmax are the lower-bound
and upper-bound of the demand response target of the power
grid, respectively, which bound the net reduction within an
acceptable range. The power grid can accept an aggregated net
reduction from agents that is smaller or larger than the actual
demand response target D′, but it has the highest preference
level at point D′. When D ∈ [Dmin, D′], U(D) is increasing
and concave; when D ∈ [D′, Dmax], U(D) is decreasing
and concave. The corresponding complementary problem is
formulated as:

Maximize
∑

m∈[M]

bmym −∆(Z) + U(D) (16)

Subject To:
∑

m∈[M]

emym − z ≤
∑

m∈[M]

em −D (16a)

ym ∈ {0, 1}, ∀m ∈ [M ] (16b)

0 ≤ z ≤ zmax (16c)

Dmin ≤ D ≤ Dmax (16d)

Let (x, z1, D1) and (y, z2, D2) be a feasible solution for prob-
lem (15) and problem (16), respectively. We have y = 1⃗− x,
z2 = z1 and D2 = D1. (x, z1, D1) is an optimal solution to
problem (15) if and only if (y, z2, D2) is an optimal solution
to problem (16).
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A challenge in the auction design for such a new model
lies in computing the optimal solution (y, z2, D2) to the
complementary problem (16) (Sec. IV-B). The rest of the
FPTAS auction design is similar. We perturb the bids bm
to obtain a randomized algorithm with excepted polynomial
running time. The expectation of the solution is at most
ϵmaxm∈[M ] bm more than the optimal social cost. A similar
VCG-type randomized payment scheme then completes the
truthful-in-expectation auction.

In Algorithm 1, for every Pareto optimal vector y ∈ P(M),
we need to compute values for z2 and D2 that maximize
U(D)−∆(Z) and satisfy constraints (16c) and (16d):

Maximize U(D) −∆(Z) (17)

Subject To: D − z ≤
∑

m∈[M]

em − eT y (17a)

0 ≤ z ≤ zmax (17b)

Dmin ≤ D ≤ Dmax (17c)

After computing z2 and D2 for each Pareto optimal vector
y ∈ P(M), Algorithm 1 selects a solution that maximizes
∑

m∈[M] bmym −∆(Z) + U(D).
Assume that ∆(z) is an increasing convex function, as the

marginal cost of electricity generation grows with the output
rate z increases, then −∆(z) is a concave function. Recall that
U(D) is a concave function. The sum of concave functions is
still a concave function [27]. Therefore, the objective function
U(D) − ∆(Z) is concave, and problem (17) becomes a
classic convex minimization problem, which can be solved in
polynomial-time using standard convex optimization methods
such as the interior-point algorithm [28].

VII. PERFORMANCE EVALUATION
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Fig. 3. Power supply and demand in Ontario, Canada, October 27, 2014 to
November 2, 2014.

We evaluate our FPTAS demand response mechanism
through trace-driven simulation studies, based on real-world
demand data in Ontario, Canada in 2014. The left of Fig. 3
shows hourly demand and capacity of Ontario’s grid from Oc-
tober 27, 2014 to November 2, 2014 [29]. Available capacity
represents the capacity of Ontario’s power market, including
both local generation and imports. Ontario demand represents
the actual power demand within Ontario, and is calculated
by subtracting exports from the total power generation. We
can obverse that the market capacity is always larger than
actual demand. Furthermore, power generation and demand
are imbalanced at times. Consequently, the power grid needs

to import/export energy from/to other provinces. The right
of Fig. 3 illustrates hourly electricity trading data. In the
following simulations, the demand response target D is set
to 100MW, or one fifth of the average hourly import, under
the assumption that one fifth of the shortage is supplied by
the auction and four-fifths is purchased from other provinces
directly. Following a report about cost of electricity by source
[26], the value of bm is generated uniformly randomly from
the interval [200, 2000]. The amount of supply/reduction em
is a uniformly distributed number between 0MW to 10MW.
The unite cost of the diesel generator is set to $180 per MW,
with a maximum output capacity of 10MW [30]. Each set of
simulation is repeated ten times, and results are averaged.

