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Abstract—We present some unique challenges in cognitive
radio ad-hoc networks (CRAHNs) that are not present in
conventional single-channel or multi-channel wireless ad-hoc
networks. We first briefly survey these challenges and their
potential impact on the design of efficient algorithms for several
fundamental problems in CRAHNs. Then, we describe our recent
contributions to the capacity maximization problem [29] and the
connectivity problem [32]. The capacity maximization problem is
to maximize the overall throughput utility among multiple unicast
sessions; the connectivity problem is to find a connected subgraph
from the given cognitive radio network where each secondary
node is equipped with multiple radios. By assuming the physical
interference model and asynchronous communications, we refor-
mulate the above two problems where the capacity maximization
problem is to find the maximum number of simultaneously
transmitting links in secondary networks, and the connectivity
problem is to construct a spanning tree over secondary networks
using the fewest timeslots. We discuss the challenging issues
for designing distributed approximation algorithms and give a
preliminary framework for solving these two problems.

I. INTRODUCTION

With the ever increasing demand for wireless services, due
partly to the explosive growth of multimedia transmissions,
the wireless spectrum has become a scarce resource. Cognitive
Radio is a promising technology that can alleviate the spec-
trum scarcity problem in wireless communication. It allows
the unlicensed secondary users to utilize the temporarily
unused licensed spectrums, referred to as white spaces, without
interfering with the licensed primary users. Cognitive Radio
Networks (CRNs) are believed to be the next generation of
communication networks and the field has attracted many
researchers in both academia and industry recently [48]. In
this paper, we consider Cognitive Radio Networks without a
centralized authority, which are called Cognitive Radio Ad-
Hoc Networks (CRAHNs) [1].

Different from conventional wireless ad-hoc networks where
each node has a fixed set of channels, in CRAHNs, through
spectrum sensing and spectrum database querying, each sec-
ondary user (SU) can measure the currently available channels,
i.e., channels not used by the primary users (PUs). Due to
the behaviors of the PUs and the possible mobility of the
secondary users (SUs), the available channels of the SUs have
the following characteristics [6]:

• Spatial Variation: SUs at different positions may have
different available channels;

• Spectrum Fragmentation: the channels available to a SU
may not be continuous;

• Temporal Variation: the available channels of a SU may
change over time.

By these characteristics, even the most fundamental operations
in traditional wireless ad-hoc networks will become quite
challenging to realize in CRAHNs. In the following, we briefly
survey how some of these unique challenges may impact basic
protocol design for the Rendezvous problem, the neighbor
discovery problem, and the broadcasting problem in CRAHNs.

II. PROTOCOL DESIGN CHALLENGES IN CRAHNS

The first challenge CRAHNs may face is about message
delivery. In traditional wireless ad-hoc networks, since both
the sender and the receiver can share the same channel
or set of channels, sending a message is easy as long as
the receiver is in the sender’s transmission range. However,
to successfully send a message transmission in a CRAHN,
besides the transmission range requirement, we also need to
ensure the sender and receiver will quickly find a common
channel. The act of quickly finding a common channel is
called Rendezvous [14], [45] or Discovery [5]. The two-user
Rendezvous problem can be defined as follows. Consider a
pair of secondary users, Alice and Bob. One of them knows
his/her local available channels, but is unaware of the other’s.
In each time slot, Alice and Bob will select a local available
channel and try to connect with each other. A rendezvous
occurs or a discovery is successful if Alice and Bob both
choose the same channel at the same time. The objective
is to derive channel selection strategies for Alice and Bob
such that they can achieve discovery using the minimum
number of attempts. Since we do not assume common control
channels in CRAHNs, the Rendezvous problem is clearly a
challenge especially in multiple-user cases with asynchronous
communications.

