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Abstract—Modern deep learning models have been exploited
in various domains, including computer vision (CV), natural
language processing (NLP), search and recommendation. In
practical AI clusters, workloads training these models are run
using software frameworks such as TensorFlow, Caffe, PyTorch
and CNTK. One critical issue for efficiently operating practical
AI clouds, is to characterize the computing and data transfer
demands of these workloads, and more importantly, the training
performance given the underlying software framework and hard-
ware configurations. In this paper, we characterize deep learning
training workloads from Platform of Artificial Intelligence (PAI)
in Alibaba. We establish an analytical framework to investi-
gate detailed execution time breakdown of various workloads
using different training architectures, to identify performance
bottleneck. Results show that weight/gradient communication
during training takes almost 62% of the total execution time
among all our workloads on average. The computation part,
involving both GPU computing and memory access, are not the
biggest bottleneck based on collective behavior of the workloads.
We further evaluate attainable performance of the workloads
on various potential software/hardware mappings, and explore
implications on software architecture selection and hardware
configurations. We identify that 60% of PS/Worker workloads can
be potentially sped up when ported to the AllReduce architecture
exploiting the high-speed NVLink for GPU interconnect, and on
average 1.7X speedup can be achieved when Ethernet bandwidth
is upgraded from 25 Gbps to 100 Gbps.

I. INTRODUCTION

Recent years have witnessed the proliferation of deep learn-
ing models used in various domains of the industry, includ-
ing image processing [1], [2], video understanding [3], [4],
language understanding [5], [6], speech recognition [7], [8],
commodity search and recommendation [9], [10], autonomous
drive [11], and various others [12], [13]. Large IT companies
are investing substantially to build large AI clouds/clusters,
equipped with expensive hardware such as GPUs, to run
various deep learning workloads to support their AI-driven
services.

This paper presents a characterization of the workloads from
Platform of Artificial Intelligence (PAI) in Alibaba. PAI is
a ML(machine learning)-as-a-service platform that simplifies
machine learning adoption and makes large-scale AI to meet
the needs of Alibaba internel business. It has also been
shipped to Aliyun as a cloud product to serve public users.
Thousands of training jobs are submitted to PAI on a daily
basis, with different business objectives, and diversified com-
puting, communication and I/O requirements and constraints.

This paper focuses on one critical aspect of these practical
workloads: characterize various resource requirements and
identify performance bottlenecks given software frameworks
and hardware configurations. The observations are intended to
instruct exploration of the workload optimization space, and
guide software and hardware configurations/provisioning, to
improve workload execution performance.

Existing AI workload characterization work mostly focus on
quantitative, precise performance modeling of AI workloads
[14], [15] or building benchmark platforms to measure model
performance [16]–[18] (see Sec. VII for detailed discussions).
We take a different angle, collectively characterizing behavior
of thousands of training jobs in a production cluster, as well as
projecting potential performance gains with different software
architectures and hardware configurations based on a simple
analytical model. Contributions of this work are summarized
as follows:

First, we present a lightweight framework to characterize
the production workloads at the cluster level. We compre-
hensively include not only the basic aspects of computation
and weight communication in training jobs, as considered
in previous studies [16], [19], but also the input data I/O
aspects. Our analysis shows that the data I/O time is non-
negligible, especially for single-node training workloads; for
distributed workloads, input data I/O can potentially become
the performance bottleneck after gradient communication has
been optimized.

Second, our statistical analysis of the cluster workloads
reveals that multi-GPU interconnect rather than the compu-
tation power is more likely the bottleneck under the current
widely adopted training architectures and system configura-
tions. Previous work largely focus on analyzing computation
resource and memory access of AI workloads [16], [20]. Shi
et al. [21] study the communication factor, and make a similar
conclusion that the current DL frameworks, including Tensor-
Flow, CNTK and MXNet, do not perform well in scalability
via Ethernet interconnect; their analysis is mainly focusing
on performance comparison among different DL frameworks.
Instead, we investigate the impact of data traffic on workload
performance by collectively investigating a large number of
training jobs, and explore potential optimization approaches
for communication reduction.

Third, we establish simple analytical performance models
based on the key workload features, aiming at exposing fun-



damental performance bottlenecks. Our analytical modeling is
different from previous characterization methods [16], [20],
[22], most of which adopt actual runtime profiling measure-
ments for bottleneck analysis. Based on the analytical models,
we estimate potential performance gains if the workloads
were running on different software architectures and hardware
configurations. The focus is to investigate which system ar-
chitecture (PS/worker or AllReduce) should be adopted, how
much benefits high-speed multi-GPU interconnect, NVLink,
may bring, and how performance bottlenecks may shift with
different architecture and hardware configurations.

Finally, we conduct detailed analysis of representative deep
learning workloads using both analytical models and testbed
experiments, in the domains of commodity embedding, search
and recommendation, etc. The relevant models are becoming
more and more important in companies related to e-commerce,
social networking and search engines, and in PAI, consume
a large fraction of resources. Results of the case studies
show that differences between estimated performance using
our analytical method and actual measurements are less than
10% on average. Based the basic workload features, we
explore different optimization techniques upon different types
of workloads, including mixed-precision training with Tensor-
Core [23], operation fusion via XLA [24] and also changing
the system architectures. We summarize useful observations
and implications on improving practical deep learning training
workloads.

II. BACKGROUND AND METHODOLOGY

We first present our workload characterization framework.
While the characterization framework is established based on
TensorFlow [25], the methodology applies to other frameworks
[26]–[29] as well.

A. Architecture Components Modeling

(a) Server without NVLink

(b) Server with NVLink

Fig. 1. System Infrastructure.

1) System Infrastructure & Configuration: Figure 1 shows
the basic server configurations in the AI cluster. There are typ-
ically two types of multi-GPU servers, equipped with/without

NVLink [30]. The NVLink technology provides high-speed
interconnect across multiple GPUs with a ‘hybrid mesh grid’
topology, as show in Fig. 1(b), to resolve the bandwidth
bottleneck of PCIe interconnect among the GPUs. Due to cost
issue, servers in some sub-clusters of PAI are equipped with
NVLink, while others are not yet.

The basic server configuration where we collect the work-
load traces is shown in Table I. The servers are interconnected
via bi-directional 25Gbps Ethernet. We will further discuss
the impact of the system configurations through varying the
configuration settings in Sec. III-C.

TABLE I
SYSTEM SETTINGS.

GPU FLOPs 11 TFLOPs
Memory 1 TB / second

Bandwidth
Ethernet 25 Gb / second

PCI 10 GB / second
NVLink 50 GB / second

2) System Architecture: More than 85% computation re-
sources on our cluster are used by distributed training work-
loads. DL training workloads can be parallelized via data
parallelism, model parallelism and also hybrid parallelism
[31]. While model parallelism and hybrid parallelism enable
training neural networks which a single processor cannot
support, they usually require significant human efforts for
efficient model partition. Data parallelism is more model
agnostic, and has been the most widely used paradigm for
parallelizing neural network training [32]. We focus on data-
parallel training jobs in this work.