Percentage of Cost Savings. Fig. 4 shows the percentage
of social cost savings by our demand response auction with
different demand response target D and different number of
agents. Let Co be the cost when the power grid uses its diesel
generators to cover the demand-supply gap instead of resorting
to demand response. Let Cn be the social cost returned by
our randomized algorithm. The percentage of cost saving is
computed as Co−Cn

Co
. The cost data is taken from reports

of US Energy Information Administration (EIA) of the U.S.
Department of Energy [26], [30]. From Fig. 4, we can see that
the demand response approach can save more than 50% of the
cost when 40 agents submit demand response bids. Even when
there are less agents (20 agents) submitting bids, it can still
save more than 20% of the total cost. Moreover, the change of
the demand response target D doesn’t influence the percentage
of cost saving.

Approximation Ratio. A salient feature of our randomized
auction is its FPTAS property, i.e., it achieves (1 + ϵ)-
optimal social cost. We first evaluate the approximation ratio
of our Algorithm 2 under different system settings. Recall that
Algorithm 2 solves the original minimization problem (1) by
first solving the complementary problem (2), then converting
it to a solution for problem (1). Fig. 5 and Fig. 6 compare the
approximation ratio achieved by Algorithm 2 to solve MILP
(1) and MILP (2), respectively. The ratios are computed by
comparing the social cost achieved by Algorithm 2 to the
optimal social cost.

Given α = 0.03, Fig. 5 shows the approximation ratio
with different number of agents. We can observe that the
approximation ratio (red bars on the right side) for MILP
(2) remains around 0.96 with the growth of the number
of agents. That is because equation (9) indicates the gap
between the approximation ratio of MILP (2) and optimal

ratio 1 is αbT y∗

bT y∗−cz∗ , which is determined by the value of
α as αcz∗ is a very small number. The blue bars on the
left side that represents the approximation ratio to solve the
original problem (1) increases when the number of agents
increases. This trend is in line with the theoretical analysis in
Theorem 2. The difference between the objective value return
by Algorithm 2 and the optimum is αbT y∗. Recall that y∗ is
the optimal solution to maximization problem (2). The value
of bT y∗ increases when number of agents grows, since y∗

includes larger bids to maximize bT y∗. We have proved that
the gap between the blue bars (left side) and dotted line is
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Fig. 4. Percentage of cost saving with different D
and number of agents
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Fig. 5. Approximation ratio with different number of
agents.
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Fig. 6. Approximation ratio with different α.
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Fig. 9. Percentage of winners.

bounded by γϵ = γMα. Our simulation results suggest that
the gap is substantially smaller than the theoretical bound.
Fig. 6 illustrates the approximation ratio under different α
when 30 agents participate in the demand response process.
With the increase of α, the approximation ratio of MILP (2)
decreases and the approximation ratio of MILP (1) increases.
Similar to the explanation for Fig. 5, the difference between
approximation ratio of MILP (2) and optimal ratio 1 is close
to α, while the gap between approximation ratio of MILP (1)
and optimal ratio 1 is larger than α.

At the end of Sec. IV, we mention that the approximation ra-
tio of our algorithm is upper bounded by (1+γϵ). Fig. 7 shows
the approximation ratio achieved by Algorithm 2 to solve
MILP (1) with different γ, where γ = maxi,j∈[M ]{bi/bj}.
Although the theoretical analysis proves that (1 + γϵ) is the
upper bound of the approximation ratio, our simulations reveal
a more rosy picture in practice. Furthermore, the value of γ
doesn’t affect the ratio, while α dominates the final ratio. We
can observe that the approximation ratio fluctuates with the
decrease of γ, but decreases monotonically when α drops. This
can be intuitively explained as following: γ is used merely to
bound the approximation ratio. It indicates the ratio in the
worst case scenario rather than determines the ratio. Theorem
2 shows the real ratio still depends on the value of α. We
also compare our algorithm with Algorithm 2 from Zhang et

al. [7] to examine the approximation ratio when α = 0.01,
as shown in Fig. 8. It can be observed that both algorithms
perform relatively well under the given input, achieving small
approximation ratios that are between 1 and < 1.2. For all
different number of agents tested, our algorithm outperforms
that of Zhang et al. slightly.

