
An Online Procurement Auction for Power Demand
Response in Storage-Assisted Smart Grids

Ruiting Zhou†, Zongpeng Li†, Chuan Wu‡

† Department of Computer Science, University of Calgary, {rzho, zongpeng}@ucalgary.ca
‡ Department of Computer Science, The University of Hong Kong, cwu@cs.hku.hk

Abstract—The quintessential problem in a smart grid is the
matching between power supply and demand — a perfect balance
across the temporal domain, for the stable operation of the
power network. Recent studies have revealed the critical role
of electricity storage devices, as exemplified by rechargeable bat-
teries and plug-in electric vehicles (PEVs), in helping achieve the
balance through power arbitrage. Such potential from batteries
and PEVs can not be fully realized without an appropriate
economic mechanism that incentivizes energy discharging at
times when supply is tight. This work aims at a systematic study
of such demand response problem in storage-assisted smart grids
through a well-designed online procurement auction mechanism.
The long-term social welfare maximization problem is naturally
formulated into a linear integer program. We first apply a
primal-dual optimization algorithm to decompose the online
auction design problem into a series of one-round auction design
problems, achieving a small loss in competitive ratio. For the
one round auction, we show that social welfare maximization is
still NP-hard, and design a primal-dual approximation algorithm
that works in concert with the decomposition algorithm. The end
result is a truthful power procurement auction that is online,
truthful, and 2-competitive in typical scenarios.

I. INTRODUCTION

The smart grid is a modern network for electric power
generation, transportation and consumption that achieves high
efficiency and robustness through sophisticated communica-
tion, control and optimization. The central problem in a
smart grid, as in a traditional power network, is the realtime
balancing between power supply and demand [1].

When the supply cannot match demand, a power grid may
procure electricity from energy storage devices attached to
the grid. For example, the power system in Ontario, Canada
procured 35 megawatts of stored energy to provide ancillary
services on May 5, 2014 [2]. When supply is higher than de-
mand, electricity can be stored for future usage. Conventional
electricity storage converts electricity immediately into another
form of energy such as gravitational potential energy of water,
compressed air energy, thermal energy and flywheel energy
[3]. The paradigm is now changing with the emergence of
new battery technologies. Rechargeable batteries are starting
to play an important role in the electricity storage system.
Lithium-ion batteries and liquid electrolyte “flow batteries” are
two representative types of rechargeable battery used today.
They can be found at grids, microgirds, electrical cars, smart
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homes and individual customer sites. Batteries in grids and
microgrids are usually used to stabilize the frequency of
electric power. Electrical cars are also coming to the focal
point as (i) new generation of car batteries can have 60kWh
(about the average consumption of 30 U.S. households) or
higher capacity [4], and (ii) the population of electrical cars
rapidly grows. Smart homes are customarily equipped with
battery to store electricity generated by the solar panel [5].
Individual customer sites such as datacenters and universities
often own a large battery bank as well, for backup supply.
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Fig. 1: A Storage-Assisted Smart Grid.

While a single battery may have limited capacity, thousands
of them co-residing in the same grid can together store and
supply an impressive amount of electricity. Power demand
response through “storage crowdsourcing” is now envisioned
as a critical tool towards balancing supply-demand in a
power grid. It helps smooth demand and supply across the
temporal domain via power arbitrage, by charging at night
when the supply is high and the price is low (sometimes
negative) and selling back to the gird when the demand is
high. Rechargeable batteries are also more cost effective and
environment friendly than quick-start generation (e.g., diesel
generators). For example, in vehicle-to-grid [6], a pilot project
led by the University of Delaware, three types of cars are
connected to the grid: hybrid and fuel cell vehicles, battery-
powered vehicles, and solar vehicles. Each type is capable of
producing 60 Hz AC electricity for either home consumption
or selling back to the power grid through a connection line.
Another ongoing community energy storage project at Toronto
Hydro [7] installs a large battery box for each community,
with 250kWh storage capacity. The storage helps keep voltage
levels stable for commercial customers, removes the need
for diesel generators and supports electricity releasing to the



grid during peak demand, through electricity procurement.
Ontario smart home roadmap [5] indicates that solar panel
and batteries will be embedded in most household by 2015.
Fig. 1 illustrates the structure of a storage-assisted smart grid
system, all the peripheral components can communicate with
the power grid to participate in demand response.

To fully realize the potential of storage power demand re-
sponse in practice, two types of challenges are to be addressed:
technical and economic. While technical challenges of such
demand response have been at the focal point of a series
of recent studies [8], [9], this work represents one of the
first studies on the economic side that provides the necessary
financial catalyst for making power demand response a reality.
The proposed solution for incentivizing storage participation
and cost minimization in power demand response is an online
procurement power auction. The online property of the auction
captures the fact that storage based power arbitrage has diurnal
cycles, and electricity stored at low-price hours is in finite
supply. The procurement form of the auction captures the fact
that power demand response auction is a reverse auction, with
multiple sellers (storage devices) and a single buyer (the grid).
Other properties pursued in the auction mechanism design
include computational efficiency, economic efficiency (social
cost minimization) and truthfulness.

We formulate the social welfare maximization problem,
which becomes social cost minimization in our procurement
auction, into an online optimization problem in the form of a
natural integer linear program (ILP). We show that the most
natural ILP formulation has an unbounded integrality gap, and
augment it with a set of redundant ‘flow-cover’ constraints.

We design an online auction framework that decomposes
the online auction into a series of one-round auctions, while
guaranteeing a bounded additive loss in competitive ratio. Such
decomposition is based on a primal-dual algorithm that works
on the augmented social cost minimization ILP and its dual
LP. Intuitively, it maintains dual variables that are used to
scale power cost in the current round, and then conducts per-
round cost minimization based on scaled costs. The framework
assumes the existence of a one-round power demand response
algorithm that is truthful, and provides both a primal and a
dual solution with a bounded gap.