(a) PS/Worker

(b) AllReduce

Fig. 2. System Architecture.

There are two types of system architectures, centralized
and decentralized, for synchronizing weights/gradients among
distributed training replicas. In a (parameter) centralized archi-
tecture, represented by the parameter server (PS) architecture
[33], one or multiple parameter servers manage the gradient



aggregation, and each worker holds a training replica, pulling
variables from the PSs at the beginning in each training step
and pushing gradients back to them at the end of each step. In
a (parameter) decentralized architecture, the global parameters
are placed replicated or partitioned on all training nodes;
each training node exchanges the gradients via an AllReduce
operation at the end of each training iteration. This architecture
can benefit from the NVIDIA Collective Communications
Library (NCCL) [34] for high-speed multi-node/multi-GPU
communication. In this paper, we have implemented a new
decentralized parallel training strategy called PEARL to han-
dle large embedding weights. The detailed discussions about
PEARL are showed in Sec. IV-C.

Currently, representative deep learning frameworks such as
TensorFlow, Pytorch and MXNet mainly support the decen-
tralized architecture in the replica mode: all model parameters
are replicated to each device and data parallelism is used with
the AllReduce algorithnm. In our cluster, roughly 29% jobs
are running using the PS architecture and less than 1% using
AllReduce, as we adopt AllReduce only after our cluster are
equipped with NVLink.

Fig. 3. Data Flow of A Typical DL Training Step.
3) DL Training Workloads: A DL training job always runs

in an iterative fashion. Fig. 3 shows the basic workflow
in a typical training step. We study impact of placement
of the input data, model computation and weight update
on runtime behavior of a training job. Weight movement
refers to data transfer related to trainable parameters, in-
cluding variable reading/gradient aggregation, respectively, in
forward/backward stages. The data movement involves storage
I/O, i.e., feeding training samples. For GPU workloads, the
main computation is placed on GPUs while the data is in the
CPU memory; therefore, input data I/O involves traffic on the
CPU-GPU interconnect, i.e., PCIe.

Previous workload characterization work [16], [17] mainly
focus on measuring the relationship between model computa-
tion and weight movement traffic, while ignoring the data part.
However, we found that data I/O is a non-negligible factor for
the runtime performance, especially for single-node training
workloads.

We denote the non-distributed training workloads as 1w1g
(single-worker-single-GPU), and classify our distributed train-
ing workloads into four types:

• 1wng: centralized training placed locally within a single
server. Typically the parameters are placed on CPU

while the computation model is replicated across multiple
GPUs.

• PS/Worker: PS training framework with each worker/PS
node being placed on a separate server.

• AllReduce-Local: AllReduce workloads in the local mode,
running on individual servers equipped with NVLink to
exploit the high-speed multi-GPU interconnect.

• AllReduce-Cluster: AllReduce workloads running across
multiple servers.

TABLE II
SUMMARY OF FIVE TYPES OF WORKLOADS IN OUR CLUSTER.

System System Weight
Architecture Configuration Movement

1w1g - Local -
1wng Centralized Local PCIe

PS/Worker Centralized Cluster Ethernet & PCIe
AllReduce-Local Decentralized Local NVLink

AllReduce-Cluster Decentralized Cluster Ethernet & NVLink

Table II summarizes the basic features for each type of
workloads. The common features among different types of
workloads are not listed. For example, for all types model
computation is placed on GPUs and the input data I/O is via
PCIe from CPU to GPUs.

B. Workload Characterization Framework

To analyze workload performance on our cluster, we es-
tablished a workload characterization framework, as shown in
Fig. 4.

1) Runtime Profiling: TensorFlow provides a basic profiling
tool, tf.RunMetadata() [35], which can trace the runtime
information including device placement, operation attributes,
kernel launch & execution time, and tensor attributes (data
type, shape, allocation time and liveness, etc).

We further collect the job meta information, which mainly
includes the resource allocation information in the entire job.
For example, for a distributed training job in the PS/Worker
architecture, run metadata provides behavior of a single com-
putation node (using one GPU device), and the job meta infor-
mation provides supplementary information such as how many
workers the job uses. Data collected through run metadata
and the job meta information constitute the raw data for our
workload analysis.

2) Workload Feature Extraction: We extract workload fea-
tures from the fine-grained information collected, which char-
acterize the execution requirements of each job in computa-
tion, I/O and weight/gradient transfer. Our workload feature
schema is shown in Fig. 4.

3) Performance Breakdown: For a given training job, we
are interested in the composition of its execution time: input
data I/O time (Td), computation time (Tc) and weight/gradient
communication time (Tw). In practice, sophisticated optimiza-
tions are possible to overlap computation and data transfer
[36], [37]. Our goal is not to precisely model the total exe-
cution time, but to characterize the relative time consumption
among computation, input I/O and weight/gradient communi-
cation. Therefore, potential overlap is not considered in our
analysis and summation of all parts is used as the prediction



Fig. 4. Workload Characterization Framework.

of the total execution time for one training iteration/step:
Ttotal = Td + Tc + Tw.
Input data I/O time. Td measures the transport efficiency to
load the input data, computed as Td = Sd

Bd
, where Sd is the

input data size and Bd is the bandwidth for input data transfer.
Weight movement time. Tw can be estimated using Tw =
Sw

Bw
, where Sw denotes the weight size to be transferred across

different model replicas within a training step, and Bw is the
bandwidth of the communication medium.
Computation time. The operations in DL workloads are
divided into compute-bound and memory-bound ones. FLOP
count, denoted as #FLOPs, is adopted to measure the
computation requirements by compute-bound operations (e.g.,
convolution and MatMul). The memory-bound operations,
known as element-wise operations, spend more time on mem-
ory access, and thus the amount of memory access is used
as their resource requirement. Let Smem access represent the
total data size of memory access. The computation time can
be computed as the sum of the two parts:

Tc =
#FLOPs

peak FLOPs
+

Smem access

Bmem access
, (1)

where peak FLOPs and Bmem access denote computation
capacity and memory access bandwidth of the GPU, respec-
tively. In practice, peak FLOPs and Bmem access/Bd/Bw are
usually not fully used by a workload. Therefore, we use 70%
of the actual capacities in the denominators when computing
Tc/Td/Tw in our analysis. How to measure the utilization more
precisely will be part of our future work.

The time percentage of each component is further computed
by dividing the time of each component by the total time, e.g.,
percentage of the input data I/O time is Td

Ttotal
.