For synchronous communications, Jump-Stay [34] is the
state-of-the-art distributed algorithm that provides guaranteed
blind rendezvous (without a common control channel) in
CRAHNs. In this method, users jump on the available channels
in the jump-pattern while they stay on a specific channel in
the stay-pattern. The authors prove that the jump-stay method
has bounded Maximum Time-to-Rendezvous (MTTR) for both
the two-user and multiple-user cases. However, the expected
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Time-to-Rendezvous (E(TTR)) could be exponentially large
for the multiple-user case. For asynchronous communications
with only two users, the authors in [5] proposed a distributed
rendezvous algorithm with guaranteed expected discovery
time. The authors also show that this expected discovery time
is optimal under the assumption of infinitely many channels.
For asynchronous communications with multiple users, to
our best knowledge, there exist no distributed approximation
algorithms. Interested readers may refer to [33] for a survey on
various rendezvous algorithms for both two-user and multiple-
user scenarios.

Another challenging problem is neighbor discovery [3],
[26]. Neighbor discovery in traditional wireless ad-hoc net-
works can be realized by efficient local broadcasting algo-
rithms [52], [55]. However, in CRAHNs, a SU’s neighbor
is determined not only by its transmission range but also
by the fact that if they have a common channel. Thus in
order to find all neighbors, each SU needs to implement
local broadcasting on all of its available channels. This can
get quite complicated when intertwining with the Rendezvous
problem and the interference issue. In [26], by assuming
synchronous communications, the authors give a brute-force
neighbor discovery algorithm time complexity O(mn) where
m is the number of available channels that the CRAHNs can
use and n is the number of secondary nodes, labeled from 1
to n. In [3], [4], by assuming asynchronous communications,
the authors give distributed algorithms for both single-hop and
multi-hop cognitive radio networks. For single-hop networks,
the neighbor discovery task is mainly carried out by the
computed leader. However, for the multi-hop scenario, the
author assumes the presence of a leader in the network before
performing neighbor discovery. Thus this algorithm does not
work for CRAHNs since there are no leaders. In addition, both
of these two works did not take interference into account.

The third protocol design challenge faced by CRAHNs
is broadcasting. Deriving a minimum-latency broadcasting in
traditional wireless ad-hoc networks is an NP-hard problem.
In CRAHNs, it is even harder since each node may have
a different set of channels. We need to first determine the
sender’s broadcast channel sequence (the sequence of channels
to broadcast on) and the receivers’ listening channel sequence.
To reduce the broadcasting delay, the sequence should include
as few channels as possible. For example, in [25], the key tech-
nique is to let each SU only broadcast on the minimum set of
channels (Essential Channel Set, abbreviated ECS). The ECS
is a subset of the SU’s available channels and it is computed
to cover all the SU’s geographic neighbors. A similar idea for
reducing the broadcast delay is also introduced in [41], where
each SU needs only to broadcast on a downsized channel set
which is a subset of its available channels. This downsized
channel set is calculated based on both the PUs’ and the SUs’
distributions and it must ensure that each sender has at least
one common channel with each of its neighbors. In [2], [4],
the authors introduce the minimal time broadcasting problem
which is to determine the minimum broadcast schedule length
for a CRAHN. The authors formulate this problem as an

Integer Linear Programming (ILP) problem and present two
heuristics.

Other than fundamental operations such as the above,
researchers are also interested in relatively more complex
operations in CRAHNs. Next we describe our own work on
two such operations, from which we can see that efficient
protocols at different network layers need to be jointly consid-
ered, such as channel (spectrum) assignment, link scheduling,
routing and rate control. These two operations are capacity
maximization [29] which is to maximize the throughput utility
of end-to-end unicast sessions, and connectivity which is
to find a connected subgraph from a given cognitive radio
network [32].

III. CAPACITY MAXIMIZATION FOR END-TO-END
UNICAST SESSIONS

In cognitive radio networks, the primary user occupation
pattern is mostly dynamic which complicates the optimization
(e.g., capacity maximization) of data dissemination among
secondary users. When multiple data dissemination sessions
(among secondary users) co-exist, a fundamental challenge
is how to judiciously allocate the spectrum and schedule
the transmissions such that the available spectrum is fully
exploited to achieve the maximum network-wide throughput
utility. This requires a cross-layer design, for optimal transport,
network and MAC layer decisions to be made. At the transport
layer, source nodes properly adjust data injection rates for
lower layers to handle; at the network layer, a relay node
strategically decides the next-hop relay for each data session
to be forwarded to; at the MAC layer, the available spectrum is
carefully and dynamically allocated for transmission between
pairs of nodes. All of these have to adapt to the volatile
channel occupancy patterns of the primary users while trying
to maximize the end-to-end throughput utility among all data
sessions.

