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Colocation Demand Response: Joint Online Mechanisms

for Individual Utility and Social Welfare Maximization
Qihang Sun, Chuan Wu, Zongpeng Li, Shaolei Ren

Abstract—Data centers with high yet elastic energy demand are
ideal candidates for participation in demand response programs.
This work studies emergency demand response (EDR) at multi-
tenant colocation data centers (colocations). While the colocation
has no direct control over tenants’ servers, we design online
mechanisms to incentivize and coordinate tenants’ energy reduc-
tion. Our mechanism is online in nature, aiming to maximize not
only social welfare but also tenant utility. Our main proposal is a
truthful incentive auction that provides tenants monetary remu-
neration for EDR energy reduction, minimizing social cost, which
combines seamlessly with an online primal-dual framework for
each tenant to schedule their delay-tolerant workloads. The
online optimization at each tenant targets its utility maximization,
concurrently reporting valuation functions for the tenant to
participate in the auction. Our online algorithms achieve long-
term performance guarantees in both tenants’ utility and social
welfare maximization, while fulfilling the EDR requirement with
minimal diesel generation. We validate the efficiency of our
algorithms through both theoretical analysis and real-world
trace-driven simulations.

Index Terms—Colocation Data Centers, Emergency Demand
Response, Primal-dual Online Algorithms

I. INTRODUCTION

With the aging infrastructure and rapid incorporation of

renewables leading to an increasing intermittency in power

supply, large yet flexible energy loads are highly desirable

demand response resources for maintaining grid stability. As

canonical examples of such resources, megawatt data centers

have been playing a crucial role in emergency demand re-

sponse (EDR), a type of standby service that takes up 87%

of all demand response capabilities [1]) and forms a last

line of defense for grid stability [2]. For example, on July

22, 2011, hundreds of data centers cut their energy demands

for EDR and helped avoid a wide-area blackout throughout

North America [3]. Some developing countries have a poor

power reliability and may experience outages regularly every

day. Even in developed economies, major grid outages have

significantly increased over the recent years due to the aging

infrastructure, growing demand, and/or extreme weather.

Although EDR helps ease the adoption of renewables and

stabilize the grid, the participation of data centers is far from

being green. Typically, data centers contribute to EDR by

turning on backup diesel generators, which are both costly and

eco-unfriendly. For example, the toxic and carbon emissions

of a diesel generator can exceed over 50 times the emission
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level of typical power plants and constitute a major source of

pollution in regions such as California [4]).

Fortunately, recent advancements in data center energy

management have made it possible to modulate server energy

usage, partly in lieu of diesel generation, for cost-effective

and green EDR. Some notable techniques include dynamically

re-sizing the server cluster [5], scaling CPU frequency [6],

deferring non-critical workloads [7], and migrating loads to

other sites [8]. These techniques have endured real-world

testings and have proven themselves appealing EDR options

without affecting normal grid operation [9].

However, existing energy management techniques are not

directly applicable for EDR in multi-tenant colocation data

centers (“colocations”). In a colocation, multiple tenants house

their own physical servers, while the operator manages the

non-IT facility (e.g., power supply and cooling). This is in

contrast to Google-type private data centers whose operators

have full control over both servers and facilities. Colocation

data centers are already very common today, serving almost

all industry sectors. Even Google and Microsoft have recently

leased large capacities in colocations, while Apple houses 25%

of its servers in colocations [10].Today, the U.S. alone has

over 1,400 large colocations, which consume nearly as five

times energy as Google-type data centers all combined (37.3%

versus 7.8%, in percentage relative to all data center energy

usage, excluding tiny server closets). Further, colocations are

mostly located in populated areas and hence better targets for

EDR, compared to Google-type data centers that are often built

in rural areas where EDR is less needed.

In this work, we study cost-effective and green EDR in

colocations. This poses unique challenges, however, due to

“split incentives”: the colocation operator desires EDR for

rewards from the grid but cannot force tenants to cut energy,

while tenants may not have incentives to contribute to EDR

unless incentivized. Furthermore, the grid operator cannot

directly reward tenants for EDR, since the grid cannot even

meter an individual tenant’s energy usage inside a colocation.

Even though tenants are willing to contribute to EDR, which

tenants should reduce energy and by how much still need to be

carefully decided so as to minimize the overall performance

loss incurred by participating tenants.

To address the above challenges, a few recent studies

have begun to propose incentive mechanisms (e.g., auction

design [11] and supply function bidding [12], [13]), through

which the colocation operator offers financial rewards to

coordinate tenants’ energy reduction for EDR. These studies

often assume a simplified model: tenants each has a certain

performance cost (measured in monetary values) when cutting

energy, and a mechanism is executed to select tenants for en-
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ergy shedding and minimizing the colocation-wide social cost

(including tenants’ performance loss and diesel usage). This

model implicitly assumes delay-sensitive jobs that forbid job

shifting/deferring in the temporal domain. In reality, however,

tenants have large batch workloads (e.g., MapReduce-based

data processing) whose executions span multiple time slots.

These workloads are often delay-tolerant and ideal for EDR

participation. The payoffs of (batch) workloads also depend on

when they are completed [14], which in turn couples tenants’

performance costs across multiple time slots, invalidating the

model assumed in recent literature [11], [12], [13].

We consider a more practical EDR model where tenants

run a set of batch jobs that span multiple time slots. We

employ a penalty function to represent the performance costs

when jobs are not completed prior to the initial soft deadline

due to tenants’ energy shedding during EDR (i.e., deferring

the execution of certain workloads). Our notion of penalty

function is general and subsumes the case when tenants’

workloads have hard deadlines.

As tenants’ jobs and EDR events both span multiple time

slots in practice, the previous incentive mechanisms designed

over single time slots [11], [12], [13] are no longer applicable.

Instead, we must design a new online mechanism. Nonethe-

less, tenants’ cost valuations for reducing the same amount of

energy are both time-varying (due to random new job arrivals)

and coupled with prior scheduling decisions (captured through

penalty functions), making the EDR mechanism design par-

ticularly challenging.

Our contributions. We leverage state-of-the-art and novel

primal-dual online optimization techniques to design: (i) an

online, polynomial-time algorithm for job scheduling, max-

imizing tenant utility based on a general and practical job

model; (ii) a novel scheme for tenants to report their valuations

to contribute to EDR without utility loss; and (iii) a truthful

incentive mechanism to apportion energy reduction among

tenants and to minimize the total cost. More concretely, we

make the following contributions.

First, we model the entire colocation system, including

operator and multiple tenants, under EDR events. We formu-

late the operator’s total cost minimization problem and the

tenant’s utility maximization problem under a general and

practical job model. To design an efficient online algorithm,

we convert tenant’s original job scheduling problem, including

job deadline and penalty function, into a novel formulation.

Second, we design an efficient primal-dual online algorithm

for tenant’s utility maximization, based on the new tenant

problem formulation, achieving a good competitive ratio.

Third, we design a truthful mechanism for the operator to

minimize social cost, which decides the EDR reduction from

tenants and the remuneration for participating tenants. Com-

bining the operator’s incentive mechanism and the tenant’s

individual online job scheduling algorithm, we further show a

good competitive ratio in terms of global social welfare.

II. RELATED WORK

Data center demand response has recently received much

attention. For example, several studies focus on optimizing

resource management for demand response by, e.g., scaling

CPU frequency [15], partial execution [16], geographic load

balancing [17] and battery charging/discharging [18]. The

recent work [19] formulates a problem similar to ours, but

focuses on operator-owner data centers (i.e., with only one

tenant). Further, in [20], a prediction-based pricing scheme

is studied, assuming that each data center is subject to an

unknown cost function of its reduction amount; the cost

function does not vary over time, which is different from our

model considering dynamic pricing and online job scheduling.

Moreover, field tests were recently conducted to demonstrate

that data center can shed 20% energy using resource man-

agement approaches without significantly affecting normal

operation for demand response [9]. These studies are different

from and complementary to our work, as they study orthogonal

problems and/or focus on Google-type data centers.

For colocation EDR, recent studies proposed incentive

mechanisms [11], [12], [13], through which the colocation

operator offers financial rewards to coordinate tenants’ energy

reduction for EDR. These studies cannot handle multiple time

slots with online decisions, guarantee a good performance

for tenants, or be used for modeling tenants running batch

workloads. A more detailed comparison is already provided

in Section I, and hence not repeated here.

Our work is also relevant to the literature on online job

scheduling problems in cloud data centers. In [21], the au-

thors propose an efficient heuristic algorithm by allowing

job preemption for scheduling jobs with specific deadlines,

to maximize the aggregate value of jobs completed by their

deadlines. In [22], the authors propose LP-based algorithms

achieving constant-factor approximation in optimal resource

usage, for scheduling jobs with different start and end times.

Another study [23] investigates the job scheduling problem

without job deadlines, but with unknown job durations. All the

existing studies do not investigate value-varying jobs accord-

ing to different completion times, and none has combined job

scheduling with demand response in a colocation data center.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Colocation EDR and Tenants’ Job Models

We consider a colocation data serving N tenants. The

colocation operator signs up with the grid a priori (e.g., three

years ahead in PJM [24]) and receives rewards for committed

energy reduction during emergencies. An EDR event may last

multiple time frames, where each frame can be an hour. In

an EDR frame, the colocation operator is required to cap its

grid power usage under a level dictated by the grid’s EDR

signal (or equivalently, reduce energy by a certain amount

compared to a baseline value) [24]. A baseline usage, such

as the colocation’s average energy demand at the same hour

over the past few weeks, is typically used to calculate the

energy reduction [20].

The colocation can achieve energy reduction in an EDR

frame through a combination of (i) tenants’ energy reduction

and (ii) on-site diesel generation. Without direct control over

tenants’ servers, the colocation incentivizes tenants’ energy

reduction by monetary remuneration using an inverse auc-

tion. Then, on-site (diesel) generator covers the discrepancy
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: one time slot

: the whole time span

: one EDR frame

: EDR signal arrival

Fig. 1. An illustration of two timescales in our model.

between total EDR demand and total reduction from tenants,

at a unit energy cost of α for fuel consumption.