III. PERFORMANCE CHARACTERIZATION: COLLECTIVE
BEHAVIORS

In this section, we conduct statistical analysis of tens of
thousands of jobs running on PAI within the period of Dec. 1st,
2018 to Jan. 20th, 2019. The workloads are run on our internal
TensoFlow framework, which is compatible with community
TensorFlow 1.8. Due to the small amount of AllReduce jobs
within this period, we focus on the analysis of 1w1g, 1wng
and PS/Worker workloads from our cluster, and will further
explore how much potential improvement can be achieved if
using the AllReduce-based decentralized architecture.

A. Overview of the Workloads

(a) job-level (b) cNode-level

Fig. 5. Constitution of Workloads.

Composition of different types of workloads is shown in
Fig. 5. Besides job numbers, we also count the numbers of
computation nodes. A computation node, or cNode, is a GPU
device holding a single computation model replica. At job-
level, 1w1g dominates the job types; after taking the cNodes
number in jobs into consideration, PS/Worker jobs consume
the largest portion of resources, up to 81%.

We further show the cumulative distribution function (CDF)
of the cNode number in each type of workloads in Fig. 6(a).
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Fig. 6. Workload Scale Distribution.

For 1w1g workloads, the number of cNode is always 1; 1wng
workloads are placed within a physical server typically, the
number of cNodes is no more than 8; about half of PS/Worker
workloads are placed on more than 8 cNodes, while a small
fraction of jobs on more than 128 cNodes. This can help
explain why there is only 29% workloads using the PS/Worker
architecture, but the percentage of cNodes they consume is up
to 81%.

The amount of computation resources consumed by a job
can reflect the problem scale and may also indicate the
commercial value of the workload. In our cluster, commodity
embedding, search and recommendation workloads have large
training datasets and may exploit hundreds to thousands of
workers to achieve high throughput on the huge training
dataset. Notably, such extra large-scale workloads always
have significant commercial impact on the company’s busi-
ness; however, they are often not included in DL workload
benchmarks [16], [22]. We find that they are non-negligible:
only 0.7% of all workloads have more than 128 cNodes;
however, they consume more than 16% computation resource
on our cluster. In the following Sec. IV, we will explore
the characteristics of such large-scale workloads using two
example jobs in detail.

The model size in a job is a key factor to decide what
system architecture is best for the job. For example, for small
to medium scale models that can fit into the GPU memory
entirely, the AllReduce-Local configuration can be adopted,
with better performance while using less system resources.
When the weight size is large (ranging from tens to hundreds
of GB), PS/Worker architecture should be adopted to partition
the variables among multiple PS nodes (note that only weight-
replica mode is supported in AllReduce implementation in
representation DL frameworks). Fig. 6(b) illustrates the weight
size distribution. We can observe that, within PS/Worker
workloads, some jobs have large weight size, more than 10
GB or even 100 GB; however lots of them have quite small
model sizes. So why do they choose to adopt the PS/Worker
architecture? Can they be further optimized using a better
model placement and system architecture? We will answer
these questions in Sec. III-C.

B. Performance Breakdown

Figure 7 shows the execution time breakdown for various
workloads, including time for input data I/O, weight/gradient
transfer and computation. The cNode-level percentages are
computed as weighted sum of the job-level percentages, with

Fig. 7. Average percentage of different parts of workload execution time.
Left column: job-level, Right column: cNode-level.

the weight being the cNode number of each job over the
overall cNode number. Please note that 1w1g jobs do not need
weight/gradient communication. Figure 8 shows the detailed
CDF of each component of the execution time, among the jobs.
As the mapping from execution time components to hardware
differs in different types of workloads (such as the weight
movement is carried out via different hardware as shown in
Table II), we summarize the overall time breakdown according
to time spent on different hardware components and show the
results in Fig. 8(a).

Input Data I/O. Figure 8 shows that for 1wng and
PS/Worker workloads, input data movement time can be nearly
ignored, approximately about 3% on average, partially because
the weight/gradient transfer time is too large. One thing to note
is that when such workloads are mapped to another system
architecture or using a different hardware configuration, the
bottleneck may shift, exposing the data I/O part, which will
be illustrated in Sec. III-C.

For 1w1g workloads, the data I/O part is about 10% on
average. Especially, there are about 5% of the workloads
spending more than 50% time on input data movement, in
which case the data I/O load on PCIe becomes the bottleneck.

Weight/Gradient Transfer. On average, weight/gradient
communication contributes approximately 22% to the total
execution time. When evaluating the percentage in the cNode-
level, the proportion will be more than 60%, indicating that
workloads with larger cNode numbers are more likely to
suffer from the communication bottleneck. This can also
be shown from the CDF of time breakdown of PS/Worker
workloads in Fig. 8(d). The PS/Worker workloads always
involve large numbers of cNodes with large proportions of
time spent on weight/gradient transfer. Specifically, more
than 40% PS/Worker jobs spend more than 80% time in
communication via Ethernet and/or PCIe. Given the high
communication overhead, a potential improvement to expedite
model training is to upgrade the network facility or to vary
the system configuration by porting the PS/Worker workloads
to AllReduce-Local for leveraging the high communication
efficiency introduced by NVLink.

Computation. Computation can be further decomposed into
memory-bound and compute-bound computation. We can see
that memory-bound computation time is larger than compute-
bound operation time in all types of workloads. This indicates
that the workloads in our cluster involve more memory ac-
cess. In this case, XLA may provide powerful optimization
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Fig. 8. CDF of each component of the execution time among different workloads. Top: CDF at job-level, down: cNode-level.

for element-wise operations (major contribution for memory
access). XLA is a domain-specific compiler for linear alge-
bra that optimizes TensorFlow computation, which can fuse
pipelined operations to reduce the memory overhead.

Additionally, for compute-bound operations, mixed-
precision computation can also be introduced to exploit the
computation power provided by TensorCore [23], which
provides up to 8X higher peak FLOPS on Tesla V100, as
compared to using standard FP32 operations on V100.

C. Exploring the Optimization Space

Previously we showed a holistic execution profile for all
workloads. But how would this execution profile change
under different system settings? For instance, what can we
get by upgrading the network bandwidth from 25Gbps to
100Gbps? Is there any further end-to-end performance speed-
up by boosting the GPU peak computing power to 64 or
256 TFLOPS? Will the performance bottleneck shift to data
movement by increasing GPU memory bandwidth to 4TB
per second? In addition, what if we use AllReduce-Local or
AllReduce-Cluster to run the PS jobs?

Next, we analytically evaluate potential performance im-
pact by switching the PS workloads to AllReduce and by
changing system configurations for different types of work-
loads. Especially, we estimate how the performance will be
like when GPUs are upgraded to more powerful ones, and
interconnections are varied among PCIe (for CPU-GPU/GPU-
GPU communication), Ethernet (for cross-server communi-
cation), and NVLink (for high-speed inter-GPU communi-
cation within a single machine), by changing the values of
Sd/Sw/Smemaccess

/peakFLOPs in the analytical models in
Sec. II-B, respectively. Tallent et al. [38] compared work-
load performance for GPU interconnect with NVLink and
Cirrascale GX8 PCIe, and their results show that DGX-1 with
NVLink has superior performance except on ResNet-type of
workloads. We would like to investigate how much the high-
speed NVLink interconnect can outperform PCIe/Ethernet
with our workloads.