Another dimension of complexity is added if we drop the
usual assumption of fully collaborative or completely selfish1

data relay among secondary users and explicitly model the
social selfishness of the users. In real-world networks, e.g.,
civilian networks [22], [28], users have social ties at various
strength levels. Naturally, a user would prefer helping others
with whom there is a strong social tie, and less so for nodes
with weak social ties. Such social selfishness of users has
brought new challenges to the design of efficient data dissem-
ination protocols, especially when making routing decisions
and link capacity allocation [31]. For example, a node with
high link capacity and low hop count to the destination,
which although appears favorable, may not constitute a good
relay option if it is not willing to assist in the data session.
Therefore, traditional routing protocols, i.e., those based on

1For complete selfishness, the literature has focused on incentive design,
e.g., [23], [49], [57], which is an orthogonal topic to our work. In real-world,
the social ties tend to be fixed and stable. Thus, we design our protocol
with social selfishness being a user demand, instead of designing incentive
mechanisms to entice the users to collaborate.
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link capacity or hop count, is no longer suitable in a socially
selfish network.

In our work, we consider social selfishness of secondary
users, and design a joint end-to-end rate control, routing,
and channel allocation protocol that can maximize the overall
throughput utility among multiple unicast sessions. We are
aware of only one paper, by Li et al. [31], which has the same
assumption of social selfishness as ours. They investigate rout-
ing design in socially selfish delay tolerant networks, where
the probabilities that a node may forward traffics received from
other nodes are differentiated. Unlike their work, we study a
joint rate control, routing, and channel allocation scheme in a
cognitive radio network, where we address social selfishness
of users in their transmission scheduling of packets belonging
to different by-passing data sessions according to the social
ties between these users and the source/destination of each
session.

Our design is rooted in Lyapunov optimization theory [37],
where utility maximization and network stability are achieved
by back-pressure scheduling of transmissions among packet
queues at the network nodes. A salient contribution of our
Lyapunov optimization is that finite buffer sizes are employed
at each node with no-buffer-overflow guarantee.

Since the seminal work of Tassiulas et al. [44], back-
pressure protocols for maximum-weight scheduling, which
schedule links with the largest product of link capacity and
differential queue backlog, have been widely applied for utility
maximization in multi-hop wireless networks [9], [10], [13],
[46], [51]. It has been shown that optimal throughput can
be achieved. However, most solutions are based on infinite
node buffers, which is obviously an idealized and impractical
assumption.

Venkataramanan et al. [46] suggested a way to minimize the
cumulative buffer utilization along the path of a unicast flow
so as to reduce the end-to-end delay of the flow. However,
there is no finite-size guarantee for each buffer at the relay
nodes. The challenge of using finite buffer in a back-pressure
paradigm was not addressed until recently by Le et al. [27]
and Neely [38]. Le et al. [27] have investigated optimal control
of a wireless network with finite buffer for each by-passing
session per relay node, but an infinite buffer is still necessary
at each source node in the worst cases. In [27], the current
queue size at each source node needs to be broadcast to all
relay nodes, which incurs a high communication overhead.
Our protocol avoids such a broadcast overhead. Neely [38]
recently proposed an opportunistic scheduling protocol with
bounded buffer size at each node for each data session, which
simply drops the packets when a buffer becomes full. In
[38], the throughput utility is only compared with that of
a T -slot lookahead policy which is an offline policy with
perfect knowledge of up to T slots into the future. No analysis
however is given on how close the throughput utility can
approach optimality. To the contrary, we demonstrate with
rigorous proof that a finite buffer size without the possibility
of buffer overflow suffices at each node using our protocol
which can achieve global throughput utility maximization.