Percentage of Winners. We next study the performance of
our randomized algorithm in terms of winner satisfaction, as
measured by the percentage of agents whose bid is accepted
by the grid. Fig. 9 shows that more agents are selected by the
grid when the number of participating agents is small. This

is because the grid needs a large fraction of the agents to
cover its shortage when there is only small number of choice.
The cost and maximum capacity of diesel generators also
influence the percentage of winners. Compare the percentage
of winners when c = $120 and c = $250, we can observe
that the percentage of winners with high cost is always larger.
This can be explain as follows: when diesel generation is
economical, our algorithm will first utilize diesel generators,
and then consider demand response bids. But the grid selects
all the bids from agents and avoids to use diesel generators
when their costs are high.

Social Cost. Fig. 10 illustrates social cost computed by our
randomized algorithm with varying number of agents and α.
The smallest value occurs at the left bottom of the surface
where α takes the smallest value and the number of agents is
large. The social cost decreases when the number of agents
increases. This is because a larger agent pool includes a larger
number of agents who submit low-cost bids. With a small
number of agents, the grid is forced to select expensive bids
to meet the demand response target. Furthermore, given the
same number of agents, a smaller α means the social cost is
closer to the smallest social cost. This is the reason why we
can observe a downward trend from the right side to the left
side of the surface.

In Sec. VI, we extended our studies to non-constant demand
response targets that are captured by the grid’s utility function.
Fig. 12 shows social cost achieved by 40 agents with different
utility functions. We consider four quadratic utility functions
[17] shown in Fig. 11. They are concave functions of the
target D. The maximum and minimum target that grid can
accept is 150MW and 50MW, respectively. The actual target
of grid is set to 100MW. When D = 100MW, grid has
the highest level of preference. For example, the dotted line
represents the utility function U(D) = 4(D − 50)(D − 150),
the maximum level of preference is equivalent to to $10000
when D = 100MW. When D is smaller or larger than
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Fig. 10. Social cost with different α and number of
agents.
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Fig. 12. Social cost with utility function

100MW, the level of preference decreases and reaches zero
when D = 50MW or D = 150MW. However, the trend in
Fig. 12 is not the same as in Fig. 11. We use circles to indicate
the social cost when D is equal to the grid’s actual demand
response target, and triangles to mark the optimal social cost.
Although the grid prefers 100MW the most, it is clear that
the lowest cost may not occur at such a preferred point. Our
algorithm can quickly compute a (1 + ϵ)-optimal solution to
these models in polynomial time.
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Fig. 13. Usage of diesel generators under different c and zmax.

Usage of Diesel Generators. Finally, we evaluate the usage
of on-site quick-start generators, as exemplified by diesel
generators, under different cost and generation capacity. We
assumes that 40 agents participate in the auction. The Y axis in
Fig. 13 represents the ratio of the output rate to the maximum
power of the diesel generators, and the X axis is the maximum
available power zmax. Here c is the unit cost, which equals
$120, or $180 or $250 per MW. Clearly, the higher the unit
cost is, the lower the usage of diesel generators is. When the
unit cost is low (light blue bars on the bottom layer), diesel
generators operate at the maximum capacity. Red bars on the
top layer show that the grid avoids to start its diesel generators
when it is expensive to operate diesel generators. Furthermore,
it is apparent that the cost, rather than the generation capacity,
determines the usage of diesel generators.

VIII. CONCLUSIONS

This work formulates general and expressive models for
demand response auctions. Through a new technique that
combines smoothed polynomial-time algorithm design with
randomized reduction, we designed demand response mech-
anisms that are truthful, polynomial-time computable, and can
approach optimal social cost arbitrarily closely. The new tech-
nique of designing randomized auction mechanisms through
smoothed polynomial-time algorithms may be applied to a

broad range of problems where social welfare maximization
is hard in the worst case, but the hard cases are relatively
rare and isolated. However, similar to many other FPTAS
types of algorithms and mechanisms in the future, our auction
algorithms can be sometimes slow in practice despite its
polynomial time running time, due to large exponents in
the running time. Designing demand response auctions that
are even more efficient for large scale practical applications
remains an interesting and challenging problem.
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