1) Performance Impact of AllReduce: Figure 7 shows that
communication consumes an important portion of the execu-
tion time in PS/Worker workloads, which may partially be
due to the limited bandwidth of Ethernet/PCIe. We estiamte
the performance when PS workloads training small to medium
scale models (that can be fit into the GPU memory entirely) are
ported to the AllReduce architectures, to exploit the high-speed
NVLink. In addition to single node performance, we further

evaluate the overall throughput of a training job, which can
be computed as

throughput =
#cNode

Ttotal
× batch size (2)

Here #cNode
Ttotal

is the number of steps the job can train in
unit time with all its computation nodes. Considering that
batch size remains the same in each computation node, the
throughput is related to 1) single-node performance Ttotal and
2) the number of cNodes #cNode.

We map the PS/Worker workloads to the AllReduce-Local
architecture as follows, since an AllReduce-Local job can have
at most 8 #cNodes: for a PS/Worker job with #cNodes >
8, the number of cNodes is reduced to 8; for those with
#cNodes ≤ 8, the cNode numbers will remain unchanged.
To map the PS/Worker workloads to the AllReduce-Cluster
architecture, we retain the original number of cNodes in
the jobs. In addition to the speedup of all workloads, we
select workloads whose throughput cannot be improved by
AllReduce-Local and show the performance acceleration with
AllReduce-Cluster.
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Fig. 9. Improvement by mapping the workloads to AllReduce.
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Fig. 10. Performance breakdown of PS/Worker workloads after being mapped
to AllReduce-Local.

Fig. 9 shows that by shifting the communication medium
from PCIe/Ethernet to the high speed NVLink interconnect



with AllReduce-Local, most of the workloads can be accel-
erated at different levels. Considering the potential reduc-
tion of #cNode in projection, about 60% workloads still
achieve speedup in the overall throughput. This indicates
that AllReduce-Local architecture equipped with NVLink can
potentially boost performance for most of the PS/Worker
workloads, while at the same time saving system resources
significantly (as the number of cNodes after projection will be
no more than 8, which can be much larger before projection as
shown in Fig. 6(a)). We also note that about 22.6% PS/Worker
workloads cannot benefit from switching to the AllReduce-
Local architecture. With the switching, all workloads experi-
ence acceleration of the weight/gradient transfer, as well as
slow-down of input data I/O, due to the competition for PCIe
bandwidth (as input data are transferred from CPU to multiple
GPUs within a server simultaneously); whether a workload is
sped up or slowed down relies on which part dominates.

To demonstrate the bottleneck shift effect, we further il-
lustrate the execution time breakdown of the AllReduce-Local
workloads in Fig. 10. As compared to the CDF shown in Fig.
8(d), we can observe that the weight/gradient communication
part is vastly reduced, while the other parts, including com-
putation and the data I/O fraction, become more important.
Especially, based on Fig. 10(b), we can see that the portion of
data I/O via PCIe increases the most, indicating the shift of
bottlenecks with different architectures.

When workloads are shifted from PS/Worker to AllReduce-
Cluster, the main speedup is due to the change of
weight/gradient movement medium from Ethernet&PCIe to
Ethernet&NVLink. However, in both sets of configurations,
Ethernet is the main bottleneck for data transfer, and thus
the speedup is quite limited, at most 1.2X based on Table
I. On average, 67.9% workloads can be sped up. Furthermore,
among the workloads that cannot be improved by AllReduce-
Local, about 37.8% can be sped up with AllReduce-Cluster.

TABLE III
HARDWARE CONFIGURATION VARIATIONS

Candidates
Ethernet/Gbps {10, 25, 100}

PCI/GB {10, 50}
GPU peak FLOPs/T {8, 16, 32, 64}

GPU memory/TB {1, 2, 4}
2) Performance Impact of Hardware Evolution: We next

investigate how the workloads perform with different hardware
configurations, as shown in Table III. We show normalized
resource values in Fig. 11 according to the basic settings in
Table I, to facilitate result comparison. For example, the Eth-
ernet bandwidth is normalized using 25Gbps as the basic unit,
and PCIe bandwidth is normalized by 10GB/s. We evaluate
both the original workloads with 1w1g, 1wng and PS/Worker
architectures, and also the mapped AllReduce-Local workloads
from the PS/Worker workloads.

In Fig. 11, the speedup is computed using the performance
achieved with the new configuration of the respective resource.
Different workloads exhibit different behaviors: 1w1g work-
loads are most sensitive to GPU memory bandwidth, 1wng
ones vary most with the variation of PCIe bandwidth, and the

PS/Worker type relies most on the Ethernet bandwidth. The
observations are consistent with the performance breakdown
results in Fig. 7 and Fig. 8. For example, PS/Worker workloads
spend the most time on weight/gradient transfer via Ethernet
and they achieve the highest speedup by improvement of the
Ethernet bandwidth.

Comparison between Fig. 11(c) and (d) shows the bottle-
neck shift effect: performance of PS/Worker workloads varies
most when varying the Ethernet bandwidth, and they are
accelerated quite a bit when the GPU memory bandwidth
improves; when the workloads are projected to AllReduce-
Local, GPU memory bandwidth has the largest impact on
performance.

D. Summary of Key Observations

We make several interesting observations based on the
above:
. On PAI, distributed training jobs dominate resource con-

sumption, with PS/Worker jobs consuming 81% of overall
computation resources.
. 90% jobs train small-scale models, i.e., model size less

than 10GB, while there exist also large-scale models(100-
300GB) which are trained in large-scale distributed mode and
consumes large amounts of resources.
. On average weight/gradient communication takes al-

most 62% of the total execution time for all workloads.
For PS/Worker jobs, more than 40% workloads spend more
than 80% time in weight/gradient communication. As to the
computation portion which is the focus of previous studies
[16], [39], on average it only contributes 35% of the total
training time, with compute-bound part contributing 13% and
memory-bound part 22%.
. Throughput of 60% PS/Worker workloads can be im-

proved when they are ported to the AllReduce-Local archi-
tecture, which can leverage the high-speed NVLink for GPU
interconnect.
. Workloads show different levels of sensitivity for hard-

ware evolution and the performance bottleneck may shift
with the change of system architecture. PS/Worker workloads
are most sensitive to Ethernet bandwidth; after projected to
AllReduce-Local, they benefit the most from the improvement
of GPU memory access bandwidth.

IV. PERFORMANCE CHARACTERIZATION: CASE STUDIES

In this section, we zoom into the training of several produc-
tion DL models in detail, to further detect their performance
bottlenecks and evaluate several optimization techniques.