We proceed to design such a one-round auction algorithm
that satisfies the above requirements. We design a primal-dual
algorithm based on greedy dual ascending, which iteratively
updates a pair of primal and dual solutions. While primal
feasibility is automatically achieved, dual feasibility is not
strictly enforced during the iterations and is achieved through
posteriori dual fitting. We prove that both the approximation
ratio and the primal-dual gap of the solutions are bounded by
a small constant 2 — the ratios observed in simulation studies
are even much better, mostly within (1.0, 1.2) (Sec. VI).
Furthermore, we prove that winner selection in this one-round
algorithm satisfies an important monotone property, and as a
result, can work in concert with a critical value based payment
scheme to form a truthful auction.

In the rest of the paper, we review related literature in

Sec. II, and introduce system model and background of the
online demand response auction in Sec. III. Sec. IV focuses
on the online auction framework design, assuming a truthful
one-round auction that is designed and analyzed in Sec. V.
Sec. VI presents simulation studies, and Sec. VII concludes
the paper.

II. RELATED WORK

Storage-assisted smart grids have witnessed an increasing
number of studies since a decade ago, starting from vehicle-
to-grid systems. Kempton et al. [8] discuss technical require-
ments for realizing vehicle-to-grid systems, and calculate the
resource size, availability, and economic potential of such sys-
tems. Johansen [9] studies prompt-charging of electric vehicles
using AC. Through extensive experiments, he develops a low-
cost AC-only fast-charging station. Gao et al. [10] propose
a contract-based mechanism to incentivize electric vehicles
to participate in power demand response. Different from the
above literature, this work focuses on the demand response
auction design in smart grids.

A series of auction mechanisms are recently designed for
smart grids. Zhang et al. [11] study the electricity markets
between power grids and micogrids by adopting a randomized
auction framework. They consider both grid-to-microgrid and
microgrid-to-grid markets, and focus on the Unit Commitment
Problem (UCP). Ma et al. [12] study auction mechanism de-
sign when users buy energy from the provider in a smart grid.
They show that appropriate pricing rules can guarantee truthful
bidding. They use smart meters to record user’s consumption
information and patterns, and compute payments according
to consumption credit. Ramachandran et al. use a hybrid
optimization algorithm to design an auction for distributed
energy resource management in smart grid operation [13]. All
the above auctions are one-round instead of online, and do not
have a target amount in electricity purchases.

Niv and Joseph [14] study online algorithm design via a
primal-dual approach. They show that a number of practical
problems can be solved using the basic approach developed
for online packing-covering problems. Shi et al. [15] apply
a similar primal-dual technique to an online cloud comput-
ing problem, for designing combinatorial auctions of virtual
machine instances. TODA [16] represents a truthful online
double auction for spectrum allocation in wireless networks.
They assume that the arrival of user requests follows a potion
distribution, and there is no budget or capacity limit.

III. SYSTEM MODEL AND PRELIMINARIES

A. System Model

Consider a storage-assisted smart grid system in which
batteries store electricity. When the power grid predicts elec-
tricity shortage in an upcoming time period, it initiates demand
response by soliciting electricity sales from the the agents
(batteries) through a reverse auction, or a procurement auction.

Let [X ] denote the integer set {1, 2, . . . , X}. The system
runs in a time-slotted fashion across a time span of T time
slots; the powder grid acts as the auctioneer, receiving bids



from agents during each slot. Following the diurnal pattern
of power arbitrage, we further assume T ≤ 24, for batteries
are charged during low price periods in the night. Let M be
the number of batteries connected with the power grid. At the
beginning of each round, each agent m ∈ [M ] submits a set

of K bids. Each bid is a pair (e(t)m,k, c(t)m,k), where e(t)m,k is the
amount of electricity (in kWh) agent m supplies in its kth

bid, and c(t)m,k is the cost of e(t)m,k, which models agent m’s
opportunity cost of not utilizing the same amount of energy
by itself. E(t) and L(t) denote the power demand (in KW) at
time t and the length (in hours) of each time slot. The grid
needs E(t)L(t) kWh to cover its shortage during t. At the end
of each round, the auctioneer announces: (i) a binary number

x(t)
m,k corresponding to each bid, with x(t)

m,k = 1 indicating

a successful bid and x(t)
m,k = 0 an unsuccessful bid; (ii) a

payment P (t)
m for each winning agent m.

Adopting the XOR-bidding language [15], we assume that
each agent can win at most one bid in each round. Further-
more, the total energy a agent m supplies to the grid cannot
exceed its battery’s capacity Cm. The terms time slot and
round are used interchangeably. Table I summarizes notation
for ease of reference.

B. Truthful Procurement Auction Design

Let b(t)m,k be the declared cost of e(t)m,k in agent m’s kth bid,

b(t)−m be the set of bids from agents except m. The utility of
an agent m’s kth bid is:

um,k(b
(t)
m,k, b

(t)
−m) =

{

P (t)
m − c(t)m,k if x(t)

m,k = 1

0 otherwise

Each agent is selfish and rational, with a natural goal of
maximizing its own utility. Consequently, an agent may choose

to manipulate its bid (b(t)m,k ̸= c(t)m,k) if doing so leads to
a higher utility. The auctioneer wishes to minimize its total
cost when purchasing electricity from agents, for which it is
important to know agents’ truthful costs.

Definition 1. (Truthful auction) An auction is truthful if report-

ing the true cost c(t)m,k for e(t)m,k is the dominant strategy for any

agent m at any time t: um,k(c
(t)
m,k, b

(t)
−m) ≥ um,k(b

(t)
m,k, b

(t)
−m).

Definition 2. (Individual rationality & No positive transfers)

Utility um,k ≥ 0 and payment P (t)
m ≥ 0, ∀m, k, t. Agents

always obtain non-negative utility, and never have to pay the
auctioneer in the procurement auction [17].