We focus on delay-tolerant batch jobs that are interruptible

during execution.1 Each tenant manages its own servers in

the shared data center, and receives batch jobs for execution

from time to time. The job arrival typically occurs at a finer

timescale than EDR time frames, e.g., minutes versus hours.

We refer to the time interval for job arrival and scheduling as

“time slot”. Let [1,T ] denote all the time slots in the system

span; T can potentially be a very large number. An EDR signal

arrives at a time slot, requesting energy shedding within the

subsequent slots in an EDR time frame. Let R(t ) denote the

total energy reduction amount requested by the grid for each

time slot t in the EDR frame. As a most general model, the

time frames with EDR signals can be consecutive or non-

consecutive, the EDR frame starting at time slot t lasts β(t )

time slots, and the starting time of an EDR frame can be any

time slot after the previous EDR frame ends. Fig. 1 illustrates

the two time scales.

We assume that compared to the batch job execution time,

each time slot is small enough to distinguish the arrival times

of different jobs at each tenant. Tenant i receives new job Jit′

at time slot t ′ ∈ [1,T ], which requires dit′ time slots for execu-

tion, with energy consumption qit′ per slot when executed. dit′

and qit′ are zero if no job arrives at t ′. Consider the simple

example of a MapReduce job processing 10GB data, using

4 mapper servers first and 4 reducer servers subsequently.

Suppose that a server consumes an average power of 250W,

and that each time slot is 5 minutes. Then, qit′ can be estimated

as 4× 0.25× 5
60

kWh. dit′ can be estimated based on the input

data size and historical processing statistics [25]. Suppose the

job execution takes 2 hours in total, and then dit′ is 2 × 60
5

time slots.

Let wit′ be the target soft deadline to complete job Jit′ , such

that its dit′ time slots for job execution can be scheduled at

any time slots from t ′ to wit′ to yield a value of bit′ for the

tenant without utility losses. If the job is not completely by

the deadline, a penalty function is applied to its value:

git′ (σit′ ) =

git′
+

(σit′ ) if wit′ + σit′ ∈ [wit′,T]

+∞ otherwise
(1)

where σit′ is the number of slots by which the deadline is

violated, git′
+
(σit′ ) is a non-decreasing function with git′

+
(0) =

0, and wit′ +σit represents the actual finishing time if the job

execution goes beyond wit′ . An example penalty function is

given in (19) in the performance evaluation section VI. Tenant

1Interactive workloads, e.g., web search, cannot be delayed across multiple
time slots due to latency requirement, and hence they are beyond the scope
of our model for tenants’ scheduling decisions.

TABLE I
NOTATION

Var Definition

N # of tenants
T # of time slots

Jit′ arrival job of tenant i at time slot t ′

bit′ value of job Jit′

dit′ # of required execution time slots of job Jit′

qit′ per-slot energy consumption of job Jit′

wit′ (soft) deadline of job Jit′

σit′ # of time slots job Jit′ completes beyond wit′

git′ (·) penalty function of job Jit′

bit′l value of job Jit′ under schedule l

E
(t )
i

energy capacity of tenant i in time slot t

x
(t )
it′

job Jit′ is executed in time slot t or not

yit′ job Jit′ is accepted upon arrival in t ′ or not
xit′l job Jit′ is accepted by schedule l or not

v
(t )
i

(·) cost valuation function of tenant i for time slot t

c
(t )
i

EDR energy reduction solicited from tenant i in t

p
(t )
i

(·) energy cost function of tenant i for time slot t

R(t ) EDR energy reduction demand from the grid for t

α diesel cost per unit energy production

β(t ) # of time slots the EDR frame starting from t contains

z(t ) amount of diesel-generated energy in time slot t

η
(t )
i

total reserved energy usage at tenant i for time slot t

Li scaled minimum per-slot per-unit-energy-consumption
job value

Ui maximum per-unit-energy-consumption job value

3: Provide reward

2: Compute energy reduction and reward

Colocation

Operator

New jobs arrive

Tenant 1

New jobs arrive

Tenant N

Fig. 2. An illustration of colocation EDR.

i’s actual value for completing job Jit′ is bit′ − git′ (σit′ ) in

general. In summary, a job is characterized as:

Jit′ = {wit′, dit′, qit′, bit′, git′ (·)} . (2)

Let E
(t )
i

be tenant i’s total energy capacity at t, based on a

power contract between the tenant and the colocation upon

server deployment (i.e., power multiplies the duration of a time

slot). Given the energy limitation, tenants carefully schedule

their job execution, and may defer some jobs for energy

shedding during EDR events, by turning idle servers into low

power states. The job model is applicable for a large variety

of practical workloads, such as those run on Amazon spot

instances that may get interrupted at runtime and MapReduce

data processing.

The colocation operator’s demand for energy reduction by

each participating tenant can be viewed as special jobs, which

consume energy at the tenant for fixed time slots and can bring

value to the tenant through monetary rewards. When an EDR
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signal arrives from the grid, the colocation invites bids from

tenants. Each participating tenant decides and bids its cost

valuation function (due to fewer jobs processed or deadline

penalty incurred) in the upcoming EDR time frame t̂, as

denoted by v
(t )
i

(·) for tenant i in t ∈ t̂. The valuation function

depends on the job runtime states that are also implicitly

relevant to scheduling decisions over the previous time slots.

After collecting bids from the tenants, the colocation carries

out global cost minimization by optimally setting the amounts

of energy to be reduced by each tenant (c(t )
i

, for time slot t

in the EDR frame) and generated by diesel (z(t ), for time slot

t in the EDR frame), based on the cost valuations; it further

computes the rewards to tenants (r (t )
i

, for each time slot t when

tenant i sheds energy). The EDR work flow is illustrated in

Fig. 2.

We next formulate the job scheduling and energy reduction

allocation problems at each tenant and at the colocation

operator, respectively.

B. Tenant Utility Maximization

Through an online optimization algorithm, each tenant

schedules jobs and responds to EDR calls, in order to max-

imize its utility over the entire system span [1,T ]. Let x
(t )
it′

indicate whether the job Jit′ is executed in time slot t (x
(t )
it′
= 1)

or not (0), and yit′ indicate whether job Jit′ is accepted

(yit′ = 1) or not (0). The offline utility maximization problem

of tenant i can be formulated as follows. We do not explicitly

include EDR energy reduction in the formulation, but will

show later it can be seamlessly incorporated in our online

algorithm.
Tenant i’s utility maximization problem (without EDR):

maximize
∑

t′∈[1,T ]

(bit′ − git′ (σit′ ))yit′ (3)

subject to:
∑

t′∈[1,t]

qit′ x
(t )
it′
≤ E

(t )
i
, ∀t ∈ [1,T] (3a)

t · x
(t )
it′
≤ wit′ + σit′, ∀t

′ ∈ [1,T],∀t ∈ [t ′,T] (3b)
∑

t ∈[t′,T ]

x
(t )
it′
≥ dit′ yit′, ∀t

′ ∈ [1,T] (3c)

x
(t )
it′
∈ {0, 1}, yit′ ∈ {0, 1}, σit′ ∈ [0,T], ∀t ′ ∈ [1,T],∀t ∈ [1,T] (3d)

Constraint (3a) models the energy capacity limitation of tenant

i. (3b) ensures that each job Jit′ is executed in between its

arrival time t ′ and wit′ + σit′ , while (3c) ensures that at

least dit′ time slots are scheduled for an accepted job. The

tenant utility maximization problem is an integer problem with

mixed packing (3a) and covering (3c) constraints, as well as

nonconventional constraints for deadline modeling (3b). Even

in the offline setting, it is difficult to find an efficient algorithm

to tackle the problem.

To design an efficient online algorithm for tenant job

scheduling, we reformulate the problem into a compact-

exponential integer problem with a nice packing structure,

such that it can be treated by the primal-dual online opti-

mization framework [26]. Consider a feasible schedule l of

job Jit′ to be the vector l = ({x (t )
it′
}∀t ∈[1,T ], yit′, σit′ ), which

satisfies constraints (3b), (3c) and (3d), and Lit′ represents

the set of feasible schedules of the job. Let T (l) be the set

of time slots when job Jit′ is executed according to l ∈ Lit′,

i.e., T (l) = {t : t ∈ [t ′,T ], x
(t )
it′
= 1 in l}. Let xit′l indicate

whether the schedule l ∈ Lit′ is selected (1) or not (0), and

bit′l represent the valuation of job Jit′ following schedule l,

i.e., bit′l = bit′ − git′ (maxt ∈T (l) t − wit′ ). Problem (3) can be

reformulated as follows:
Compact tenant utility maximization problem (without
EDR):

maximize
∑

t′∈[1,T ]

∑

l∈Lit′

bit′l xit′l (4)

subject to:
∑

l∈Lit′

xit′l ≤ 1, ∀t ′ ∈ [1,T] (4a)

∑

t′∈[1,t]

∑

l∈Lit′ :t ∈T (l)

qit′ xit′l ≤ E
(t )
i
, ∀t ∈ [1,T] (4b)

xit′l ∈ {0, 1}, ∀t
′ ∈ [1,T],∀l ∈ Lit′ (4c)

Through the reformulation, the original constraints (3b), (3c)

and (3d) are simplified into (4a) and (4c), and (3a) is equiv-

alent to (4b). A feasible solution to (3) has a corresponding

feasible solution in (4) and vice versa, and hence the optimal

objective value of (4) is equal to that of (3). The price of

the simplification is that the reformulated problem involves an

exponential number of variables, as the number of possible

feasible schedules for tenant i’s job Jit′ is exponential in size.

Nonetheless, we will show in Sec. IV that an efficient primal-

dual online algorithm can update only a polynomial number

of variables to solve (4) in polynomial time.