We run the selected training workloads in an experimental
testbed of 64 servers. Each server is equipped with one
96-core Intel Xeon Platinum 8163 CPU, eight Tesla V100
GPUs, 128GB RAM, 10GB PCIe and 50GB NVLink. The
servers are connected through 25Gbps bi-directional Ethernet.
We extensively investigate data preprocessing time and the
framework overhead (mostly due to CPU runtime scheduling
and GPU kernel launch time), which are not considered in
Sec. III as they are not fundamental resource demands of
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Fig. 11. Speedup with different hardware configurations.

workloads and can be optimized to be ignorable using different
technologies. With our testbed experiments, we will show the
impact of the framework overhead and discuss techniques to
minimize it.

A. Selected Workloads

Table IV summarizes the six models used for our case
studies, selected from different application domains and with
different scales of parameter size.

ResNet50. Residual networks have been proven to be pow-
erful and widely applied in multiple domains [2], [40].

NMT. In our production system, NMT model [41] has been
applied to translation for e-commerce business and others.

Speech. Neural acoustic models [42] have been useful in
speech recognition and widely adopted in commercial acoustic
applications. The model we evaluate is composed of CNN
followed by Long Short-Term Memory (LSTM) architecture
with layer normalization.

BERT. BERT [6] is one of the most commonly used models
for language understanding, and has been applied to a few
business domains in our company.

Multi-Interests. Multi-interest model [43], [44] based rec-
ommender systems are widely used in our service platform,
to capture users’ various interests.

GCN. GCN (Graph Convolutional neural Network) [9],
[10] is based on a well-known graph embedding framework.
The item embeddings are employed to compute pairwise
similarities between all items to facilitate recommendation.

TABLE IV
MODEL SCALE

Domain Dense Embedding System
weights weights Architecture

ResNet50 CV 204MB 0MB AllReduce-Local
NMT Translation 706MB 819MB AllReduce-Local
BERT QA 1GB 284MB AllReduce-Local
Speech Speech recognition 416MB 0MB 1w1g

Multi-Interests Recommender 1.19MB 239.45GB PS/Worker
GCN Recommender 207MB 54GB PEARL1

Table IV summarizes the parameter sizes for the models,
including dense weights and embedding weights [9]. Note that
the parameter sizes include both the trainable variables and the
optimization-related variables, such as momentums [45]. For
models with small weight size (such as ResNet50, NMT and
BERT), all parameters can concurrently reside in the GPU
memory; hence AllReduce-Local architecture is adopted for
their training, to leverage GPU-direct technology (NVLink).
For models with large-scale weights (such as Multi-Interests),
only the PS/Worker architecture is suitable, as the weight size

supported by the current AllReduce frameworks is limited by
single GPU’s memory size.

In our testbed, we train each model using the system archi-
tecture indicated in Table IV. The Speech model evaluated is
only trained on a small dataset, so does not require distributed
training and is trained using 1w1g. For GCN with a large
model size, we will show that the limited Ethernet bandwidth
becomes the bottleneck when PS/worker architecture is used,
and we will design a new system architecture (PEARL) for its
training. Table V shows the basic workload features.

TABLE V
BASIC WORKLOAD FEATURES

Batch
Size

FLOP
count

Memory
access

Memory
Copy(PCIe)

Network
Traffic

Multi-Interests 2048 105.8G 100.4GB 261MB 122MB
ResNet50 64 1.56T 31.9GB 38MB 357MB
NMT 6144 2.5T 101.6GB 22KB 1.33GB
BERT 12 2.1T 107.3GB 46KB 1.5GB
Speech 32 7.9T 20.4GB 804MB 728MB
GCN 512 330.7G 25.79GB 1.2MB 3GB

B. Model Validation
We first compare the execution time breakdown estimated

using the analytical models in Sec. II-B and the actual
measurement results. For example, ResNet50 involves 1.56T
FLOPs, while the peak computing FLOPs provided by Tesla
V100 in our testbed is 15 TFLOPs; thus, the compute-bound
computation time is predicted via 1.56

15∗70% = 0.149s, where
70% is the basic assumption for hardware utilization efficiency.
The actual measured time for this part is 0.126s. Similar
estimation method is used to other parts, including data I/O,
weight/gradient traffic time, etc. The estimated time and the
actual measurement time, and even the time composition, are
used in comparison for model validation.

Fig. 12. Time Breakdown Comparison. Left: actual measurement, right:
estimation.

In Fig. 12, the percentage in the parentheses indicates the
time difference, computed as Tpredict−Tactual

Tactual
, where Tpredict

is the total time we estimated and Tactual is the actual mea-
sured time. The difference is less than 10% in most cases, and



Fig. 13. Performance Breakdown with Different Optimization Techniques.

the estimated time breakdown can quite accurately reflect the
relative portions of computation and data transfer in the entire
execution time. For the Speech model, the difference is more
than 66.7%. Our estimation inaccuracy is due to the actual low
usage of GPU memory access bandwidth at only 3%, much
smaller than the 70% assumption when we do the estimation.
We seek how to further improve memory access efficiency as
a future direction, while adopting possible optimization such
as XLA to reduce the memory-access volume by operation
fusion, to accelerate training of the Speech model.
C. PEARL Architecture

Used in the domain of e-commerce, search and recom-
mendation models have very large and sparse commodity-
embedding parameters. When the model size (ranging from
tens to hundreds of GB) is too large to fit into the GPU mem-
ory entirely, the PS/Worker architecture should be adopted to
partition and store the variables in the CPU memory among
multiple PS nodes. However, synchronizing a large variable
among the PS and GPUs of the workers requires significant
ethernet and PCIe bandwidth, and also consumes many CPU
clocks.

Parameters of such models can be classified into dense and
sparse weights, depending on how their elements are accessed.
Treating the whole model as dense is inefficient, since naı̈vely
communicating all elements of a large sparse variable, even
though only a small subset is accessed, results in relatively
low scalability.

We propose and implement PEARL (Partitioned Embedding
And RepLicated), a new distribution strategy that optimizes the
efficiency of data transfer by taking the sparsity of variables
into account.

As shown in Fig. 14, PEARL applies a hybrid approach
that partitions the large sparse variables and distributes them
in the GPU memory of workers, and adopts the AllReduce
architecture to process dense variables.

All workers synchronize variables via collective communi-
cation operations such as AllReduce and AllGatherv. AllRe-
duce aggregates gradients from all GPUs for the dense
weights, while AllGatherv gathers the embedding weights and
corresponding gradients from all GPUs for the partitioned
weights. The AllGatherv operation is implemented on top of
NCCL [34] primitives such as Broadcast and Reduce, that are
optimized to leverage high-speed inter-GPU NVLink.

Experiments show that PEARL built atop TensorFlow
achieves good scalability in terms of training throughput with

the increase of computation resources, on both dense and
sparse models.

Fig. 14. Architecture of PEARL.