The Vickrey-Clarke-Groves (VCG) mechanism [18] is a
well-known type of auction that ensures truthful bidding.
However, VCG mechanisms require an optimal solution to
the winner determination problem. If the latter is NP-hard and
an approximation algorithm is applied, VCG is not truthful
[19]. The problem of demand response can be viewed as a
generalization of the classic knapsack problem that is NP-hard
[20]. We will rely on Myerson’s characterization instead for
truthful auction design, and employ an efficient approximation
algorithm for winner determination.

Theorem 1. [21], [22] A reverse auction is truthful if and
only if:

TABLE I: Summary of Notation

M # of agents (batteries) T # of time slots
K # of bids per agent [X] integer set {1, 2, . . . ,X}
E(t) power demand (in kilowatt) of the grid at time t

L(t) length (in hours) of each time slot

e
(t)
m,k amount of energy (in kWh) agent m can supply

at time t in kth bid

c
(t)
m,k cost of e

(t)
m,k

x
(t)
m,k agent m’s kth bid successful (1) or not (0) at time t

P
(t)
m payment to agent m at time t

Cm the total capacity (in kWh ) of agent m’s battery

A(t) a set A(t) = {(m1, k1), (m2, k2), . . . },
∑

(m,k)∈A(t) e
(t)
m,k < E(t)L(t)

E(A(t)) E(t)L(t) −
∑

(m,k)∈A(t) e
(t)
m,k

em,k(A(t)) min{e(t)m,k , E(A(t))}

w
(t)
m,k the increased cost of e

(t)
m,k in each round

α the approximation ratio of Aone

• The auction result x(t)
m,k is monotonically non-increasing

in c(t)m,k;

• Winners are paid threshold payments: P (t)
m = c(t)m,kx

(t)
m,k+

∫∞

c
(t)
m,k

x(t)
m,kdc

(t)
m,k

IV. THE ONLINE AUCTION FRAMEWORK

We design an online auction framework that decomposes the
online demand response winner determination problem (WDP)
into one-round WDPs, We will formulate the online WDP and
one round WDP in Sec. IV-A and Sec. IV-B respectively, then
design the online algorithm in Sec. IV-C.

A. The Online Auction Problem

Under the assumption of truthful bidding, a natural integer
linear program (ILP) formulation of the WDP for social
welfare maximization is:

Minimize
∑

t∈[T ]

∑

m∈[M]

∑

k∈[K]

c(t)m,kx
(t)
m,k (1)

Subject to:
∑

k∈[K]

x(t)
m,k ≤ 1, ∀m ∈ [M ], ∀t ∈ [T ] (1a)

∑

m∈[M]

∑

k∈[K]

e(t)m,kx
(t)
m,k ≥ E(t)L(t), ∀t ∈ [T ] (1b)

∑

t∈[T ]

∑

k∈[K]

e(t)m,kx
(t)
m,k ≤ Cm, ∀m ∈ [M ] (1c)

x(t)
m,k ∈ {0, 1}, ∀m ∈ [M ], ∀t ∈ [T ],∀k ∈ [K] (1d)

In a procurement auction, social welfare maximization is
equivalent to social cost minimization [23]. Constraint (1a)
implements the XOR bidding rule. (1b) guarantees that aggre-
gate supply from successful bids sufficiently covers the grid’s
predicted power shortage. (1c) states that an agent’s demand
response participation is limited by its battery capacity.

The integrality gap between this ILP and its LP relaxation
can be as bad as E(t)L(t), as illustrated through the next
example. Assume there is one time slot, and two agents each
submits one bid, with e1 = EL− 1, c1 = 0, e2 = EL, c2 = 1,



and C1 = C2 = 2EL. The optimal LP solution sets
x1 = 1, x2 = 1/EL and has a cost of 1/EL. The optimal
ILP solution has to choose both agents and incurs a cost of 1.
The integrality gap is EL.

The competitive ratio of our online auction framework par-
tially depends on the integrality gap (Sec. IV-C). We augment
the WDP formulation in IP (1) by introducing a number of
redundant flow-cover type of inequalities [24]. Consider a set
A(t) = {(m1, k1), (m2, k2), . . . } such that at time slot t,
∑

(m,k)∈A(t) e
(t)
m,k < E(t)L(t). Let’s define X(t) as a large

set that includes all possible A(t) at time t.

E(A(t)) = E(t)L(t) −
∑

(m,k)∈A(t)

e(t)m,k,

em,k(A
(t)) = min{e(t)m,k, E(A(t))}.

(1) can be reformulated into an equivalent optimization:

Minimize
∑

t∈[T ]

∑

m∈[M]

∑

k∈[K]

c(t)m,kx
(t)
m,k (2)

Subject to:
∑

k∈[K]

x(t)
m,k ≤ 1, ∀m ∈ [M ], ∀t ∈ [T ] (2a)

∑

m∈[M]

∑

k∈[K]

em,k(A
(t))x(t)

m,k ≥ E(A(t)),

∀(m,k) /∈ A(t),∀A(t) ∈ X(t), ∀t ∈ [T ] (2b)
∑

t∈[T ]

∑

k∈[K]

e(t)m,kx
(t)
m,k ≤ Cm, ∀m ∈ [M ] (2c)

x(t)
m,k ∈ {0, 1}, ∀m ∈ [M ], ∀t ∈ [T ], ∀k ∈ [K] (2d)

By the property of set A(t), we can verify that every feasible
solution to (1) is a feasible solution to (2), and vice versa.
Introducing dual variables y, z, and s to constraints (2a), (2b)
and (2c), respectively, we formulate the dual LP of (2):

Max
∑

A(t)∈X(t)

∑

t∈[T ]

z(A(t))E(A(t))−
∑

m∈[M]

smCm−
∑

m∈[M]

∑

t∈[T ]

y(t)
m

(3)
Subject to:

∑

A(t)∈X(t):(m,k)/∈A(t)

z(A(t))em,k(A
(t)) ≤ c(t)m,k + sme(t)m,k + y(t)

m ,

∀m ∈ [M ], ∀t ∈ [T ],∀k ∈ [K] (3a)

y(t)
m , z(A(t)), sm ≥ 0,∀m ∈ [M ],∀t ∈ [T ]

(3b)

In our online algorithm, we first assume that a truthful
auction mechanism Aone is carried out at each time slot
to solve one-slot demand response WDP, guaranteeing an
approximation ratio α in social welfare. Then our proposed
online algorithm can decompose the long-term auction into
one round auctions according to the remaining capacity of each
battery. It guarantees a bounded additive loss in competitive
ratio during the translation.