For primal-dual algorithm design, we formulate the dual

of (4) by relaxing the integrality constraints and introducing

dual variables uit′ and p
(t )
i

to constraints (4a) and (4b),

respectively:

minimize
∑

t′∈[1,T ]

uit′ +
∑

t ∈[1,T ]

E
(t )
i

p
(t )
i (5)

subject to:

uit′ ≥ bit′l −
∑

t ∈T (l)

qit′ p
(t )
i
, ∀t ′ ∈ [1,T],∀l ∈ Lit′ (5a)

uit′ ≥ 0, p
(t )
i
≥ 0, ∀t ′ ∈ [1,T],∀t ∈ [1,T] (5b)

C. Colocation Cost Minimization

The colocation operator aims to achieve EDR energy re-

duction with a minimal colocation-wide social cost in each

EDR frame. At each time slot t, the total cost consists of

operator’s cost, its rewards to tenants plus the diesel cost

(
∑

i∈[1,N] r
(t )
i
+ αz(t )), and tenants’ cost, with each tenant’s

cost being its energy reduction cost valuation minus re-

ceived reward (v (t )
i

(c(t )
i

) − r
(t )
i

). Thus, the total cost equals
∑

i∈[1,N] v
(t )
i

(c(t )
i

) + αz(t ) , with the reward transfer cancelled.

The cost minimization problem of the colocation operator in

each time slot t of an EDR frame can be formulated as follows:
Operator’s cost minimization problem:

minimize
∑

i∈[1,N]

v
(t )
i

(c
(t )
i

) + αz(t ) (6)
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subject to:
∑

i∈[1,N]

c
(t )
i
+ z(t ) ≥ R(t ), (6a)

z(t ) ≥ 0, c
(t )
i
≥ 0, ∀i ∈ [1, N] (6b)

Constraint (6a) ensures that tenants’ energy reduction and

diesel generation cover the EDR demand. The operator’s

decisions, energy reduction c
(t )
i

by tenant i and the amount

of diesel generation z(t ), are decided based on tenants’ self-

reported valuation functions v
(t )
i

(·). The decisions in t are

indirectly coupled with decisions in other time slots through

tenants’ job scheduling.

D. Social Welfare Maximization

Through designing efficient algorithms for tenant job

scheduling and operator energy reduction allocation respec-

tively, we seek to further achieve social welfare maximization.

The social welfare in the colocation is the overall utility

of tenants and the colocation operator. Tenant i’s utility is

the sum of valuations of its accepted jobs and the EDR

rewards received,
∑

t′∈[1,T ]

∑

l∈Lit′
bit′lxit′l+

∑

t ∈[1,T ] r
(t )
i

, when

the EDR energy reduction and rewards are considered. The

colocation operator’s utility is its reward from the grid op-

erator according to energy shedding amounts during EDR,

fixed according to the pre-signed contract, minus its cost

(rewards to tenants and diesel costs). Ignoring the constant

reward that the operator receives from the grid,2 the social

welfare can be described by overall tenants’ utility minus

operator’s overall cost, (
∑

i∈[1,N]

∑

t′∈[1,T ]

∑

l∈Lit′
bit′lxit′l +

∑

i∈[1,N]

∑

t ∈[1,T ] r
(t )
i

)−(
∑

t ∈[1,T ]

∑

i∈[1,N] r
(t )
i
+

∑

t ∈[1,T ] αz(t ) ) =
∑

i∈[1,N]

∑

t′∈[1,T ]

∑

l∈Lit′
bit′lxit′l −

∑

t ∈[1,T ] αz(t ) . The offline

social welfare maximization problem can be formulated as

follows:
Global social welfare maximization problem:

maximize
∑

i∈[1,N]

∑

t′∈[1,T ]

∑

l∈Lit′

bit′l xit′l −
∑

t ∈[1,T ]

αz(t ) (7)

subject to:
∑

i∈[1,N]

c
(t )
i
+ z(t ) ≥ R(t ), ∀t ∈ [1,T] (7a)

∑

l∈Lit′

xit′l ≤ 1, ∀i ∈ [1, N], t ′ ∈ [1,T] (7b)

∑

t′∈[1,t]

∑

l∈Lit′ :t ∈T (l)

qit′ xit′l + c
(t )
i
≤E

(t )
i
,

∀i ∈ [1, N], t ∈ [1,T] (7c)

xit′l ∈ {0, 1}, z(t ) ≥ 0, c
(t )
i
≥ 0,

∀i ∈ [1, N], t ∈ [1,T], t ′ ∈ [1,T], l ∈ Lit′ (7d)

The social welfare maximization problem includes tenant job

scheduling decisions and operator’s EDR energy reduction

allocation decisions, with constraints (7b) and (7c) corre-

sponding to (4a) and (4b) in tenant’s utility maximization

problem, and constraint (7a) equivalent to (6a) in operator’s

cost minimizing problem. In (7), energy reduction due to

2We will prove in Lemma 2 that the reward to tenants from the operator
is always no more than the corresponding cost by using diesel. Hence, the
reward from the operator to tenants is no more than the overall reward from
the grid to the operator, and we can safely ignore the latter reward here.

EDR is counted, such that the sum of energy consumption

for running accepted jobs and EDR energy shedding does

not exceed a tenant’s contracted energy capacity. Note that

no entity carries out algorithms to solve this social welfare

maximization problem with complete knowledge of the entire

system, which is formulated as a benchmark for performance

analysis of the tenants’ and operator’s algorithms—we will

show that aggregately, the online algorithms carried out by

each tenant and the operator, towards their respective objec-

tives, maximize social welfare as well.
We formulate the dual of (7) by relaxing integrality con-

straints, and introducing dual variable λ(t ) for (7a) and the

same dual variables as in dual of (4) for (7b) and (7c):

minimize −
∑

t ∈[1,T ]

R(t )λ (t )
+

∑

i∈[1,N]

∑

t′∈[1,T ]

uit′+
∑

i∈[1,N]

∑

t ∈[1,T ]

E
(t )
i

p
(t )
i

(8)
subject to:

uit′ ≥ bit′l −
∑

t ∈T (l)

qit′ p
(t )
i
, ∀i ∈ [1, N], t ′ ∈ [1,T], l ∈ Lit′ (8a)

λ (t ) ≤ α, ∀t ∈ [1,T] (8b)

p
(t )
i
− λ (t ) ≥ 0, ∀i ∈ [1, N], t ∈ [1,T] (8c)

λ (t ) ≥ 0, uit′ ≥ 0, p
(t )
i
≥ 0, ∀t, t ′ ∈ [1,T], i ∈ [1, N] (8d)

IV. ONLINE ALGORITHMS FOR TENANT UTILITY

MAXIMIZATION AND EDR INCENTIVIZATION

We next design an online algorithm for each tenant’s job

scheduling and energy reduction bidding, and an auction

mechanism for energy reduction incentivization at the colo-

cation.
A. Online Algorithm for Tenants

We first design tenant’s online algorithm considering job

scheduling only, then show later how cost valuation and energy

shedding during EDR fit in.
In the online setting, as jobs arrive at each tenant i, the

variables and constraints of (4) emerge gradually. For example,

upon arrival of job Jit′ , there is a set of new primal variables,

xit′l,∀l ∈ Lit′, subject to
∑

l∈Lit′
xit′l ≤ 1, with Lit′ identified

based on the job’s specification. The tenant must decide

immediately whether to serve the job and if so, by which

schedule l ∈ Lit′, considering its energy capacity and existing

jobs. If the tenant decides to execute this job (Jit′) following

schedule l, then let xit′l = 1, and increase the amount of energy

reservation by q
(t )
it′

in all time slots t scheduled to run the job

according to l, i.e., ∀t ∈ T (l). Otherwise, xit′l will be zero

for all l ∈ Lit′ .
Job Scheduling. Towards optimally scheduling a new job over

future time slots, we resort to the dual problem of (4) in (5),

and apply the KKT conditions [27]. Corresponding to job Jit′ ,

there is a dual variable uit′ ≥ 0 subject to constraints (5a), i.e.,

uit′ ≥ bit′l −
∑

t ∈T (l) qit′p
(t )
i

, ∀l ∈ Lit′ . The KKT conditions

indicate that in the optimal solutions of (4) and (5), xit′l must

be zero unless constraint (5a) is tight for schedule l. Thus, we

let uit′ be the maximum between 0 and the right hand side

(RHS) of constraint (5a), ∀l ∈ Lit′:

uit′ = max
{
0, max

l∈Lit′

{bit′l −
∑

t ∈T (l)

qit′ p
(t )
i
}
}

(9)
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We decide whether to accept job Jit′ accordingly: if the RHS

of (5a) is non-positive, then uit′ = 0 and the job is rejected,

i.e., xit′l = 0,∀l ∈ Lit′; otherwise, uit′ > 0 and the job will be

scheduled by the schedule li that maximizes the RHS of (5a)

(breaking ties arbitrarily), i.e., xit′li = 1 and xit′l = 0,∀l , li .

The rationale is as follows. We interpret the dual vari-

able p
(t )
i

as a marginal cost per unit energy consumption at

tenant i in t, for deciding whether the new job has a high

enough value to consume the required amounts of energy in

its lifespan. The second term in the RHS of (5a) is the total

cost of running the job by schedule l. The RHS of (5a) can

be viewed as the net gain of job Jit′ if served by schedule

l. The above method effectively serves a job by the schedule

that maximizes its net gain, and jobs whose values are lower

than incurred costs will be rejected.

Cost Function Design. Comparing the offline optimum and

the online decisions, one main reason causing tenant utility

loss is that low value jobs arriving earlier are accepted, while

high value jobs cannot be accepted later due to insufficient

remaining energy capacity. To prevent this, the marginal

energy cost p
(t )
i

should be increased over time as the amount

of reserved energy for t increases: when the energy surplus is

abundant, the price is relative low for accepting all possible

jobs; when remaining energy is scarce, the price should be

significantly high so that only high value jobs are accepted.