D. Effectiveness of Optimization Techniques

As shown in Fig. 12, behavior of ResNet50, NMT and
BERT is quite similar: 1) the actual time measurements and the
model-based estimation are close, indicating that the hardware
usage efficiency is quite high, around the basic assumption of
70%. 2) the computation part contributes the most to the total
running time, which shows that the communication part of
time is reduced quite well by using NVLink.

We next investigate how to further improve the computation
efficiency. Fig. 13(a) compares the results obtained using the
default setting, with mixed-precision (MP) matrix multiplica-
tion in FP16 [46] enabled (which is available with TensorCore
in Volta architecture, potentially achieving up to 8X speedup
compared to the default multiply-and-addition in FP32), and
with XLA enforced. We observe 1.44X end-to-end speedup
and 2.8X for MatMul when mixed-precision optimization is
in use. With the powerful tool XLA (operation fusion and code
generation), element-wise operation time can be reduced, as
operation fusion exploits GPU’s high-speed cache to reduce
the framework scheduling overhead. We observe 2X speedup
with both MP and XLA in place (1.76X with only XLA).

Fig. 13(b) shows that when using XLA when training the
Speech model, 3.43X speedup can be achieved for element-
wise operations and 1.83X for the end-to-end performance.

Figure 13(c) presents the time breakdown of Multi-Interests
model training under three different training configurations
(batch size and the number of attention layers). With the same
model, performance bottlenecks in case of different configu-
rations vary significantly. Larger batch size is more friendly
to GPU with element-wise operations being the bottleneck,
whose computation time can be reduced by operation fusion
at the runtime. With the third configuration, communication
becomes the bottleneck. A Multi-Interests model has a large



weight size of more than 200GB; the weights cannot be
entirely stored in the GPU memory. Therefore, we cannot
apply the AllReduce architecture to leverage the high-speed
NVLink (since current AllReduce frameworks only support
weight-replica mode). Similarly, GCN has large-scale em-
bedding weights, and PS/Worker framework should be used.
However, large-volume communication via Ethernet and PCIe
may become the bottleneck. In these cases, PEARL is applied,
which can use NVLink to transfer the weights/gradients for
large-scale models, is in need.

With PEARL, the large-scale weights, such as embed-
dings, are partitioned among multiple GPUs, while the vari-
able/gradient aggregation is performed using a PS/Worker like
protocol, using AllGather and ReduceScatter operations [34];
all other small-scale weights are replicated and AllReduce is
used for gradient exchange. Fig. 13(d) presents the time break-
down of GCN model when trained using PEARL. We see that
with the high-speed interconnect, the communication part via
NVLink consumes 25% of the total time. Using our analytical
approach, we can also estimate the time breakdown when
using PS/Worker with Ethernet & PCIe for training, which
is shown in the second bar in Fig. 13(d). The communication
part with Ethernet & PCIe contributes to almost 95% of the
total time, which is much more than what we can achieve with
PEARL.

V. DISCUSSIONS

In our proposed workload characterization framework, there
are several assumptions that may affect the results. In this
section, we discuss the effects when the assumptions shift.

A. Hardware efficiency assumption

As described in Sec. II-B, the hardware efficiencies of com-
putation (GPU) and communication (PCIe/Ethernet/NVLink)
parts are both assumed to be 70%. To find out whether the
assumption is reasonable, we conduct cross-validation in two
ways. First, we measure the hardware efficiency in each case
analyzed in Sec. IV. Next, as it is sophisticated to establish
a system to precisely measure the hardware utility efficiency
for each workload, instead we try to analyze how the results
will shift if the assumption is not followed.

Table VI shows the actual measured hardware efficiency for
each workload. 70% is about the average level. In detail, we
can observe that, the efficiency of GPU computation/ memory
access is a bit higher than 70%, while that of data traffic
(PCIe/Ethernet/NVlink) is lower.

For the collective behavior, we explore how the conclusion
will change if the assumption is violated. Taking PS/Worker
workloads as example, we evaluate how the weight traffic’s
portion in the end-to-end training time varies when the hard-
ware efficiency in computation/communication changes. As
shown in Fig. 15, as expected, when the actual hardware
efficiency in communication (PCIe/Ethernet) is lower than
70%, the PS/Worker workloads will spend more time on
weight traffic, and vice versa. What should be noted is that
even when the hardware efficiency in computation is only

TABLE VI
RESOURCE EFFICIENCY FOR EACH WORKLOAD

GPU
TOPS

GDDR PCIe Network
(Ether-
net/NVLink)

Multi-Interests 32.71% 95% 86.47% 69.21%
ResNet50 82.55% 78.9% 35.1% 49.4%
NMT 82.8% 79.1% 0.1% 35.2%
BERT 81.6% 95% 0.42% 47.1%
Audio 60.86% 3.1% 77.73% 40.5%
GCN 88.2% 69.9% 86.2% 27.35%

25% (quite lower than the 70% assumption), the PS/Worker
workloads still spend more time on weight traffic on average.

To give a precise estimation on the fundamental bottle-
neck in the cluster using our proposed framework, it is still
important to establish a better methodology to measure the
utilization efficiency of each hardware component, which will
be an important direction in our future work.
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Fig. 15. Shift Effect in Weight Traffic Percentage When Hardware Efficiency
Changes.

B. Computation/communication overlap assumption

There are various ways to overlap computation and data
transfer [36], [37] in DL workloads. Although the purpose of
this work is to expose the fundamental performance bottle-
necks, which will not change due to the overlap issue, several
speedup results may change if the non-overlap assumption is
violated. As how to achieve computation and communication
overlap is still an open question in deep learning design, it
is not easy to quantify the actual overlap potential for each
workload. Instead, we use an ideal overlap case to give an
estimation for comparison. In this case, the total time changes
from Ttotal = Td + Tc + Tw (used in our framework in Sec.
II-B) to Ttotal = max{Td, Tc, Tw}.

Fig. 16 shows the comparison results of PS/Worker work-
loads under different overlap states: totally none-overlap VS
ideal-overlap. It can be observed that when computation
and communication ideally overlap, the weight traffic part is
heavily exposed as the performance bottleneck, as it consumes
the longest time among {Td, Tc, Tw}. As to the speedup anal-
ysis when mapping PS/Worker workloads to the AllReduce-
Local architecture, we can observe that the ratio of sped-up
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Fig. 16. Shift Effect Under Different Overlap States. Left: weight traffic
percent, right: speedup when mapping to AllReduce-Local

workloads remains similar as the none-overlap results, 22.6%
VS 20.2%. It can be noted that there are 23.4% workloads
achieving 21X speedup, which are actually the workloads
bound by the weight traffic part either before or after the
architecture projection. For such workloads, the speedup ratio
can be computed as:

Sw

25Gb×70% + Sw

10GB×70%
Sw

10GB×70%

= 21 (3)

where Sw denotes the weight traffic volume.
The comparison further illustrates that the assumption of

computation/communication overlap may affect the detailed
analytical results, such as speedup ratio or running time
constitution; however, it does not change the conclusion as
to what is the fundamental bottleneck for the workloads in
our cluster. At last, it is worth noting that the purpose of
our analysis framework is not to precisely predict practical
performance of workloads, but to expose the fundamental
bottlenecks in hardware components or system architecture
for collective behavior of workloads in our cluster.