Ding et al. [9], [10] have designed back-pressure protocols
for routing with collaborative spectrum sensing, but without
utility-optimality guarantee. Feng et al. [13] introduce a back-
pressure routing protocol with primal-dual decomposition. No
analysis of buffer size is given. Xue et al. [51] propose a
back-pressure throughput maximization protocol, under the
constraints of bounded collision rates between secondary and
primary users. The worst-case upper bound of buffer size at
each node is derived, but the protocol cannot ensure that there
will be no buffer overflow in situations where the buffer sizes
are smaller than the upper bound. Our protocol provides that
guarantee.

The contributions of our work can be summarized as
follows:

• We model social selfishness of users by differentiated
buffer sizes and relay rates allocated to data sessions
of different source/destination pairs in a Lyapunov op-
timization framework for achieving throughput utility
maximization in a cognitive radio network. To the best
of our knowledge, this is the first work investigating
the impact of social selfishness on protocol design in
cognitive ratio networks.

• We propose a back-pressure-style joint end-to-end rate
control, routing, and channel allocation protocol for opti-
mal multi-session unicast data dissemination, and give
a distributed implementation for it. More specifically,
the rate control decision is made at each source node
only based on its local queue lengths while each node
determines the joint routing and channel allocation based
on its own queue lengths and channel availabilities as
well as those of its interfering nodes.

• First time in the literature of back-pressure protocols, our
protocol requires only a finite buffer at each source or
relay node with no buffer overflow, and is guaranteed to
achieve an overall throughput utility that can be arbitrarily
close to the ultimate optimum obtained when there is no
constraint on buffer sizes.

• We demonstrate network stability and utility optimality
of our protocol with rigorous theoretical analysis. Impact
of social selfishness on throughput utility and end-to-end
dissemination delay of different data sessions are further
investigated using both case studies and empirical studies.
An interesting discovery is that, contrary to the intuition
that larger buffers should be provisioned to preferred data
sessions, allocating smaller buffers to these sessions at
nodes along their paths can actually lead to smaller end-
to-end delay, without sacrificing throughput.

IV. THE COMPLEXITY OF CONNECTIVITY

In this section, we consider the connectivity problem of
multiple links through channel assignment. In CRAHNs, con-
nection between two nodes is not only determined by their
distance and their transmission powers, but also by whether
the two nodes have chosen a common channel. Due to the
spectrum dynamics, communication in CRAHNs is more
difficult than in the traditional multi-channel ad-hoc networks.
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Authors of [35], [39], [40], [50] studied the impact of different
parameters on connectivity in large-scale CRAHNs, such as
the number of channels, the density of primary and secondary
users, the activity of PUs, the number of neighbors of SUs
and the transmission power.
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Fig. 1. a) The potential graph: the set besides each SU is its available
channels, and β its number of antennae. Two nodes do not have an edge (e.g.,
u1 and u4) because their distance exceeds at least one of their transmission
ranges. b) The realization graph which is connected: the set besides each SU
is the channels assigned to it.

We study the complexity of connectivity through channel
assignment in a centralized fashion, i.e., each node knows
the network topology, its neighbor’s available channels and
the number of antennae. We assume each SU u is equipped
with a number of antennas (radios), denoted as antenna budget
β(u), which is the maximum number of channels that u can
open (work on) simultaneously. A channel assignment is a
way of opening the channels such that each SU opens at
most β channels and can only open its local open channels
(the SU’s available channels). We model the network as a
potential graph PG = (E, V ) and a realized graph before
and after spectrum assignment respectively, where V is the
set of SUs. An edge {u, v} in the potential graph means
the two nodes can communicate as long as they choose a
common available channel. Given a channel assignment, an
edge in the potential graph is realized if the two nodes are
indeed allocated a common channel. The realized graph under
a channel assignment is a graph RG = (U,E′), where E′ is
the set of realized edges in E. An example is shown in Fig.
1.

As shown in Fig. 1, SUs may be equipped with different
numbers of antennae and the potential graph can be arbitrary.
We study the special case when all the SUs have the same
antenna budget. If all the SUs are homogenous and have a
large enough transmission range, the potential graph will be a
complete graph. For some hierarchically organized networks,
e.g., a set of SUs being connected to an access point, the
potential graph can be a tree. We also study these special
cases. Exact algorithms are derived to determine connectivity
for different cases. We list our results below [32].