B. One-Round Winner Determination Problem (WDP)

The one-round WDP for social welfare maximization is:

Minimize
∑

m∈[M]

∑

k∈[K]

w(t)
m,kx

(t)
m,k (4)

Subject to:
∑

k∈[K]

x(t)
m,k ≤ 1, ∀m ∈ [M ] (4a)

∑

m∈[M]

∑

k∈[K]

em,k(A
(t))x(t)

m,k ≥ E(A(t)),

∀(m,k) /∈ A(t),∀A(t) ∈ X(t) (4b)

x(t)
m,k ∈ {0, 1}, ∀m ∈ [M ],∀k ∈ [K] (4c)

The above ILP includes the same constraints in IP (2) except

the capacity constraint (2c). We modify the cost c(t)m,k to a

scaled cost w(t)
m,k according to the level of the remaining

battery at agent m. The dual LP to (4) is:

Maximize
∑

A(t)∈X(t)

z(A(t))E(A(t))−
∑

m∈[M]

y(t)
m (5)

Subject to:
∑

A(t)∈X(t):(m,k)/∈A(t)

z(A(t))em,k(A
(t)) ≤w(t)

m,k + y(t)
m ,

∀m ∈ [M ],∀k ∈ [K] (5a)

y(t)
m , z(A(t)) ≥ 0,∀m ∈ [M ] (5b)

Where y and z are the same dual variables as in the dual of
(2), and correspond to constraints (4a) and (4b), respectively.
Table 2 is the correspondence relation between variables and
constraints in the primal and dual LPs.

TABLE II: var-constraint correspondance in primal & dual LPs

Primal (2a) & (4a) (2b) & (4b) (2c) x
(t)
m,k

Dual y
(t)
m z(A(t)) sm (3a) & (5a)

In Sec. V, we design a one-round α-approximation algo-
rithm Aone that guarantees truthful bidding, individual ratio-
nality and no positive transfer. In Sec. IV-C, we assume the
existence of such an auction, and present and focus on our
online algorithm framework.

C. The Online Algorithm Framework

The main idea behind the online WDP algorithm design
is to consider the current level of the remaining battery
capacity. Different electricity supply at each round leads to

different overall cost. When a bid with large supply (e(t)m,k)
is accepted by the grid at an early stage, that agent loses the
opportunity to participate in future demand response because
its stored energy depletes, which in turn may force the grid to
purchase electricity from an expensive alternative. The optimal
strategy for the grid is striking a balance between cash-in
on an agent’s current bid and preserving that agent’s demand
response potential for the future. The intuition we follow when
designing our online algorithm is to control the possibility of

a supply (e(t)m,k) winning based on the residual storage level.
Along this direction, we adjust the cost in a bid from agent

m according to its remaining capacity. A new variable s(t)m

is introduced for each m ∈ [M ]. The initial value of s(0)m

is set to 0, which is then increased with the decease of the
remaining battery capacity. The new cost w(t)

m,k is equal to



the original cost plus e(t)m,ks
(t−1)
m , and will be used in the one-

round auctions. From the auctioneer’s point of view, a bid with
a smaller remaining capacity will have a larger cost, reducing

its possibility of winning. The value of s(t)m is increased for
each winning bid (line 6) and remains intact otherwise (line 8),

where γ = maxm∈[M ],k∈[K],t∈[T ]{Cm/e(t)m,k}. In line 6, the

value of s(t)m is updated carefully, which is the key technique to
achieve low additive loss in competitive ratio. In Algorithm 1,
it is practical to assume that an agent submits its bids according
to its remaining energy level in its battery. During each round

of the auction, e(t)m,k is at most balance of Cm. Furthermore,
we set the value of dual variable sm in dual problem (3) to the

value of variable s(t)m in Algorithm 1 after T time slots. In this
way, we adjust the dual variables at each round to approach
the optimal solution of dual problem in (3).

Algorithm 1: The Online Auction Framework Aonline

1 s(0)m := 0, ∀m ∈ [M ];
2 foreach 1 ≤ t ≤ T do

3 w(t)
m,k = c(t)m,k + e(t)m,ks

(t−1)
m , ∀m ∈ [M ];

4 Run Algorithm Aone at time slot t. Let’s define I as
the set of winning agents, and for each m ∈ I, km as
the index of their corresponding winning bid;

5 foreach m ∈ I do

6 s(t)m = s(t−1)
m

(

1 +
e
(t)
m,km
αCm

)

+
c
(t)
m,km
αγCm

;

7 foreach m /∈ I do

8 s(t)m = s(t−1)
m ;

9 sm = s(T )
m , ∀m ∈ [M ];

Theorem 2. Assume there is an approximation algorithm
Aone for one-round WDP, providing feasible solutions to (4)
and (5), and guaranteeing αd ≥ p. Note that the approximation
ratio of Aone is also α. (By LP duality, αd ≥ p ≥ p∗, p/p∗ ≤
p/d ≤ α). Then Aonline is a α γ

γ−1 -approximation algorithm
for the optimization problem in (2) and (1). Here p is the
objective value of problem (4) achieved by Aone, d is the
dual objective value in (5) calculated by Aone , and p∗ is the
optimal objective value for problem (4).

Proof: We first prove the following three claims:

Claim 1: Aonline can produce a feasible solution for IP (2).