VI. SYSTEM IMPLICATIONS

Based on previous results, we now summarize important
implications on how to optimize training frameworks (e.g.
TensorFlow) and how to properly provision system resources.

A. Implications on Framework Optimization

1) System Architecture: In the PAI cluster, we identified
plenty of DL models that are not suitable to be trained
using either PS/Worker or AllReduce, e.g., models with one
large sparse embedding and many relatively small dense
weights (such as GCN in Section IV). The weight sizes
within such workloads are too large to be resident in GPU
memory. On the other hand, such workloads always incur
heavy weight/gradient traffic, for which the Ethernet connec-
tions with limited bandwidth will be the bottleneck. For such
workloads, we proposed a new strategy PEARL, as inspired
by our characterization of collective behavior in the cluster,
catering to the resource requirements of such workloads.

Our simple analytical model can predict the time breakdown
of jobs on different architectures, facilitating system archi-
tecture selection. Though our model does not take potential
framework overhead into consideration, experiments show
that its estimation is quite close to real measurements for

representative workloads. A more comprehensive prediction
method is one of our future directions to explore.

2) Compilation: Operation Fusion and Code Generation:
Statistical results in Sec. III show that, within the computation
part, the time spent on memory-bound operations is no less
than that of computation-bound ones. TensorFlow XLA is a
solid compilation framework for operation fusion and code
generation to reduce the memory accesses. We have shown
that XLA is powerful enough to handle practical training
workloads. As shown in Sec. IV, different workloads have
drastically different computation profiles. For ResNet50, NMT
and BERT, memory-access time takes at most 40% of ex-
ecution time. In large-scale recommendation models (Multi-
Interests, GCN), it takes up to 60%. For all these workloads,
compilation using XLA is helpful in reducing CPU launch
overhead and improving GPU computation efficiency.

XLA is known to have several limitations. For example, it
cannot deal well with workloads with dynamic shapes, the op-
eration fusion algorithm is designed as rule-based and cannot
be generalized well, the code generation mechanism still needs
to be improved to generate highly optimized kernels [47].
The community is calling for a powerful, robust compilation
infrastructure that is able to handle rapidly changing training
workloads in the future.

3) Framework Overhead: Frameworks like TensorFlow use
a flexible and general enough CPU runtime to do computation
scheduling. If the main part of the computation graph consists
of very fine-grained operations, CPU scheduling may incur
non-negligible overheads, especially in busy CPU/GPU clus-
ters with a mixture of workloads deployed.

Most of our workloads have regular computation structures,
and carry out repetitive iterations during the training process.
Through compilation (discussed above), it is possible to allow
a larger portion of the computation graph to be scheduled to
the GPU altogether.

B. Implications on Hardware Configurations

1) Interconnect Bandwidth: There are two types of inter-
connects for distributed training in our cluster: NVLink and
Ethernet, with notable gap w.r.t. the communication band-
width. We have shown the performance gain of high speed
interconnects for weight/gradient communication in numerous
medium scale (<50GB) workloads. For large models (e.g.
Multi-Interests model in Sec. IV), weight/gradient commu-
nication over the Ethernet can take up to more than 50%
of execution time per iteration. High-bandwidth interconnects
will definitely help such communication-bound workloads, as
shown in Fig. 11.

2) PCIe Bandwidth: In our system settings, PCIe is mainly
dedicated for data transfer between CPU and GPU. In dis-
tributed training, PCIe traffic normally consists of two por-
tions: sample data input, and weight/gradient communication.
As shown in Sec. III, in most workloads, the sample input
volume is negligible, and weight/gradient transfer is usually
bound by network rather than PCIe.



However, this does not mean that PCIe bandwidth is less
important for performance. As shown in Fig. 10, the bottleneck
may be shifted to PCIe after the network bandwidth usage
is optimized. Additionally, high-speed PCIe interconnects can
enable exciting new optimization opportunities for some mis-
sion critical applications. The basic idea is to push as much
work as possible, from CPU to GPU, in order to allow more
operations in the computation graph to be processed in GPU
as a whole and minimize CPU intervention.

3) GPU Computing Power and Memory Bandwidth: Com-
puting power and memory bandwidth of GPUs are essential for
DL workloads. Important as they are, we have shown in Sec.
III that weight/gradient communication renders the biggest
performance bottleneck in our cluster. More careful model
distribution and system architecture selection are necessary to
mitigate communication overhead in order to fully exploit the
computation power.

VII. RELATED WORK

There have recently been several studies conducting cluster-
level machine learning workload characterization, aiming to
improve resource utilization and workload performance in
the ML cluster [20], [48], [49]. Park et al. [20] analyze the
inference workloads in a Facebook data center, pointing out
limitations of the current ML infrastructure [19] and providing
suggestions for future general-purpose/accelerated inference
hardware. Jeon et al. [48] present a detailed workload char-
acterization of a two-month trace from a multi-tenant GPU
cluster, and focused on resource utilization and scheduling.

Some other work aim to establish the performance bench-
mark [16], [18], [22], [50]. Fathom [16] establishes a set
of reference implementation for eight archetypal DL jobs.
Guignard et al. [51] adopt the eight types of workloads from
Fathom to evaluate the performance of the IBM “Minsky”
platform. A micro-benchmark is designed in [52] to measure
reads in TensorFlow and a burst buffer is implemented to
improve the I/O performance. Gao et al. [18], [50] establish a
proxy benchmark for AI workloads by identifying eight data
motifs.

Several studies have focused on predicting the performance
of a job using a mathematical model [15], [39], [53], [54].
PALEO [39] establishes a performance model by extracting
the basic computational requirements and mapping them to a
specific point within the design space of software, hardware
and communication strategies. DeepProf [15] is a tool that can
automatically process GPU traces and generate performance
reports for deep learning applications, which can perform diag-
nosis to identify the runtime bottleneck. The above two work
both aim to break down the execution time of a workload, with
the former analyzing from the theoretical perspective and the
latter using runtime traces. Ernest [53] builds a performance
model from the workload observation on small datasets and
predicts the performance on larger datasets in bigger clusters.
Justus et al. [55] predict execution time of one part in the
entire DL network; execution time of the sub-graph constitutes
a basic unit for predicting the end-to-end performance.

Different from the existing work that aim at precisely pre-
dicting practical performance of a given workload, our work
focuses on characterization of currently deployed jobs on our
large cluster and extracting their fundamental resource require-
ments, in order to expose the potential hardware/software opti-
mization directions at the cluster scale. From our observations,
we extract fundamental execution bottlenecks and identify
latent, useful directions for training framework optimization
or system configuration improvement.