• When the potential graph is a general graph, we prove
that the problem is NP-complete even if there are only
two channels through a reduction from the Uniform
SAT problem. This result is sharp as the problem is

polynomial-time solvable when there is only one channel.
We also design exact algorithms for the problem. For
the special case when all SUs have the same number
of antennae, we prove that the problem is NP-complete
when k > β ≥ 2, where k and β are the total number of
channels in the white spaces and the number of antennae
in an SU respectively.

• When the potential graph is a complete graph2, the
problem is shown to be NP-complete even if each node
can open at most two channels based on a reduction
from the Hamiltonian Path problem. However, in contrast
to the general graph case, the problem is shown to be
polynomial-time solvable if the number of channels is
fixed. In fact, we prove a stronger result saying that the
problem is fixed parameter tractable when parameterized
by the number of channels.

• When the potential graph is a tree, we prove that the
problem is NP-complete even if the tree has depth one
through a reduction from the vertex cover problem.
Similar to the complete graph case, we show that the
problem is fixed parameter tractable when parameterized
by the number of channels.

Remark 1: To the best of our knowledge, this is the first
work that systematically studies the algorithmic complexity of
connectivity in CRAHNs with multiple antennas. However, our
work does not address how to design distributed approximation
algorithms for joint channel assignment and link schedul-
ing for achieving network connectivity, especially under the
physical interference model. In Section VI, we reformulate
the connectivity problem for constructing a spanning tree in
CRAHNs.

V. COMPUTING THE CAPACITY IN CRAHNS

In Section III, we have introduced our recent work on max-
imizing the throughput utility of end-to-end unicast sessions.
There, we assumed the existence of a common control channel,
the graph-based interference model and synchronous com-
munications. In addition, our proposed distributed algorithm
does not have a performance guarantee. In this section, we
reformulate the capacity maximization problem without the
above limitations. We first present our system model and the
communication model which will also be used for the problem
of computing the connectivity in the upcoming Section VI.

A. System Model

There are M primary users, denoted by S1,S2,...,SM , and N
secondary users, denoted by s1,s2,...,sN ; they are all placed on
the plane based on some probability distribution, such as even
distribution. There are M orthogonal channels that form the
universe channel set {c1, ..., cM} and each primary user could
randomly select a channel to transmit. All the primary and
secondary users will use fixed transmission powers Pp and Ps,
respectively. The set of available channels for each secondary
user si is a subset of the universe channel set and the user si

2The complete graph is a special case of disk graphs.
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is unaware of the other secondary user sj’s available channels.
Both the primary and the secondary nodes have only one
radio meaning they can only operate on a single channel. We
assume half-duplex mode and no common control channels.
Finally, there is no global clock, and we assume asynchronous
communications meaning that each secondary user may start
the algorithm at anytime.

B. Communication Model
We assume the Signal-to-Interference-plus-Noise-Ratio

model which is also called the physical model since it can
reflect the physical reality somewhat accurately [55]. Different
from graph-based interference models, the physical model
takes the cumulative interference from all the other simul-
taneously transmitting links into account. If a secondary user
si would like to send a message to another secondary user
sj on their common channel ck, we say that the receiver sj
successfully received the message from si iff

Ps
d(si,sj)α

σ2 +
∑

sk "=si
acksk

Ps
d(sk,sj)α

+
∑

Sk
ackSk

Pp

d(Sk,sj)α

≥ βs. (1)

Similarly, if a primary user Si would like to send a message
to another primary user Sj on their common channel ck, we
say that the receiver Sj successfully received the message from
Si iff

Pp

d(Si,Sj)α

σ2 +
∑

Sk "=Si
ackSk

Pp

d(Sk,Sj)α
+
∑

sk
acksk

Ps
d(sk,Sj)α

≥ βp. (2)

In these two inequalities, d(, ) is the Euclidean distance
function, σ2 is the background noise variance and acksk ∈
{0, 1}=1 if the secondary user sk transmits on the channel
ck, 2 < α <= 6 is the path loss exponent and βs (βp)
is the threshold value for the secondary user (primary user).
Note that although the physical interference model does not
consider the shadowing and multi-path fading effects of wire-
less transmissions, the authors in [11] prove that applying
existing algorithms for the physical interference model in the
Rayleigh-fading scenario loses only a factor of O(log∗n) in
the approximation guarantee. Thus, this observation supports
the use of the physical interference model without considering
the fading effects of wireless transmissions.