Let η (t )
i

denote energy usage in time slot t at tenant i,

reserved for accepted jobs. p
(t )
i

should be a monotonically

increasing function of η (t )
i

. Let

Li =
1

2F
min

t′∈[1,T ],l∈Lit′

{
bit′l

qit′dit′
} (10)

which represents the minimum per-slot per-unit-energy-

consumption job value among all jobs of tenant i over all

possible schedules, scaled down by factor 1
2F

. Here 1
F

is

a lower bound of the ratio of a tenant’s overall energy

usage over its overall energy capacity, for all tenants, i.e.,
1
F
≤

∑

t∈[1,T ] η
(t )
i

∑

t∈[1,T ] E
(t )
i

,∀i ∈ [1, N]. Its value can be estimated based

on historical energy utilization data at the tenants. Let

Ui = max
t′∈[1,T ],l∈Lit′

{
bit′l

qit′
}, (11)

which denotes the maximum per-unit-energy-consumption job
value among all jobs of tenant i over all possible schedules.
We design the cost function as follows:

p
(t )
i

(η
(t )
i

) = Li (
Ui

Li
)

η
(t )
i

E
(t )
i (12)

When there is no energy usage in t yet, i.e., η (t )
i
= 0, we

have p
(t )
i

(0) = Li . The value of Li is carefully designed to

ensure that the initial marginal cost, p
(t )
i

(0), is low enough

such that any job can be scheduled to run in this time slot.

When the energy usage reaches the capacity of tenant i, i.e.,

η
(t )
i
= E

(t )
i

, we have p
(t )
i

(E
(t )
i

) = Ui . The value of Ui ensures

that any schedule using this time slot will lead to a negative

net gain uit′ , hence no more job can be executed in t. p
(t )
i

(η (t )
i

)

grows exponentially with η (t )
i

such that the scarcer the energy

is, the higher the admission value becomes. The design of

the cost function leads to tenant utility and social welfare

maximization, which will be shown in Sec. V.

Energy Shedding Bid. When participating in the EDR auc-

tion, tenant i reports its energy cost valuation function v
(t )
i

(·)

for each time slot t in the upcoming EDR frame, as follows

(assume truthful bidding):

v
(t )
i

(c
(t )
i

) =



∫ η
(t )
i
+c

(t )
i

η
(t )
i

Li (
Ui

Li
)

η

E
(t )
i dη, 0 ≤ c

(t )
i
≤ E

(t )
i
− η

(t )
i

+∞ otherwise
(13)

As long as the energy shedding requested by the colocation

operator for t (c(t )
i

) can be fulfilled by the tenant’s remaining

energy in t, the cost valuation for energy reduction (namely the

minimum reward the operator should pay for energy reduction

in this time slot) is computed as the aggregate cost of the

energy reserved for EDR in t. Revealing the cost function

in this form, the tenant ensures that any energy shedding

demand with an overall reward no lower than the aggregate

cost valuation,
∑

t ∈t̂ v
(t )
i

(c(t )
i

), is acceptable and will not harm

the tenant’s utility, as compared to not participating in EDR.

Tenant’s online algorithm. Alg. 1 shows our online algorithm

for job scheduling and EDR bidding at the tenants. Upon

each job arrival, the tenant computes the best schedule and

the corresponding largest net gain of the job (RHS of (5a))

(line 4), by calling a dual oracle in Alg. 2. Then uit′ is

decided according to (9) (line 5). If uit′ is positive, the job

is accepted, job scheduling decisions are set according to the

best schedule (lines 6-9), and energy reservation and energy

costs are updated in the time slots in which the job is executed

(lines 10-12). Upon receiving bid invitation from the operator,

the tenant bids cost valuation functions (lines 20-21), and then

updates energy usage and energy costs in each time slot of

the EDR frame, according to the solicited amount of energy

shedding from the operator (lines 22-28).

The dual oracle in Alg. 2 computes in polynomial time

the best schedule in Lit′ achieving maximal net gain of job

Jit′ ; since Lit′ includes an exponential number of schedules, a

naive exhaustive search is infeasible. Given a job completion

time tend within [wit′,T ], we compute the best schedule l by

which the job is executed in the dit′ time slots no later than

tend with the lowest costs (lines 4-8). We go through different

tend’s and find the best schedule achieving the largest net gain

(lines 3, 9-11). In this way, we do not need to find out all l in

Lit′, but can directly compute the best schedule for each tend ;

the overall number of schedules we compare is T − wit′ + 1.

Polynomial running time of the tenant’s algorithm is proven

in Theorem 2.

Note that the algorithm needs Ui and Li as input, whose

exact values are not known before all jobs have arrived. We

instead adopt estimated lower and upper bounds as input,

e.g., based on past experience. We will show the impact of

inaccurate estimation in the simulations.

B. EDR Incentivization Mechanism at Colocation Operator

Allocation of Energy Reduction Amounts to Tenants. The

operator solves the cost minimization problem in (6) to decide

the amount of energy for each participating tenant to reduce
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Algorithm 1 Tenant i’s Online Algorithm, Atenant

Input: E
(t )
i
,Ui, Li,∀t ∈ [1,T ]

Output: x
(t )
it′
, yit′,∀t

′ ∈ [1,T ], t ∈ [1,T ]

1: Initialize:

2: x
(t )
it′
= 0, yit′ = 0, η

(t )
i
= 0, p

(t )
i
= p

(t )
i

(0),∀t ′ ∈ [1,T ],∀t ∈

[1,T ];

3: Upon arrival of new job Jit′

4: (o∗it′, l
∗
it′ ) = Oracle(Jit′, {p

(t )
i
}∀t ∈[t′,T ]);

5: uit′ = max{0, o∗
it′
};

6: if uit′ > 0 then

7: // Update primal variables and reserved energy;

8: xit′l∗
it′
= 1;

9: yit′ = 1, x
(t )
it′
= 1,∀t ∈ T (l∗

it′
);

10: η
(t )
i
= η

(t )
i
+ qit′, ∀t ∈ T (l∗

it′
);

11: // Update dual variables

12: p
(t )
i
= p

(t )
i

(η (t )
i

), ∀t ∈ T (l∗it′ );

13: end if

14: if yit′ = 1 then

15: Accept job Jit′ and execute it in time slots t

specified in schedule l∗
it′

(x
(t )
it′
= 1);

16: else

17: Reject job Jit′ ;

18: end if

19: End Upon

20: Upon invitation of energy shedding bids from colocation

operator at beginning of EDR frame t̂

21: Bid cost valuation functions v
(t )
i

(·),∀t ∈ t̂ according

to (13);

22: for all solicited energy reduction from operator,

c
(t )
i
,∀t ∈ t̂ do

23: if c
(t )
i
> 0 then

24: η
(t )
i
= η

(t )
i
+ c

(t )
i

;

25: p
(t )
i
= p

(t )
i

(η (t )
i

);

26: end if

27: end for

28: Carry out energy reduction in time slots t where c
(t )
i
>

0;

29: End Upon

(c(t )
i

) and the diesel usage (z(t )) in each time slot t of the EDR

frame, to fulfill the EDR energy shedding demand from the

grid. As tenants’ cost valuation functions for energy reduction,

given in (13), are convex (proven in Lemma 1), (6) is a convex

program and can be solved exactly in polynomial time, using

an efficient algorithm such as an interior-point method.

Reward for Energy Reduction. For each t ∈ t̂, let M (t )

be the optimal objective value of
∑

ï∈[1,N] v
(t )

ï
(c(t )

ï
) + αz(t ) ,

obtained by solving (6) over all tenants in [1, N]. Let M
(t )
−i

be the optimal objective value of
∑

ï∈[1,N]\i v
(t )

ï
(c(t )

ï
) + αz(t ) ,

computed by solving (6) assuming tenant i is absent from the

auction. For each winning tenant i with c
(t )
i

, the reward is

computed by
r

(t )
i
= (M

(t )
−i
− M (t )) + v

(t )
i

(c
(t )
i

)

i.e., the sum of tenant i’s marginal contribution to reducing

cost in the system and its reported valuation for c
(t )
i

. We

Algorithm 2 Dual Oracle for Tenant Job Scheduling,

Oracle(·)

Input: Jit′, {p
(t )
i
}∀t ∈[t′,T ]

Output: o∗
it′
, l∗

it′

1: omax = 0;

2: lmax = ∅;

3: for all tend ∈ [wit′,T ] do

4: Γ = tend − t ′ + 1;

5: // Sort time slots by p
(t )
i

in non-decreasing order.

6: (p
t̄1
i
, p

t̄2
i
, . . . , p

t̄Γ
i

) = sort
(

p
(t′)
i
, p

(t′+1)
i
, . . . , p

(tend )
i

)

;

7: l = (t̄1, t̄2, . . . , t̄dit′ );

8: o = bit′ − git′
(

maxj∈[1,dit′ ]{t̄ j } − wit′

)

−
∑dit′

j=1
qit′p

t̄j
i

;

9: if (o > omax) then

10: omax = o;

11: lmax = l;

12: end if

13: end for

14: o∗
it′
= omax ;

15: l∗
it′
= lmax ;

always have M
(t )
−i
≥ M (t ) (more options leads to lower

objective value in (6)), and hence the reward for reducing

energy c
(t )
i

is always no smaller than the respective cost

valuation, ensuring acceptance of the energy shedding amount

at tenant i.

The EDR auction mechanism carried out by the operator is

summarized in Alg. 3.

V. THEORETICAL ANALYSIS

A. Analysis of Operator’s EDR Auction Mechanism

Lemma 1. The cost valuation function v
(t )
i

(·) is convex for

each tenant i and each time slot t.

Proof. v
(t )
i

(c(t )
i

) is the integral of p
(t )
i

(η (t )
i

) (i.e., (12)) if 0 ≤

c
(t )
i
≤ (E

(t )
i
−η

(t )
i

). As p
(t )
i

(η (t )
i

) is an exponential function on

η
(t )
i

and its base, (Ui

Li
)

1

E
(t )
i , is no smaller than 1, it is a convex

function. The integral of a convex function is convex too [27].

Due to the convexity of extended-value extension [27], (i.e.,

extending the domain of a convex function to R by defining

its value to be +∞ outside its domain), the function v
(t )
i

(c(t )
i

)

is still convex. �

Theorem 1. The EDR auction mechanism Aoperator in Alg. 3,

is truthful and individually rational, runs in polynomial time,

and minimizes the total cost in each time slot of an EDR frame.