Proof of Claim 1: Because Aone running at each round

can provide a feasible solution for problem in (4), then x(t)
m,k

satisfies constraints (2a), (2b) and (2d). For the constraint (2c),
we know that one agent cannot submit a bid that exceeds its

remaining battery capacity. That is e(t)m,k ≤ balance of Cm,
therefore, constraint (2c) can be guaranteed.

Claim 2: At the end of the execution of Aonline, it can output
a feasible solution for dual problem in (3).

Proof of Claim 2: From the line 3 of Algorithm 1, we

know that w(t)
m,k is equal to c(t)m,k + e(t)m,ks

(t−1)
m , also from

constraint (5a) and the no-decreasing property of s(t)m with

t, the following can be obtained:
∑

A(t)∈X(t):(m,k)/∈A(t)

z(A(t))em,k(A
(t)) ≤w(t)

m,k + y(t)
m

∑

A(t)∈X(t):(m,k)/∈A(t)

z(A(t))em,k(A
(t)) ≤c(t)m,k + e(t)m,ks

(t−1)
m + y(t)

m

∑

A(t)∈X(t):(m,k)/∈A(t)

z(A(t))em,k(A
(t)) ≤c(t)m,k + sTme(t)m,k + y(t)

m

sm = s(T )
m , so (3a) holds, and (3b) also holds.

Claim 3: Let’s define ∆P (t) = P (t) − P (t−1), where P (t) is
the objective value of ILP (2) returned by Aonline, the same for
∆D(t) in dual (3). Then at any time slot t, ∆P (t) ≤ α γ

γ−1∆D
holds in Aonline.

Proof of Claim 3: at time slot t, ∆P (t) =
∑

m∈I c
(t)
m,km

∆D(t) =
∑

m∈I

Cm(s(t−1)
m − s(t)m ) + d

= d−

∑

m∈I e(t)m,km
s(t−1)
m

α
−

∑

m∈I c(t)m,km

αγ

≥
p
α

−

∑

m∈I e(t)m,km
s(t−1)
m

α
−

∑

m∈I c(t)m,km

αγ

≥

∑

m∈I w(t)
m,km

α
−

∑

m∈I e(t)m,km
s(t−1)
m

α
−

∑

m∈I c(t)m,km

αγ

≥ (
1
α

−
1
αγ

)∆P (t).

Since P (0) = 0, D(0) = 0, and ∆P (t) ≤ α γ
γ−1∆D(t) by

Claim 3, thus P (T ) ≤ α γ
γ−1D

(T ). By LP duality, Aonline is a

α γ
γ−1 approximation algorithm for the optimization problem

in (2). Furthermore, by the validity of the flow-cover inequal-
ities every feasible solution to (2) is a feasible solution to
(1), so Aonline is a α γ

γ−1 -approximation algorithm for the
optimization problem in (1) as well.

Note that when γ → ∞, i.e., when agents are only interested
in supplying a small proportion of their battery capacity, the
competitive ratio approaches α, which means there is zero loss
compare to the one-round algorithm.

V. THE ONE ROUND DEMAND RESPONSE AUCTION

In this section, we design a polynomial-time approximation
algorithm for one-round WDP (4) in Sec. V-A, and tailor a
payment scheme to work in concert with the algorithm to form
a truthful auction.

A. A Primal-Dual Approximation Algorithm

Algorithm 2 is an iterative primal-dual algorithm based on
dual ascending, solving simultaneously the primal problem (4)
and its dual (5). The classic dual fitting technique is employed
for ex post dual feasibility. Algorithm 2 elevates dual variable
z(A(t)) until dual constraint (5a) becomes tight, then adds the
corresponding item to a set A(t), and increases the new dual
variables again. This iterative process is repeated until items
in A(t) can cover the grid’s predicted gap in power supply.
Bids selected in the final set constitute the solution to (4).



More specifically, lines 1-5 initialize the primal and dual

variables, and the scaled cost w(t)
m,k(m)⋆. A while loop in

lines 7-15 updates the primal and dual variables. It has two
stop conditions. The first one ([M ] ̸= ∅) prevents infinite
loops. The second one ensures the algorithm ends with a
feasible solution to (4). Scaled cost is equal to the slacks
of the dual constraints and is decremented at line 7 during
each iteration. The algorithm selects a bid with the minimum
scaled cost per effective value em,k(A(t)) at line 8, and the

corresponding primal variable x(t)
m∗,km

is updated. In line 12,

we don’t increase dual variable z(A(t)) slowly; instead we
set its value to a minimum such that the dual constraint
becomes tight. Line 10 is used to find the threshold bid
(j, jm), for which (m∗, km) is guaranteed to win as long

as
w

(t)
m∗,km

⋆

em∗,km (A(t))
≤

w
(t)
j,jm

⋆

ej,jm (A(t))
. Then we calculate the cost to

match (j, jm) in line 13, and pay that amount to agent m∗

for ensuring truthfulness (see Theorem 4). m∗ is removed at
line 15 to make sure no other bids of agent m∗ wins in the
future. Line 16 records the final allocation in set I. The last
two steps (line 17-18) generate a feasible dual solution to (5).