C. Problem Definition
We now reformulate the capacity maximization problem

given the above system and communication models. Instead
of maximizing the throughput utility of the end-to-end unicast
sessions, we aim to maximize the number of simultaneously
transmitting links over the secondary networks (assuming each
link’s rate is 1). To achieve this goal, we need to design a dis-
tributed approximation algorithm that jointly considers channel
assignment and link scheduling. We need to emphasize that,
from the SINR inequalities 1 and 2, we have to consider
the cumulative interference from both secondary and primary
users as long as they are operating on the same channel.
Moreover, the SINR inequality 2 must be guaranteed first

in the sense that they are primary users whose transmissions
should not be influenced by secondary transmissions3.

D. Related Work on Capacity Maximization
The capacity maximization problem and its variations have

been extensively studied in both conventional single-channel
wireless ad-hoc networks [15], [24], [47] and cognitive radio
ad-hoc networks [12], [16], [43]. In traditional single-channel
wireless ad-hoc networks, by using uniform power assignment,
i.e., all the users employ the same transmission power, the
authors in [15], [47] have given constant factor approximation
algorithms for the capacity maximization problem. If power
control is allowed, there is also a constant factor approximation
algorithm for the same problem by using the iterative power
assignment. However, all these algorithms are centralized
algorithms and these results can not be applied in CRAHNs.
In order to maximize the total channel utilization for all
secondary users, the authors in [20] proposed the maximum
channel selection (MCS) problem and formulated it as a binary
integer nonlinear optimization. The authors then proposed both
centralized and distributed algorithms. However, they provided
no worst-case performance guarantees. In addition, the paper
considers synchronous communications. By employing the
SINR model, the authors in [8], [56] studied the spectrum
distribution problem which is to maximize the total number
assigned channels for all secondary users. In the capacity
maximization problem, we aim to maximize the maximum
number of simultaneously transmitting links (only allowing
a single assigned channel for each link); thus it is different
from the spectrum distribution problem. In [16], the authors
aim to find a maximum set of links that can be simultane-
ously scheduled without affecting a given set of previously
assigned links. The paper gives a constant-factor centralized
approximation algorithm under uniform power assignment.
However, there is only one channel in the network and thus
their algorithm cannot be applied in general CRAHNs where
each secondary user may have a different set of available
channels. Note that in order to maximize the capacity in
general CRAHNs, channel assignment must be jointly con-
sidered with link scheduling. Note that, if there is only one
channel in the network, although it obviates the channel
assignment process, it loses another degree of freedom to
further increase the network capacity. Assuming the protocol
interference model, the authors in [43] present a family of
heuristic algorithms for the capacity maximization problem,
the max-min fairness problem and the proportional fairness
problem. A closely related work to our capacity maximization
problem just defined is that presented in [12]. By adopting
the SINR model, the authors propose a heuristic algorithm
without a worst case performance guarantee. In addition, this
paper considers synchronous communications.

3We treat the secondary network as an overlaid network in which the
primary user and secondary user could be operating on the same channel.
However, if we consider the “spectrum hole” model [42] where the primary
and secondary users will not operate on the same channel, the problem will
become much easier since we only need to consider the SINR constraints in
secondary networks.
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E. Preliminary Framework
Here we give a preliminary framework on how to schedule

the maximum number of links in the same timeslot. According
to the system model, the first step is to identify which links
can be scheduled, i.e., to decide if there is a common available
channel between two secondary users. This can be realized
by performing a distributed neighbor discovery algorithm [3],
[4]. Since there are no common control channels, the neighbor
discovery algorithm entails an efficient two-user rendezvous.
In addition, since the system does not have a global clock, only
asynchronous neighbor discovery algorithms may be used. In
order to deal with the asynchronous communication issues, by
adopting the physical interference model, we have developed
a family of distributed algorithms for the multiple-message
broadcasting problem [53], the coloring problem [54] and the
data aggregation problem [19] in single-channel wireless ad-
hoc networks. A key technique used is to first elect the leaders
and then let the leaders coordinate the wireless transmissions.
A possible way for electing the leaders is to compute a
maximal independent set over the secondary networks.