Proof. (Truthfulness) An auction is truthful if bidding truth

cost valuation functions as in (13) maximizes a tenant’s net

gain in the auction, i.e., û
(t )
i
= r

(t )
i
− v

(t )
i

(c∗(t )
i

). Without

assuming truthful bidding, let v̂ (t )
i

(·) denote the reported cost

valuation function from tenant i. We have

û
(t )
i
= (M

(t )
−i
− M (t )) + v̂

(t )
i

(c
∗(t )
i

) − v
(t )
i

(c
∗(t )
i

)

= M
(t )
−i
−
(

M (t ) − v̂
(t )
i

(c
∗(t )
i

) + v
(t )
i

(c
∗(t )
i

)
) (14)
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Algorithm 3 Colocation Operator’s EDR Auction Mechanism,

Aoperator

1: Upon arrival of EDR signal R(t̂ ) from the grid

2: // Compute EDR Reductions

3: Invite tenant bids v
(t )
i

(·),∀i ∈ [1, N], t ∈ t̂;

4: for all t ∈ t̂ do

5: Solve (6) by interior-point method; let

c
∗(t )
i
, z∗(t ),∀i ∈ [1, N], be the optimal solution;

6: // Compute rewards

7: M (t )
=

∑

i∈[1,N] v
(t )
i

(c∗(t )
i

) + αz∗(t ) ;

8: for all i ∈ [1, N] do

9: r
(t )
i
= 0;

10: if c
∗(t )
i
> 0 then

11: for all ï ∈ [1, N] do

12: v̇
(t )

ï
(·) =


+∞, if ï = i

v
(t )

ï
(·), otherwise

;

13: end for

14: Solve (6) using interior point method,

where v
(t )
i

(·) is replaced by v̇
(t )
i

(·), ∀i ∈ [1, N], and let

ċ
∗(t )
i
, ż∗(t ),∀i ∈ [N], denote the optimal solution;

15: M
(t )
−i
=

∑

ï∈[1,N]\i v
(t )

ï
(ċ∗(t )

i
) + α ż∗(t );

16: r
(t )
i
= (M

(t )
−i
− M (t ) ) + v (t )

i
(c∗(t )

i
);

17: end if

18: end for

19: end for

20: Send energy reduction amounts c
∗(t )
i
,∀t ∈ t̂, to all

tenants i ∈ [1, N];

21: Produce energy at the amount of z∗(t ) using the diesel

generator in each time slot t in the EDR frame t̂;

22: End

As M
(t )
−i

is not related to tenant i’s bid, we will show M (t )−

v̂
(t )
i

(c∗(t )
i

) + v
(t )
i

(c∗(t )
i

) is minimized by truthful bidding. We

have

M (t ) − v̂
(t )
i

(c
∗(t )
i

) + v
(t )
i

(c
∗(t )
i

)

= (
∑

j∈[1,N]:j,i

v̂
(t )
j

(c
∗(t )
j

) + αz∗(t ) ) + v
(t )
i

(c
∗(t )
i

) (15)

Suppose all other tenants’ reported valuation functions are

fixed (v̂ (t )
j

(·),∀ j ∈ [1, N], j , i). When i truthfully reports

its valuation function (i.e., v̂
(t )
i

(·) = v
(t )
i

(·)), the objec-

tive function of (6) is identical with (15), and the optimal

solution (c∗(t )
i
,∀i ∈ [1, N]}, z∗(t )) of (6) minimizes (15)

as well (constraints (6a) (6b) still apply). When i reports

v̂
(t )
i

(·) , v
(t )
i

(·), (15) is different from the objective function

of (6) which is now
∑

j∈[1,N]:j,i v̂
(t )
j

(c(t )
j

) + αz(t )
+ v̂

(t )
i

(c(t )
i

).

Therefore, the optimal solution {c̄∗(t )
i
,∀i ∈ [1, N]}, z̄∗(t ) of (6)

may not minimize (15), and the value of (15) computed at

{c̄
∗(t )
i
,∀i ∈ [1, N]}, z̄∗(t ) is no smaller than the value of (15)

computed at {c∗(t )
i
,∀i ∈ [1, N]}, z∗(t ).

(Individual rationality) By definition, the EDR auction

satisfies individual rationality if a winning tenant’s reward is

always no less than its cost valuation for energy reduction. We

have r
(t )
i
−v

(t )
i

(c∗(t )
i

) = (M
(t )
−i
−M (t ) )+v (t )

i
(c∗(t )

i
)−v (t )

i
(c∗(t )

i
) =

M
(t )
−i
−M (t ) . As M (t ) is computed over more options than M

(t )
−i

and hence no larger than M
(t )
−i

, we have M
(t )
−i
− M (t ) ≥ 0.

(Polynomial time and total cost minimization) By Lemma 1,

(6) is a convex problem that can be solved in polynomial time

by the interior point method, achieving minimal total cost. �

Lemma 2. The optimal solution of the operator’s cost mini-

mization problem (6) satisfies v
(t )′

i
(c(t )

i
) ≤ α,∀i ∈ [1, N],∀t ∈

[1,T ] (derivative of the cost valuation function is at most unit

energy cost from diesel), and v
(t )
i

(c∗(t )
i

) ≤ r
(t )
i
≤ αc

∗(t )
i
,∀i ∈

[1, N],∀t ∈ [1,T ] (the reward to a tenant is between the

corresponding cost valuation and the corresponding diesel

cost).

Proof. We prove v
(t )′

i
(c(t )

i
) ≤ α by contradiction. Suppose

there exists a pair of (i, t) such that v
(t )′

i
(c∗(t )

i
) > α. We

could then decrease c
∗(t )
i

and increase z∗(t ) to obtain a smaller

objective value, which contradicts the fact that c
∗(t )
i

and z∗(t )

are optimal.

We have proven r
(t )
i
≥ v

(t )
i

(c∗(t )
i

) in Theorem 1 (individual

rationality). We prove r
(t )
i
≤ αc

∗(t )
i

by contradiction. Suppose

there exists a pair of (ī, t) such that r
(t )

ī
> αc

∗(t )

ī
. Then we

have r
(t )

ī
= M

(t )

−ī
− (M (t ) − v

(t )

ī
(c∗(t )

ī
)) > αc

∗(t )

ī
, where M

(t )

−ī

represents the minimum of (6) when tenant ī is absent. We

can construct another feasible solution {c̈(t )
i
,∀i ∈ [T ]}, z̈(t ) of

(6) with tenant ī being absent as follows: c̈
(t )
i
= c

∗(t )
i
,∀i ∈

[1, N], i , ī and z̈(t )
= z∗(t ) + c

∗(t )

ī
, i.e., using diesel to produce

tenant i’s energy c
∗(t )

ī
. We have

M−ī (t)−(M (t )−v
(t )

ī
(c
∗(t )

ī
)) ≤ (

∑

i,ī

v
(t )
i

(c̈
(t )
i

)+α z̈(t ) )−(M (t )−v
(t )

ī
(c
∗(t )

ī
))

≤ (
∑

i,ī

v
(t )
i

(c
∗(t )
i

)+α(z∗(t )+c
∗(t )

ī
))−(
∑

i,ī

v
(t )
i

(c
∗(t )
i

)+αz∗(t ) ) ≤ αc
∗(t )

ī

which contradicts with our assumption. �

B. Analysis of Tenants’ Online Algorithm

(1) Polynomial Running Time

Theorem 2. Each tenant’s online algorithm, Atenant in Alg. 1

and Alg. 2, runs in polynomial time upon new job arrivals.

Proof. When executing the dual oracle, given tend , finding

the best schedule that completes the job no later than tend
takes O(T logT + T ), due to sorting {p(t )

i
} and computing

penalty. Looping through all tend ∈ [wit′,T ], the complexity

becomes O(T · (T logT + T )) = O(T2 logT ). When updating

variables in lines 7-12 of Alg. 1, each instruction is executed

at most T times. Hence the overall time complexity of Atenant

is O(T2 logT ). �

(2) Competitive Ratio We next analyze long-term utility

maximization achieved by tenant’s online algorithm in the

following steps. We first analyze competitive ratio of the online

job scheduling algorithm without considering EDR energy

shedding, computed as the worst-case upper bound ratio of

the tenant utility achieved by the offline solution of (3) to the

overall tenant utility achieved by Atenant at the end of [1,T ].
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We then show that participating in EDR energy shedding does

not affect tenant’s long-term utility guarantee.

Let P0 and D0 denote the initial values of the primal

and dual problems in (4) and (5), respectively. Let ∆P and

∆D represent the changes in objective values of (4) and (5),

before and after a scheduling event happens, i.e., a new job is

scheduled. We use OPT to represent the tenant utility achieved

by the offline solution of (3).

Lemma 3. If there exists A ≥ 1 such that ∆P ≥ 1
A
∆D for all

scheduling events, and C ≥ 1 such that D0 ≤
1
C

OPT, then

Atenant in Alg. 1 is A · C
C−1

-competitive.

Proof. We have P0 = 0 and D0 =
∑

t ∈[1,T ] E
(t )
i

Li . The overall

objective value of the primal problem, Pfinal, is the sum of ∆P’s

over all the scheduling events, and the overall objective value

of the dual problem, Dfinal, is the sum of D0 and all ∆D’s.

Since ∆P ≥ 1
A
∆D, we have Pfinal ≥

1
A

(Dfinal − D0). By the

weak duality [27], we have Dfinal ≥ OPT and (Dfinal − D0) ≥

(1 − 1
C

)OPT , hence we have Pfinal ≥
1
A

(1 − 1
C

)OPT . The

competitive ratio is 1
1
A

(1− 1
C

)
= A · C

C−1
. �

We next define a relation between cost and energy usage

before and after a scheduling event. Let η (t )
i

and η (t )+
i

be the

reserved energy usage for time t for tenant i, before and after

the event.

Definition 1. The Usage-Cost Relationship with A ≥ 1 is

p
(t )
i

(η (t )
i

)(η (t )+
i
− η

(t )
i

) ≥ 1
A

E
(t )
i

(p
(t )
i

(η (t )+
i

) − p
(t )
i

(η (t )
i

)),∀i ∈

[1, N],∀t ∈ [1,T ].

The Usage-Cost Relationship shows that the cost in time

slot t due to the scheduling event is no smaller than 1
A

of the

increase of the term E
(t )
i

p
(t )
i

in the dual objective of (5), due

to the adjustment of the marginal cost.

Lemma 4. If the Usage-Cost Relationship holds for a given

A ≥ 1, then we have ∆P ≥ 1
A
∆D, considering only job

scheduling.