Algorithm 2: A Primal-Dual Approximation Algorithm Aone

for One-round WDP (4)

1 z(A(t)) := 0, ∀A(t) ∈ X(t);

2 A(t) := ∅;

3 y(t)m := 0, ∀m ∈ [M ];

4 x(t)
m,k := 0, ∀m ∈ [M ], ∀k ∈ [K];

5 w(t)
m,k⋆ := w(t)

m,k, ∀m ∈ [M ],∀k ∈ [K];
6 while [M ] ̸= ∅ AND E(A(t)) > 0 do

7 w(t)
m,k⋆ = w(t)

m,k ⋆−z(A(t))em,k(A(t));

8 m∗, km := argminm∈[M ],k∈[K]{
w

(t)
m,k⋆

em,k(A(t))
};

9 x(t)
m∗,km

:= 1;

10 j, jm := argmin(m,k) ̸=(m∗,km){
w

(t)
m,k⋆

em,k(A(t))
};

11 z(Aj) := min(m,k) ̸=(m∗,km){
w

(t)
m,k⋆

em,k(A(t))
};

12 z(A(t)) := minm∈[M ],k∈[K]{
w

(t)
m,k⋆

em,k(A(t))
};

13 P (t)
m∗ := w(t)

m∗,km
+
(

z(Aj)− z(A(t))
)

em∗,km(A(t));
14 A(t) := A(t) ∪ (m∗, km);
15 [M ] := [M ] \m∗;

16 I := A(t);

17 ϵ(t) := max
{

w
(t)
m2,k2

w
(t)
m1,k1

,
e
(t)
m1,k1

w
(t)
m2,k2

e
(t)
m2,k2

w
(t)
m1,k1

}

;

18 z(A(t)) := z(A(t))/ϵ(t);

B. Feasibility and Gap of Primal & Dual Solutions

Theorem 3. Aone terminates with a feasible solution for
primal problem (4) and dual problem (5), and guarantees
αd ≥ p (d and p defined in Theorem 1), α = 2ϵ(t) with

ϵ(t) = max(w(t)
m2,k2

/w(t)
m1,k1

, e(t)m1,k1
w(t)

m2,k2
/e(t)m2,k2

w(t)
m1,k1

),
∀m1,m2 ∈ [M ], ∀k1, k2 ∈ [K]. Therefore, Aone is a α-
approximation algorithm. If we further restrict that each agent

submits one bid only, the approximation ratio is 2.

Proof of Theorem 3: We first analyze the complexity of
Aone. One of the termination conditions of the while loop is
[M ] = ∅, therefore the loop iterates at most M times. Lines 7,
8, 10, 11 and 12 can be done within MK times. We conclude
that the total running time is O(MK), linear to the input
size, and Aone runs in polynomial time. Next, we prove the
correctness of Algorithm 2.

Claim 1: Upon termination, Aone generates a feasible solution
to the primal problem (4).

Proof of Claim 1: The body of Algorithm 2 keeps adding a new
item to set A(t) as long as E(A(t)) > 0. Once we finish, all the
items in I form our integer solution. Because E(A(t)) ≤ 0,
∑

(m,k)∈I e(t)m,k ≥ E(t)L(t), which satisfies constraint (4b).

Moreover, line 12 will exclude agent m∗ from [M ], so other
bids of m∗ cannot be selected any more. As a result, constraint
(4a) can be guaranteed. Constraint (4c) will not be violated

because the value of x(t)
m,k is in initialized to 0 and updated to

1 at line 9, so its value can only be 0 or 1.

The algorithm also stops when [M ] = ∅. In this case, we
cannot not find a subset of agents that can meet the grid’s
demand. This is a less likely in practical scenarios where the
number of agents is large.

Claim 2: After the last iteration of the while loop in
Algorithm Aone, line 18 ensures that z(A)/ϵ is a feasible
solution to dual problem (5).
Proof of Claim 2: at the beginning of Algorithm 2, dual
variables are set to zero and are feasible. At the τ -th iteration,

z(Aτ )em∗,km(Aτ ) = wτ
m∗,km⋆

= wτ−1
m∗,km

⋆−z(Aτ−1)em∗,km(Aτ−1)

= wτ−2
m∗,km

⋆−z(Aτ−2)em∗,km(Aτ−2)− z(Aτ−1)em∗,km(Aτ−1)

w1
m∗,km⋆ = z(A1)em∗,km(A1) + · · ·+ z(Aτ )em∗,km(Aτ )

Line 5 sets w1
m∗,km

⋆ = wm∗,km , and at the end of τ -th

iteration, bid (m∗, km) is appended to A(t). We have:
∑

A∈X:(m∗,km)/∈A

z(A)em∗,km(A)

= z(A1)em∗,km(A1) + · · ·+ z(Aτ )em∗,km(Aτ ) = wm∗,km

The above equation can be applied to all (m, k) ∈ I, that is
∑

A∈X:(m,k)/∈A

z(A)em,k(A) = wm,k, ∀(m,k) ∈ I.

Case 1: (m, k) ∈ I. Recall that ϵ is defined as the maximum
ratio that must be at least 1, and we have:

1
ϵ

∑

A∈X:(m,k)/∈A

z(A)em,k(A) ≤ wm,k,∀(m,k) ∈ I.

Case 2: (m, k) /∈ I. If we define

ϵ = max
m1,m2∈[M],k1,k2∈[K]

em1,k1(A)wm2,k2

em2,k2(A)wm1,k1

⇒
1
ϵ

em1,k1(A)

wm1,k1

≤
em2,k2(A)

wm2,k2



We can further apply the above inequality as: for any
(m1, k1) /∈ I,m2, k2 ∈ I,

∑

A∈X:(m1,k1)/∈A

z(A)
em1,k1(A)
wm1,k1ϵ

≤
∑

A∈X:(m2,k2)/∈A

z(A)
em2,k2(A)
wm2,k2

= 1

⇒
1
ϵ

∑

A∈X:(m1,k1)/∈A

z(A)em1,k1(A) ≤ wm1,k1

Now we can see that (5a) will not be violated once z(A) =
z(A)/ϵ. The final step is to compute the value of ϵ.

ϵ = max
m1,m2∈[M],k1,k2∈[K]

em1,k1(A)
em2,k2(A)

wm2,k2

wm1,k1

Since em,k(A) = min{em,k, E(A)}, if

i) em1,k1(A) = em2,k2(A) = E(A), em1,k1(A)/em2,k2(A) = 1;

ii) em1,k1(A) = em1,k1 , em2,k2(A) = em2,k2 ,

em1,k1(A)/em2,k2(A) = em1,k1/em2,k2 ;

iii) em1,k1(A) = E(A), em2,k2(A) = em2,k2 ,

em1,k1(A)/em2,k2(A) ≤ em1,k1/em2,k2 ;

iv) em1,k1(A) = em1,k1 , em2,k2(A) = E(A),

em1,k1(A)/em2,k2(A) ≤ E(A)/E(A) = 1.