After performing neighbor discovery, each secondary user
will know who will be its neighbor and how many common
channels they share. Then the next step is to pick the maximum
number of disjoint links (a maximum matching) and record the
common available channels of each link.

The last step is to design a joint channel assignment and
link scheduling algorithm such that the maximum number of
links could be scheduled simultaneously. An intuitive idea is
to maximize the channel utilization and let adjacent links use
different channels so that they will not interfere with each
other.

VI. COMPUTING THE CONNECTIVITY IN CRAHNS

As mentioned in Section IV, in our previous work on the
complexity of the connectivity problem, we did not give a
distributed algorithm for achieving the network connectivity.
In this section, we discuss how to compute the connectivity
in cognitive radio ad-hoc networks (CRAHNs).

A. Problem Definition
By using the same system and communication models

as the capacity maximization problem in Section V-A and
Section V-B, the connectivity computing problem is to con-
struct a spanning tree over the secondary networks within the
minimum number of timeslots.

B. Related Work
The connectivity problem has been extensively studied in

conventional single-channel wireless ad-hoc networks under
the SINR model [17], [18], [21], [30], [36]. This problem
was first initiated in [36] where the authors gave a centralized
algorithm which can construct the spanning tree in O(log4 n)
timeslots by using a clever non-linear power assignment. By
first constructing a minimum spanning tree, the authors in [18]
show that the minimum spanning tree can be scheduled in
O(log n) timeslots under the SINR model. A variation of

the connectivity problem is the “minimum-latency aggregation
scheduling” problem which also requires building a spanning
tree rooted at the sink node and scheduling the links in the tree
within the minimum number of timeslots. The only difference
is that, in aggregation, there is an additional requirement
that links must be scheduled after all links below them in
the tree are scheduled. For this minimum-latency aggregation
scheduling problem, the authors in [30] gave a distributed
algorithm with O(logK) timeslots where K is the ratio
between the longest link’s length and the shortest link’s length.

To our best knowledge, there are no distributed approxima-
tion algorithms for building a spanning tree over secondary
networks under the SINR model. In paper [7], by using the
SINR model, the authors aim to perform data collection in
secondary networks as fast as possible. However, they only
assume a single channel in the network, which makes the
proposed algorithm inapplicable in cognitive radio ad-hoc
networks where each node may have a different set of available
channels.

C. Preliminary Framework
First of all, from the problem definitions, we can see that

the connectivity computing problem is closely related to the
capacity maximization problem. As discussed in Section V-E,
by performing an asynchronous neighbor discovery algorithm,
each secondary node will know who will be its neighbor
and how many common available channels they share with
each other. In this problem, we assume the secondary network
topology is connected since otherwise there would not exist
a spanning tree. There are many ways to find this tree in the
connected secondary network. Finally, with this spanning tree,
different from the capacity maximization problem, our focus is
how to design a joint channel assignment and link scheduling
algorithm that can schedule all the links in this spanning tree
with the minimum number of timeslots. A straightforward
strategy is to iteratively apply the designed distributed approx-
imation algorithm for the capacity maximization problem until
there are no links left.

VII. CONCLUSION

Operating in cognitive radio ad-hoc networks (CRAHNs)
is fundamentally different from conventional single-channel
or multi-channel wireless ad-hoc networks. The dynamics
of local available channels bring unique challenges to the
design of CRAHNs, even when considering only the most
basic operations such as message delivery, neighbor discovery
and broadcasting. In this paper, we study two fundamental
problems in CRAHNs, the capacity maximization problem and
the connectivity problem. We summarize our recent results on
these two problems, and discuss new extensions of the two
problems. For capacity maximization, we propose combining
channel assignment and scheduling to study distributed ap-
proximation algorithms under the physical interference model.
For the connectivity problem, we propose to investigate dis-
tributed algorithms to achieve network connectivity within the
minimum number of timeslots. We hope this work can inspire
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further study on these topics, especially on designing efficient
distributed approximation algorithms.
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