Proof. If tenant i rejects a new job Bit′, we have ∆P =

∆D = 0, and the lemma holds. If the tenant accepts the

job by schedule l and reserves corresponding energy usage

for it, then ∆P = bit′l = uit′ + p
(t )
i

(η (t )
i

)(η (t )+
i
− η

(t )
i

) and

∆D = uit′ + E
(t )
i

(p
(t )
i

(η (t )+
i

) − p
(t )
i

(η (t )
i

)). Since uit′ ≥ 0 and

p
(t )
i

(η (t )
i

)(η (t )+
i
− η

(t )
i

) ≥ 1
A

E
(t )
i

(p
(t )
i

(η (t )+
i

) − p
(t )
i

(η (t )
i

)), we

have ∆P ≥ 1
A
∆D. �

We next find a feasible A for which our cost functions p
(t )
i

(·)

satisfy the respective usage-cost relationship. Without loss of

generality, we assume in the following discussions that the per-

time-slot energy demand qit′ of each job received at i is much

smaller compared to the energy capacity of the tenant E
(t )
i

(considering typically a tenant is handling a large number of

jobs), i.e., η (t )+
i
−η

(t )
i

is small enough. We define a differential

version of the usage-cost relationship:

Definition 2. The Differential Usage-Cost Relationship with

A ≥ 1 is p
(t )
i

(η)dη ≥
E

(t )
i

A
dp

(t )
i
,∀i ∈ [1, N],∀t ∈ [1,T ].

Lemma 5. The cost function in (12) satisfies the Differential

Usage-Cost Relationship for A = ln(Ui

Li
), with Li and Ui

defined in (10) and (11), respectively.

Proof. According to (12), we have p
(t )′

i
(η) =

ln(Ui/Li )

E
(t )
i

Li (
Ui

Li
)η/E

(t )
i . Since dp

(t )
i

= p
(t )′

i
dη, the

differential Usage-Cost Relationship becomes

Li (
Ui

Li
)η/E

(t )
i ≥

E
(t )
i

A
ln(Ui /Li )

E
(t )
i

Li (
Ui

Li
)η/E

(t )
i , which holds

for A ≥ ln(Ui/Li ). �

Theorem 3. Without considering EDR energy reduction,

Alg. 1 is 2A-competitive in tenant’s utility, where A = ln(Ui

Li
),

with Li and Ui defined in (10) and (11), respectively.

Proof. The cost functions used in Alg. 1 satisfy the Differen-

tial Usage-Cost Relationship for A = ln(Ui

Li
) (Lemma 5). Since

the energy demand in a job qit′ is much smaller compared to

capacity E
(t )
i

, we have dη
(t )
i
= η

(t )+
i
− η

(t )
i
= qit′ , and then

p
(t )
i

(η (t )+
i

) − p
(t )
i

(η (t )
i

) = p
(t )′

i
(η (t )+

i
− η

(t )
i

) = dp
(t )
i
.

So the Differential Usage-Cost Relationship (Def. 2) implies

that the Usage-Cost Relationship (Def. 1) holds for A. Ac-

cording to Alg. 1, we have:

D0 =

∑

t ∈[1,T ]

E
(t )
i

p
(t )
i

(0) =
∑

t ∈[1,T ]

E
(t )
i

1

2F
min

t′∈[1,T ],l∈Lit′

{
bit′l

qit′dit′
}

Since 1
F
≤

∑

t∈[1,T ] η
(t )
i

∑

t∈[1,T ] E
(t )
i

(given when defining Li in (10)), we

know
∑

t∈[1,T ] E
(t )
i

F
is the minimum amount of overall energy

consumption of tenant i. In addition, mint′∈[1,T ],l∈Lit′
{

bit′ l
qit′dit′

}

is the minimum per-timeslot per-unit-energy-consumption

job value among all jobs of tenant i. We have OPT ≥
∑

t∈[1,T ] E
(t )
i

F
mint′∈[1,T ],l∈Lit′

{
bit′ l

qit′dit′
}, and hence D0 ≤

1
2
OPT .

Then by Lemmas 3 (C = 2), 4 and 5, the theorem follows. �

When a tenant participates in EDR, its utility

consists of job valuations and EDR rewards (i.e.,
∑

t′∈[1,T ]

∑

l∈Lit′
bit′lxit′l +

∑

t ∈[1,T ] r
(t )
i

), and its energy

capacity bounds jobs’ energy demand and EDR

energy reduction (i.e.,
∑

t′∈[1,T ]

∑

l∈Lit′ l
qit′ xit′l + c

(t )
i
≤

E
(t )
i
,∀t ∈ [1,T ]). Treating EDR energy shedding

demand from the operator as a special job, before

and after its scheduling, we have ∆P =

∑

t ∈t̂ r
(t )
i

and

∆D =
∑

t ∈t̂ E
(t )
i

(p
(t )
i

(η (t )
i
+ c

(t )
i

) − p
(t )
i

(η (t )
i

)). by Lemma 2,

we have r
(t )
i
≥ v

(t )
i

(c(t )
i

),∀i ∈ [1, N],∀t ∈ [1,T ]. According to

(13), we have:

r
(t )
i
≥

∫ η
(t )
i
+c

(t )
i

η
(t )
i

Li (
Ui

Li

)

η

E
(t )
i dη

=

E
(t )
i

ln(Ui

Li
)
· Li (

Ui

Li

)

η
(t )
i
+c

(t )
i

E
(t )
i −

E
(t )
i

ln(Ui

Li
)
· Li (

Ui

Li

)

η
(t )
i

E
(t )
i

=

1

A
E

(t )
i

(p
(t )
i

(η (t )
i
+ c

(t )
i

) − p
(t )
i

(η (t )
i

))

Hence we have ∆P ≥ 1
A
∆D. By Lemma 3 and Theorem 3,

Atenant with energy shedding can obtain the same guarantee

on long-term tenant utility as not participating in EDR.
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C. Competitive Ratio in Global Social Welfare

We next analyze the competitive ratio in social welfare,

computed by the social welfare achieved by the offline solution

of (7) divided by the overall social welfare achieved by online

solutions of Atenant and Aoperator at the end of [1,T ], based

on primal-dual analysis of the social welfare maximization

problem in (7) and (8).

Let Ps
final

denote the objective value of the primal problem

in (7), as computed based on online solutions xit′l computed

by Atenant and c
(t )
i

and z(t ) computed by Aoperator over the

entire system span [1,T ]. Let Ds
final

denote the objective value

of the dual problem (8), computed by the dual solutions uit′

and p
(t )
i

given by Atenant and setting λi as the minimum among

{p
(t )
i
}∀t ∈[1,T ] and α, i.e., λi = min{α,mint ∈[1,T ]{p

(t )
i
}}. We use

OPT s to represent the offline optimal objective value of (7),

computed by solving (7) exactly based on complete knowledge

of the system (job arrivals, EDR signals) over the entire span

[1,T ].

Lemma 6. If there exist H ≥ 0 and G such that Ps
final
≥

1
H

Ds
final
− 1

G
OPT s, then Atenant in Alg. 1 and Aoperator in Alg. 3

together achieve 1
(

1
H −

1
G

) competitiveness in social welfare.

Proof. uit′ and p
(t )
i

given by Atenant and λi as the minimum

among {p(t )
i
}∀t ∈[1,T ] and α constitute a feasible solution to

the dual problem in (8). Based on weak duality [27], we

have Ds
final
≥ OPT s, and hence Ps

final
≥ 1

H
Ds

final
− 1

G
OPT s ≥

(

1
H
− 1

G

)

OPT s. �

We next prove the following lemmas 7, 8 and 9, which

set up the relationship between online solutions of the primal

problem in (7) and dual problem in (8), for proof of the

ratio between Ps
final

and Ds
final

. Let v̄ (t )
i

(·) denote the valuation

function, as given in (6), computed when EDR signal R(t )

arrives. Let η̄ (t )
i

denote the final energy consumption in time

slot t at tenant i, i.e., the actual amount used during the time

slot due to executing jobs and/or EDR energy reduction.

Lemma 7. The online primal and dual solu-

tions derived by Atenant and Aoperator satisfy
∑

i∈[1,N]

∑

t′∈[1,T ]

∑

l∈Lit′

bit′l xit′l +

∑

t ∈[1,T ]

∑

i∈[1,N]

v̄
(t )
i

(c
(t )
i

) =

∑

i∈[1,N]

∑

t′∈[1,T ]

uit′ +
∑

i∈[1,N]

∑

t ∈[1,T ]

∫ η̄
(t )
i

0
p

(t )
i

(η)dη.

Proof. Let η (t ) |−1

i[Bit′ ]
and η (t )

i[Bit′ ]
denote the reserved energy

consumption for time slot t at tenant i before and after job Bit′

is scheduled, respectively. According to line 5 of Alg. 1, bit′l
with xit′l = 1 satisfies bit′l = uit′ +

∑

t ∈T (l) qit′p
(t )
i

(η (t ) |−1

i[Bit′ ]
).