In summary, for ∀m1,m2 ∈ [M ], ∀k1, k2 ∈ [K]:

em1,k1(A)
em2,k2(A)

= max
{

1,
em1,k1

em2,k2

}

,

ϵ = max
{wm2,k2

wm1,k1

,
em1,k1wm2,k2

em2,k2wm1,k1

}

.

Claim 3: The solutions to (4) and (5) returned by Aone

guarantee 2ϵ(t)d ≥ p.
Proof of Claim 3: Let l be the last bid selected by Algorithm

Aone. In Aone, y(t)m is zero. Since the algorithm only selects
an agent when (5a) becomes tight, the total cost is

p =
∑

m∈[M]

∑

k∈[K]

w(t)
m,kx

(t)
m,k =

∑

(m,k)∈I

w(t)
m,k

=
∑

(m,k)∈I

∑

A(t)∈X(t):(m,k)/∈A(t)

z(A(t))em,k(A
(t))

=
∑

A(t)∈X(t)

z(A(t))
∑

(m,k)∈I:(m,k)/∈A(t)

em,k(A
(t))

≤
∑

A(t)∈X(t)

z(A(t))(
∑

(m,k)∈I\l

e(t)m,k −
∑

(m,k)∈A(t)

e(t)m,k + el(A
(t)))

Since E(I\l) = E(t)L(t) −
∑

(m,k)∈I\l e
(t)
m,k > 0, we have

∑

(m,k)∈I\l e
(t)
m,k < E(t)L(t). Then

p ≤
∑

A(t)∈X(t)

z(A(t))(E(t)L(t) −
∑

(m,k)∈A(t)

e(t)m,k + el(A
(t)))

≤
∑

A(t)∈X(t)

z(A(t))(E(t)L(t) −
∑

(m,k)∈A(t)

e(t)m,k + E(A(t)))

≤
∑

A(t)∈X(t)

z(A(t))(E(A(t)) + E(A(t)))

≤2ϵ(t)
∑

A(t)∈X(t)

z(A(t))E(A(t))/ϵ(t) ≤ 2ϵ(t)d.

When each agent submits one bid only (k = 1), our
algorithm can provide a feasible solution for both primal
problem (4) and dual problem (5). p =

∑

(m,k)∈I w(t)
m,k ≤

2
∑

A(t)∈X(t) z(A(t))E(A(t)) ≤ 2d. Hence the approximation
ratio under this scenario is 2.

Claims 1-3 together imply the theorem.

C. Truthfulness of the Online Procurement Auction

Lemma 1. The auction result x(t)
m,k computed by Aone is

monotone: ∀m1,m2 ∈ [M ], ∀k1, k2 ∈ [K], if w(t)
m1,k1

≤ w(t)
m2,k2

and e(t)m1,k1
= e(t)m2,k2

, then x(t)
m2,k2

= 1 implies x(t)
m1,k1

= 1.

Proof of Lemma 1:
In Algorithm 2, line 8 can be reformulated as :m∗, km =

argminm∈[M],k∈[K]{
w

(t)
m,k−

∑
A(t)∈X(t):(m,k)/∈A(t) z(A(t))em,k(A(t))

em,k(A
(t))

}.

Because e(t)m1,k1
= e(t)m2,k2

, em1,k1(A
(t)) = em2,k2(A

(t)). We

also have w(t)
m1,k1

≤ w(t)
m2,k2

, thus

w(t)
m1,k1

−
∑

A(t)∈X(t):(m1,k1)/∈A(t) z(A(t))em1,k1(A
(t))

em1,k1(A
(t))

≤
w(t)

m2,k2
−

∑

A(t)∈X(t):(m2,k2)/∈A(t) z(A(t))em2,k2(A
(t))

em2,k2(A
(t))

.

Consequently, if our algorithm selects (m2, k2) at the τ -th

iteration, it must select (m1, k1) first, so x(t)
m2,k2

= 1 implies

x(t)
m1,k1

= 1.

Lemma 2. The payment scheme of Aone is individual rational
and has no positive transfer.

Proof of Lemma 2: Let examine the line 13 of Algorithm 2, the

auctioneer pays P (t)
m∗ = w(t)

m∗,km
+

(

z(Aj) − z(A(t))
)

e(t)m∗,km

to agent m∗. Because z(Aj) ≥ z(A(t)), then P (t)
m∗ ≥ w(t)

m∗,km
,

therefor the utility um∗,km ≥ 0 and P (t)
m∗ ≥ 0.

Theorem 4. The auction performed by Aone is truthful.

Proof of Theorem 4: By Myerson’s characterization of truthful
mechanisms, an auction is truthful iff (i) the auction result is
monotone, and (ii) winners are paid threshold payments. We
already demonstrated the first property of our mechanism in
Lemma 1. Next, we will explain the second property.

We know that bid (j, jm) is the threshold bid for m∗, km,
because when we exclude (m∗, km) from the candidates set,
(j, jm) would be first bid that gets assigned. Clearly, if

w
(t)
m∗,km

⋆

em∗,km (A(t))
≥

w
(t)
j,jm

⋆

ej,jm (A(t))
, (m∗, km) would not be the winner

bid. So we can compute the payment to agent m∗ such that it

makes
w

(t)
m∗,km

⋆

em∗,km (A(t))
=

w
(t)
j,jm

⋆

ej,jm (A(t))
, that is at iteration τ :

wτ
m∗,km⋆ = em∗,km(Aτ )z(Aj)

Go back to the proof of Claim 2 in Theorom 3, we have:

wm∗,km = z(A1)em∗,km(A1) + · · ·+ z(Aτ )em∗,km(Aτ )

P ∗
m = z(A1)em∗,km(A1) + · · ·+ z(Aj)em∗,km(Aτ )

P ∗
m = wm∗,km +

(

z(Aj)− z(Aτ )
)

em∗,km(Aτ )

That is the same as P (t)
m∗ := w(t)

m∗,km
+

(

z(Aj) −

z(A(t))
)

em∗,km(A(t)).