Since the energy demand in each job is much smaller than the

tenant’s energy capacity, we further have

bit′l = uit′ +
∑

t ∈[1,T ]

(η (t )
i[Bit′ ]

− η
(t ) |−1

i[Bit′ ]
) · p(t )

i
(η (t ) |−1

i[Bit′ ]
)

= uit′ +
∑

t ∈[1,T ]

∫ η
(t )
i[Bit′ ]

η
(t ) |−1
i[Bit′ ]

p
(t )
i

(η)dη

(16)

In the above, note that for t ∈ T \ T (l), no energy is reserved

for t for job Bit′ , hence we have η
(t ) |−1

i[Bit′ ]
= η

(t )
i[Bit′ ]

and the

respective term in the summation is zero. Let η (t ) |−1

i[c
(t )
i

]
and

η
(t )

i[c
(t )
i

]
denote the reserved energy consumption for time slot t

at tenant i before and after EDR energy reduction c
(t )
i

is
scheduled, respectively. According to (13), we have

v̄
(t )
i

(c
(t )
i

) =

∫ η
(t ) |−1

i[c
(t )
i

]
+c

(t )
i

η
(t ) |−1

i[c
(t )
i

]

p
(t )
i

(η)dη =

∫ η
(t )

i[c
(t )
i

]

η
(t ) |−1

i[c
(t )
i

]

p
(t )
i

(η)dη (17)

Combining (16) and (17), we have

∑

i∈[1,N]

∑

t′∈[1,T ]

∑

l∈Lit′

bit′lxit′l +
∑

t ∈[1,T ]

∑

i∈[1,N]

v̄
(t )
i

(c
(t )
i

)

=

∑

i∈[1,N]

∑

t′∈[1,T ]

∑

l∈Lit′ :xit′ l=1

bit′l +
∑

t ∈[1,T ]

∑

i∈[1,N]

v̄
(t )
i

(c
(t )
i

)

=

∑

i∈[1,N]

∑

t′∈[1,T ]

uit′

+

∑

i∈[1,N]

∑

t ∈[1,T ]

(
∑

t′∈[1,T ]

∫ η
(t )
i[Bit′ ]

η
(t ) |−1
i[Bit′ ]

p
(t )
i

(η)dη +

∫ η
(t )

i[c
(t )
i

]

η
(t ) |−1

i[c
(t )
i

]

p
(t )
i

(η)dη
)

=

∑

i∈[1,N]

∑

t′∈[1,T ]

uit′ +
∑

i∈[1,N]

∑

t ∈[1,T ]

∫ η̄
(t )
i

0
p

(t )
i

(η)dη

�

Lemma 8. The online primal and dual solu-

tions derived by Atenant and Aoperator satisfy
∑

i∈[1,N]

∑

t′∈[1,T ]

uit′ +

∑

i∈[1,N]

∑

t ∈[1,T ]

∫ η̄
(t )
i

0
p

(t )
i

(η)dη ≥

1

B

(
∑

i∈[1,N]

∑

t′∈[1,T ]

uit′ +
∑

i∈[1,N]

∑

t ∈[1,T ]

(

E
(t )
i

p
(t )
i
− D0

)

)

, where

B = maxi∈[1,N] {ln(Ui/Li )}.

Proof. We have

∫ η̄
(t )
i

0

p
(t )
i

(η)dη =

∫ η̄
(t )
i

0

Li (
Ui

Li

)

η

E
(t )
i dη

=

1

ln(Ui/Li )
E

(t )
i

Li (
Ui

Li

)

η̄
(t )
i

E
(t )
i −

1

ln(Ui/Li )
E

(t )
i

Li

≥
1

B

(

E
(t )
i

p
(t )
i
− E

(t )
i

p
(t )
i

(0)
)

(18)

Based on uit′ ≥ 0 and (18), we have

∑

i∈[1,N]

∑

t′∈[1,T ]

uit′ +
∑

i∈[1,N]

∑

t ∈[1,T ]

∫ η̄
(t )
i

0

p
(t )
i

(η)dη

≥
1

B

∑

i∈[1,N]

∑

t′∈[1,T ]

uit′ +
1

B

∑

i∈[1,N]

∑

t ∈[1,T ]

(

E
(t )
i

p
(t )
i
− E

(t )
i

p
(t )
i

(0)
)

=

1

B

(
∑

i∈[1,N]

∑

t′∈[1,T ]

uit′ +
∑

i∈[1,N]

∑

t ∈[1,T ]

(E
(t )
i

p
(t )
i
− D0)

)

�

Lemma 9. The online dual solutions derived by Atenant satisfy

−
∑

t ∈[1,T ]

αR(t ) ≥ −
Q

W
(
∑

i∈[1,N]

∑

t′∈[1,T ]

uit′ +
∑

i∈[1,N]

∑

t ∈[1,T ]

E
(t )
i

p
(t )
i

),

where Q = maxi∈[1,N]
α
Li

and W =
∑

t∈[1,T ]

∑

i∈[1,N ] E
(t )
i

∑

t∈[1,T ] R
(t ) .
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Proof. Since α = Q · mini∈[1,N] {Li } and
∑

t ∈[1,T ] R(t )
=

1
W

∑

t ∈[1,T ]

∑

i∈[1,N] E
(t )
i

, we have

α
∑

t ∈[1,T ]

R(t )
=

Q

W

∑

t ∈[1,T ]

∑

i∈[1,N]

(E
(t )
i
· min
i∈[1,N]

{Li })

≤
Q

W

∑

t ∈[1,T ]

∑

i∈[1,N]

E
(t )
i

p
(t )
i

≤
Q

W
(
∑

i∈[1,N]

∑

t′∈[1,T ]

uit′ +
∑

t ∈[1,T ]

∑

i∈[1,N]

E
(t )
i

p
(t )
i

)

The first inequality above is based on the definition of p
(t )
i

in

(12), and the second inequality is due to uit′ ≥ 0. �

Theorem 4. Atenant in Alg. 1 and Aoperator in Alg.3 together

achieve 1

( 1
B
−

Q
W

)− 1
B

( 1

2−
Q
W

)
competitiveness in social welfare,

where B = maxi∈[1,N] {ln(Ui/Li )}, W =
∑

t∈[1,T ]

∑

i∈[1,N ] E
(t )
i

∑

t∈[1,T ] R
(t ) and

Q = maxi∈[1,N] {
α
Li
}.

Proof. Since z(t )
= R(t ) −

∑

i∈[1,N] c
(t )
i
,∀t ∈ [1,T ], we have

Ps
f inal

Since z(t )
= R(t ) −

∑

i∈[1,N] c
(t )
i
,∀t ∈ [1,T], we have

Ps
f inal

=

∑

i∈[1,N]

∑

t′∈[1,T ]

∑

l∈Lit′

bit′l xit′l −
∑

t ∈[1,T ]

α(R(t ) −
∑

i∈[1,N]

c
(t )
i

)

≥
∑

i∈[1,N]

∑

t′∈[1,T ]

∑

l∈Lit′

bit′l xit′l +
∑

t ∈[1,T ]

∑

i∈[1,N]

v̄
(t )
i

(c
(t )
i

) −
∑

t ∈[1,T ]

αR(t )

=

∑

i∈[1,N]

∑

t′∈[1,T ]

uit′ +
∑

i∈[1,N]

∑

t ∈[1,T ]

∫ η̄
(t )
i

0
p

(t )
i

(η)dη −
∑

t ∈[1,T ]

αR(t )

≥ (
1

B
−

Q

W
)
(
∑

i∈[1,N]

∑

t′∈[1,T ]

uit′ +
∑

i∈[1,N]

∑

t ∈[1,T ]

E
(t )
i

p
(t )
i

)

−
1

B
D0

≥ (
1

B
−

Q

W
)
(

−
∑

t ∈[1,T ]

R(t )λ (t )
+

∑

i∈[1,N]

∑

t′∈[1,T ]

uit′

+

∑

i∈[1,N]

∑

t ∈[1,T ]

E
(t )
i

p
(t )
i

)

−
1

B
D0

=

W − BQ

BW
Ds
f inal

−
1

B
D0

The third and fourth rows are based on Lemma 2 and
Lemma 7, respectively. The fifth row is based on Lemmas 8
and 9. The six row is due to λ(t ) ≥ 0. Next, we have:

OPT s ≥
∑

i∈[1,N]

∑

t ∈[1,T ] E
(t )
i

F
min

t′∈[1,T ],l∈Lit′

{
bit′l

qit′dit′
} − α

∑

t ∈[1,T ]

R(t )

=

∑

i∈[1,N]

∑

t ∈[1,T ]

(2E
(t )
i

Li) − α
∑

i∈[1,N]

∑

t ∈[1,T ]

E
(t )
i

W

≥
∑

i∈[1,N]

∑

t ∈[1,T ]

(

E
(t )
i

(2Li −
QLi

W
)
)

=

∑

i∈[1,N]

∑

t ∈[1,T ]

(

E
(t )
i

Li (2 −
Q

W
)
)

The first inequality is due to
∑

t′∈[1,T ]

∑

l∈Lit′
bit′lxit′l ≥

∑

t∈[1,T ] E
(t )
i

F
mint′∈[1,T ],l∈Lit′

{
bit′ l

qit′dit′
} and z(t ) ≤ R(t ) . Then,

D0

OPT s ≤

∑

i∈[1,N ]

∑

t∈[1,T ] E
(t )
i

Li
∑

i∈[1,N ]

∑

t∈[1,T ]

(

E
(t )
i

Li (2−
Q
W

)
) =

1

(2−
Q
W

)
, and hence

Ps
f inal

≥
W−BQ
BW Ds

f inal
− 1

B
1

(2−
Q
W

)
OPT s Since B ≥ 1 and

(1−B
Q

W
) ≤ 1, we have BW

W−BQ
=

B

1−B
Q
W

≥ 0. Based on Lemma

6 with H = BW
W−BQ

, G = B(2 − Q

W
), the online algorithms

together achieve a competitive ratio of 1

( 1
B
−

Q
W

)− 1
B

( 1

2−
Q
W

)
in

social welfare. �

VI. PERFORMANCE EVALUATION

We now evaluate tenants’ online scheduling algorithm in

Alg. 1 and the operator’s incentive mechanism in Alg. 3 by

conducting simulation experiments modeling a large coloca-

tion data center based on real-world workload and EDR traces.

A. Simulation Setup

We consider a colocation data center with five tenants

participating in EDR by default. Each tenant houses 2000

servers, and each server consumes a peak power of 250W.

The energy capacity of each tenant (E (t )
i

) is decided as the

total hourly energy consumption divided by the number of

time slots per hour. We set the diesel generation cost α as

200$/MWh, based on typical power generation efficiency and

the average oil price in 2014 [28].
EDR event. We simulate a real EDR event that occurred on

January 7, 2014, throughout the service region of PJM due to

abnormally cold weather [29]. The EDR signals arrive hourly

during a 7-hour span.3 Each frame in our experiments equals

one hour, the length of each time slot is 2 minutes, and the

total system duration is T = 210 time slots. We scale the total

PJM-wide energy reduction trace such that the EDR signals

in our experiments indicate an overall energy shedding of at

most 25% of the colocation’s peak IT energy (consumed by

all tenants). This is a reasonable setting, as LBNL’s recent

field test has demonstrated that data centers can reduce 25%

of its server energy without significantly affecting the normal

operation [9].