Theorem 5. Aonline coupled with Aone is a a truthful,
individual rational auction that has no positive transfer. It
achieves 2ϵ(t) γ

γ−1 approximation in social cost.

Combinng Theorem 1, Lemma 2 and Theorem 4, we can
prove Theorem 5. We observe that when γ → ∞ and k = 1,
the competitive ratio approaches 2.

VI. SIMULATION STUDIES

This section contains simulation studies of the one-round
auction algorithm and the online auction framework. The
grid demand E(t) is set between 10GW and 50GW, with
reference to information from ieso (Power to Ontario) [2].
The length of each time slot L(t) is an hour. Battery capacity
is chosen between 60kWh and 200kWh, following the ca-
pacity of current vehicle batteries and storage batteries. The

amount of supply by one agent e(t)m,k is a random value from

[0, 100]kWh. Magnitudes of cost c(t)m,k are set with reference
to cost information from a real-world utility, ENMAX [25],
and follow a uniform distribution over [$0, $20].

A. Performance of One-round Demand Response Auction

TABLE III: Comparison of the total cost ($) when k = 1

# agents 1000 1400 1800 2200 2600 3000
Aone 407.74 301.99 231.82 202.77 154.28 132.99
Optimal 405.36 301.83 230.32 202.52 152.72 131.67

Theorem 3 shows that when an agent is restricted to submit
a single bid per round, the approximation ratio of one-round
auction Aone is reduced to 2. We plot the social cost under this
scenario in Fig. 2, and list the cost values in table 3. In this
figure, the energy shortage of the grid is equal to 10GWh.
We can see that the solution returned by Algorithm 2 has
a sightly higher cost than that of the optimal solution. Our
simulations suggest that the one-round primal-dual algorithm
can approach optimal solution much better than indicated by
proven theoretical worst-case ratio 2. Furthermore, when the
number of agents varies from 1000 to 3000, we find that the
total cost decreases with the increase of the number of agents.
This is because the gird can select more cost effective agents.
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0

100

200

300

400

500

Number of Agents

To
ta

l C
os

t

 

 

Algorithm 2
Optimal

Fig. 2: Performance of Aone when k = 1.

We evaluate the performance of Aone in terms of ap-
proximation ratio, social cost and percentage of winners in
Fig. 3. The 3d plot in Fig. 3a demonstrates the fluctuation of
approximation ratio with the change of number of agents and
number of bids per agent. We can see that the peek point of the
approximation ratio appears when a small number of agents
are available to participate in the demand response procedure,

and each user submits more than 10 bids. Furthermore, the
ratio approaches 1 towards the bottom-right corner of the
surface, which shows that our one-round algorithm performs
close to optimal in social cost with a large number of agents
and a small number of bids per agent. Even with small
numbers of agents and large values of k, the algorithm can
still achieve a rather impressive approximation ratio (∼1.2).

Fig. 3b shows that total cost under different levels of
demand with the increase of k. It reflects a downward trend
as the number of bids per agent grows, while there is no large
difference under varying demand. The underlying reason is the
grid can select the best bid from one agent, and we set the
number of agents to 2000, which can provide sufficient supply.
Fig. 3c shows the ratio between the number of winnings agents
and the number of total agents. The observation is that a large
number of agents lends to a low percentage of winners for the
same demand 20GW. Under the same agent population, the
percentage of winners remains at the same level regardless of
the value of k. This is true since for the same level of demand,
the number of winners remains the same, but the probability of
winning drops with the increasing of number of competitors.

B. Performance of Online Auction

We next study the performance of our online auction frame-
work with Aonline assisted by Aone running at each time slot.

Fig. 4a shows the total cost over different number of agents
with k = 2 and T = 4. We label the cost for each round with
different color and the height of the stack bar is the overall
cost. Similar to the case of one-round auctions, the larger
number of available agents, the better performance in terms of
cost can be achieved. Then we examine the overall competitive
ratio under different number of rounds in Fig. 4b. Small values
in k and T lead to a lower ratio, which can be explained as
following: the competitive ratio is related to the value of γ and
ϵ, where γ is the maximum ratio between battery capacity
and its supply in one bid, and ϵ is the maximum value of
cost ratio and supply per cost ratio. When we have multiple
rounds and bids per agent, the value of γ and ϵ is more likely
to be a large value. The observation in Fig. 4c is that the our
algorithm performs better with an increasing number of agents
and decreasing value of k.

Finally, we examine the additive loss in competitive ratio of
the online algorithm, as compared to the one-round algorithm,
in Fig. 5. We can see that there are only a slight loss, which
confirms our theoretical analysis in Theorem 2.

VII. CONCLUSIONS

Power arbitrage by timed charging and discharging electric-
ity storage devices such as batteries and PEVs is proving an
effective tool for reducing grid-wide power cost, guaranteeing
balanced power demand and supply, and improving stability
of modern smart grids. Besides engineering challenges that
are being addressed in the literature, economic sides of such
demand response in smart grids is also critical for realizing
practical applications. This work represents one of the first
studies on storage power demand response through an online
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Fig. 3: Performance of one-round WDP algorithm under different settings.
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Fig. 4: Performance of online algorithm under different settings.
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Fig. 5: Comparison of the approximation ratio between Algo-
rithm 2 and Algorithm 1.

procurement power auction mechanism. The two-stage auction
designed is truthful, computationally efficient, and achieves a
competitive ratio of 2 in practical scenarios.
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