Tenant jobs. We simulate job arrivals at tenants following

the workload trace collected from a Google cluster [30], a

dataset widely used in emulating user workload in existing

cloud literature [31], [32], which contains information of

jobs submitted to the cluster, including normalized resource

demand (CPU, RAM, Disk), arrival time and duration of each

job. We convert the CPU demand of a job into a per-timeslot

energy demand of the job (qit′), by multiplying the normalized

CPU demand by the energy capacity of the tenant. A job’s

execution duration (dit′) is within [15, 90] slots, according to

the workload trace. We set Ui/Li = 30 by default, and set the

job valuation by multiplying overall energy demand in the bid

(i.e., qit′dit′) by a unit price randomly picked within different

ranges according to the values of Ui and Li . As the workload

trace does not contain job execution deadlines, we randomly

select a time, between the earliest possible finishing time and

the ending time of the entire time horizon (i.e., [t ′+dit′,T ]), as

the job’s deadline (wit′). We denote the time period [t ′,wit′] as

the no-penalty execution window of job Bit′, i.e., no penalty

would be received if the job is completed within this time

window. We use the following penalty function for each job:

3Note that our model and theoretical results cater to a much more flexible
scenario, with EDR signals arriving anytime during a long time span. Here
due to the limitation of available traces, we simulate 7 EDR signals arriving
in 7 consecutive hours.
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git′
+

(σit′ ) =



σit′ ·
bit′

θ(wit′−t
′) ,

if wit′ + σit′ ∈ (wit′,min
{

wit′ + θ(wit′ − t ′),T
}

]

+∞,

if wit′ + σit′ ∈ (min
{

wit′ + θ(wit′ − t ′),T
}

,T]

(19)

Note that here we further split git′
+
(·) in (1) into two pieces:

if the job completion time (wit′ + σit′) falls within a penalty

window beyond wit′ , but not beyond wit′ plus θ fraction of the

length of the no-penalty window (wit′ − t ′), then the penalty

increases linearly with the amount of time the job takes beyond

wit′ from 0 to bit′ (the job’s maximum value); otherwise,

the penalty is infinity. θ is 0.5 by default. We will evaluate

different lengths of the penalty window by varying θ, as well

as different types of penalty functions (square and exponential

functions).

Comparisons. We compare solutions given by our online

algorithms with the offline optimum, computed by solving (7)

exactly using CVX optimizer, assuming all tenants’ job arrivals

and all EDR signals are known in advance. We also compare

with three other schemes. (1) Diesel-only: the colocation

operator fully relies on diesel generation to meet the EDR

energy shedding demand, and tenants schedule their jobs using

Atenant without participating in EDR. (2) Greedy: each tenant

greedily schedules its arrival jobs in time slots with available

energy to meet the jobs’ energy demands as early as possible,

and uses the average valuation of scheduled jobs in a time

slot as the cost valuation of energy reduction in this time

slot to bid in the operator’s auction. (3) PropAllocation: each

tenant runs Atenant to schedule jobs, and the operator allocates

energy reduction to tenants for EDR proportionally based on

the percentage of their subscribed energy capacities (E (t )
i

) in

the whole data center (in case tenants cannot possibly achieve

the specified energy reduction for EDR, the operator will resort

to diesel generation for the discrepancy). Note that we create

the above themes as reasonable baselines, since no existing

work in the literature has jointly studied tenants’ scheduling

decisions and the colocation operator’s incentive mechanism.

B. Evaluation Results

1) Comparison with Offline Optimum: We first evaluate the

competitive ratio in social welfare, calculated by dividing the

offline optimal social welfare by social welfare obtained by our

online solutions, which shows how well our online mechanism

performs in terms of global social welfare without knowing

future information. Due to time complexity of solving (7)

exactly for offline optimum, the largest number of jobs is

limited to 800. Job arrivals are extracted from the trace (scaled

down to within the EDR duration), and an arrival job is

randomly assigned to one of the five tenants.

In Fig. 3, we vary θ from 0.5 to 1.5, representing that

the length of penalty window is 50%, 100%, or 150% of the

non-penalty execution window, respectively. We also vary the

number of tenants from three to seven, and the total number

of jobs in the system changes accordingly. We observe that

a smaller penalty window results in a smaller competitive

ratio, i.e., social welfare achieved by our algorithms is closer

to the offline optimum. This is because a smaller penalty

window leads to a smaller time window for job scheduling

and hence restricts the decision space, which affects the offline

optimal social welfare more as the offline optimum explores

future information to perform better. We also observe that the

competitive ratio is better with more tenants. In particular,

we find that with global information, the offline optimum can

achieve the perfect EDR reduction (i.e., using tenant energy

only but no diesel usage) when only few tenants participate in

EDR; with more tenants, our mechanism relies less on diesel

while the offline optimum does not change much in this aspect,

leading to closer performance of our mechanism to the offline

optimum. In all cases, the competitive ratio is within 2-3.

In Fig. 4, we evaluate the impact of the following penalty

functions: a1x, a2x2 and a3(ex − 1). Let w̄ = θ(wit′ − t ′)

denote the length of the penalty window. We use a1 = bit′/w̄,

a2 = bit′/(w̄
2), and a3 = bit′/(e

w̄ − 1), such that the penalty

always equals the job’s value at the end of the penalty window

no matter with which penalty function (a job brings no value

if not completed before the end of the penalty window). Note

a1x is the linear function we define in (19). Fig. 4 shows

that the competitive ratios are smallest with the linear penalty

function, then with the square penalty function, and then with

the exponential function. Under our penalty functions (zero

at the start of the penalty window; bit′ at the end of the

window), the same delay from the soft deadline leads to

the largest penalty with the linear penalty function (followed

by the square function, then the exponential function), such

that the job subject to the delay is more likely rejected by

the tenant’s online algorithm, leaving more energy for high-

value future jobs. We also observe that the competitive ratio

is worse with more servers: the offline optimum with future

information can fully utilize the increased capacity, but our

online mechanism cannot be as efficient; hence the welfare

improvement of the offline optimum is larger.

In Fig. 5, we evaluate the impact of different EDR demands,

where “50%, 100%, 200%” are the percentages used to scale

the default EDR energy reduction demand in each frame.

When the EDR demands go up, W in Theorem 4 is smaller

and hence the ratio is larger, which is consistent with our

theoretical result in the theorem. In Fig. 6, we further evaluate

the impact of an estimation of Ui/Li , with the estimated value

varying between 80% and 120% of the actual Ui/Li . We see

that an underestimation leads to a better competitive ratio, and

hence is more desirable than overestimation when running the

online algorithm. We also observe that the more jobs, the better

the competitive ratio is. This could be explained as follows:

with more jobs, their energy demands approach the capacities

of tenants, and there is less room for the offline optimum to

achieve better social welfare by exploiting future information.

2) Comparison with Heuristic Schemes: In Fig. 7 and

Fig. 8, we compare the social welfare and the tenant’s utility

achieved by our online algorithms with the three heuristic

schemes. Fig. 7 shows that our algorithms outperform all the

other schemes, and Fig. 8 shows that the utility of individual

tenants outperforms that achieved by the other schemes as

well. All these reveal that our joint tenant and operator’s

online optimization algorithms, by efficiently incentivizing
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Fig. 5. Competitive ratio with different EDR
demands
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among different schemes

tenants to participate in EDR and optimally deciding tenant’s

job scheduling and cost valuation, improve the global social

welfare and individual tenant’s utility.

3) Breakdown of Energy Reduction: Fig. 9 shows the

breakdown of energy reduction during each EDR frame, as

provided by individual tenants and diesel generation. The sum

of energy reduction amounts in each EDR frame is the overall

energy shedding demand in the corresponding EDR signal.

When the overall EDR energy shedding demand is higher, the

diesel usage tends to be larger, since tenants may not afford

more energy reduction due to job needs. Fig. 10 shows the

diesel saving ratio in each EDR frame, calculated by dividing

the overall tenants’ energy reduction by the EDR demand from

the grid in the frame. We observe that the diesel savings by our

algorithms outperform the offline optimum in most times, with

only 0 to 0.23 of the EDR demand covered by dirty energy.

4) With and Without Participating in EDR: In Fig. 11 and

Fig. 12, we further illustrate the operator cost (i.e., diesel

cost plus payment to tenants) and tenant utility (i.e., job

valuation plus received reward) when the per-timeslot energy

demand of each job at each tenant is scaled by different factors

(such that the sever load is scaled). When the energy demand

of a job is scaled, the job valuation is scaled accordingly.

We also compare results by running our mechanism (“with

EDR”) with those obtained when no EDR auction is in place

(“without EDR”): in the latter, the operator relies only on

diesel generator and tenants schedule jobs according to Alg. 1

without participating in any EDR auction. We observe that

both the operator and the tenants benefit from participating in

our EDR mechanism. The operator cost remains stable while

the tenant utility increases with the increase of energy demand

and valuation of the jobs.

VII. CONCLUDING REMARKS

This work designs a set of online mechanisms, seamlessly

jointing individual online optimization and centralized auction:

where individual tenants execute online algorithms to schedule

jobs, and meanwhile evaluate their energy valuation for partici-

pating EDR; and operator launches a truthful EDR mechanism

to solicit energy from tenants and provides reward, targeting

diesel usage saving and global social welfare maximization.

We consider a general job model including deadline and

penalty function, and handle it by novel primal-dual online op-

timization and compact-exponential technique. We creatively

design a function to reveal the tenant’s energy valuation during

the online job scheduling and achieve a guarantee on global

social welfare under an EDR event. To the best of our knowl-

edge, compared with existing colocation EDR schemes, we

are the first to handle the whole colocation system consisting

tenant scheduling and operator EDR reducing, and we are

also the first to reveal tenant’s inexplicit energy valuation

during a period. We combine a centralized mechanism and

multiple decentralized online algorithms to achieve a global

social welfare guarantee. Trace driven simulations validate

our theoretical analysis and show good performance of our

system (including online algorithm and EDR mechanism), as

compared with offline optimum and different schemes.
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