VIII. CONCLUSION

This paper presents a characterization framework to enable
performance analysis over diversified production workloads
running on Alibaba-PAI. The framework features a lightweight
technique to collect runtime profiling metrics of workloads.
Based on collected job statistics, we build a workload model
to extract key features and project them to different system
configurations in order to analytically predict the perfor-
mance behavior. We characterize collective behavior of a large
volume of workloads, as well as zoom into representative
workloads for investigating impact of different system archi-
tectures and hardware configurations. We discuss potential
technical directions for improving training performance of the
workloads. As future work, we seek to characterize inference
workloads in our cluster using a similar methodology.

REFERENCES

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances
in neural information processing systems, pages 1097–1105, 2012.

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity
mappings in deep residual networks. In European conference on
computer vision, pages 630–645. Springer, 2016.

[3] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung,
Rahul Sukthankar, and Li Fei-Fei. Large-scale video classification with
convolutional neural networks. In Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition, pages 1725–1732, 2014.

[4] Karen Simonyan and Andrew Zisserman. Two-stream convolutional
networks for action recognition in videos. In Advances in neural
information processing systems, pages 568–576, 2014.

[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural
machine translation by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473, 2014.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805, 2018.

[7] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech
recognition with deep recurrent neural networks. In 2013 IEEE inter-
national conference on acoustics, speech and signal processing, pages
6645–6649. IEEE, 2013.

[8] Jan K Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun
Cho, and Yoshua Bengio. Attention-based models for speech recog-
nition. In Advances in neural information processing systems, pages
577–585, 2015.

[9] Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang, Binqiang Zhao,
and Dik Lun Lee. Billion-scale commodity embedding for e-commerce
recommendation in alibaba. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
pages 839–848. ACM, 2018.

[10] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L
Hamilton, and Jure Leskovec. Graph convolutional neural networks
for web-scale recommender systems. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, pages 974–983. ACM, 2018.



[11] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. Deepdriv-
ing: Learning affordance for direct perception in autonomous driving. In
Proceedings of the IEEE International Conference on Computer Vision,
pages 2722–2730, 2015.

[12] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou,
Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. nature, 529(7587):484, 2016.

[13] Barret Zoph and Quoc V Le. Neural architecture search with reinforce-
ment learning. arXiv preprint arXiv:1611.01578, 2016.

[14] Shaohuai Shi, Qiang Wang, Pengfei Xu, and Xiaowen Chu. Bench-
marking state-of-the-art deep learning software tools. In 2016 7th
International Conference on Cloud Computing and Big Data (CCBD),
pages 99–104. IEEE, 2016.

[15] Jiazhen Gu, Huan Liu, Yangfan Zhou, and Xin Wang. Deepprof:
Performance analysis for deep learning applications via mining gpu
execution patterns. arXiv preprint arXiv:1707.03750, 2017.

[16] Robert Adolf, Saketh Rama, Brandon Reagen, Gu-Yeon Wei, and
David Brooks. Fathom: Reference workloads for modern deep learning
methods. In 2016 IEEE International Symposium on Workload Charac-
terization (IISWC), pages 1–10. IEEE, 2016.

[17] Ang Li, Shuaiwen Leon Song, Jieyang Chen, Xu Liu, Nathan Tallent,
and Kevin Barker. Tartan: Evaluating modern gpu interconnect via a
multi-gpu benchmark suite. In 2018 IEEE International Symposium on
Workload Characterization (IISWC), pages 191–202. IEEE, 2018.

[18] Wanling Gao, Jianfeng Zhan, Lei Wang, Chunjie Luo, Zhen Jia, Daoyi
Zheng, Chen Zheng, Xiwen He, Hainan Ye, Haibin Wang, et al. Data
motif-based proxy benchmarks for big data and ai workloads. In 2018
IEEE International Symposium on Workload Characterization (IISWC),
pages 48–58. IEEE, 2018.

[19] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku
Diril, Dmytro Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia,
Aditya Kalro, et al. Applied machine learning at facebook: a datacenter
infrastructure perspective. In 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA), pages 620–629.
IEEE, 2018.

[20] Jongsoo Park, Maxim Naumov, Protonu Basu, Summer Deng, Aravind
Kalaiah, Daya Khudia, James Law, Parth Malani, Andrey Malevich,
Satish Nadathur, et al. Deep learning inference in facebook data centers:
Characterization, performance optimizations and hardware implications.
arXiv preprint arXiv:1811.09886, 2018.

[21] Shaohuai Shi, Qiang Wang, and Xiaowen Chu. Performance modeling
and evaluation of distributed deep learning frameworks on gpus. In 2018
IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing,
16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on
Big Data Intelligence and Computing and Cyber Science and Technol-
ogy Congress (DASC/PiCom/DataCom/CyberSciTech), pages 949–957.
IEEE, 2018.

[22] Hongyu Zhu, Mohamed Akrout, Bojian Zheng, Andrew Pelegris, Anand
Jayarajan, Amar Phanishayee, Bianca Schroeder, and Gennady Pekhi-
menko. Benchmarking and analyzing deep neural network training.
In 2018 IEEE International Symposium on Workload Characterization
(IISWC), pages 88–100. IEEE, 2018.

[23] NVIDIA. Nvidia tesla v100 gpu architecture. https://images.nvidia.com/
content/volta-architecture/pdf/volta-architecture-whitepaper.pdf, 2017.

[24] The XLA Team. Xla – tensorflow compiled. post in the
google developers blog. https://developers.googleblog.com/2017/03/
xla-tensorflow-compiled.html, 2017.

[25] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. Tensorflow: A system for large-scale machine
learning. In 12th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 16), pages 265–283, 2016.

[26] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe:
Convolutional architecture for fast feature embedding. In Proceedings
of the 22nd ACM international conference on Multimedia, pages 675–
678. ACM, 2014.

[27] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga,
and Adam Lerer. Automatic differentiation in pytorch. 2017.

[28] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,
Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. Mxnet:

A flexible and efficient machine learning library for heterogeneous
distributed systems. arXiv preprint arXiv:1512.01274, 2015.

[29] Dong Yu, Adam Eversole, Mike Seltzer, Kaisheng Yao, Zhiheng Huang,
Brian Guenter, Oleksii Kuchaiev, Yu Zhang, Frank Seide, Huaming
Wang, et al. An introduction to computational networks and the
computational network toolkit. Microsoft Technical Report MSR-TR-
2014–112, 2014.

[30] Nvlink. https://www.nvidia.com/en-gb/data-center/nvlink/.
[31] Ruben Mayer and Hans-Arno Jacobsen. Scalable deep learning on

distributed infrastructures: Challenges, techniques and tools. arXiv
preprint arXiv:1903.11314, 2019.

[32] Christopher J Shallue, Jaehoon Lee, Joe Antognini, Jascha Sohl-
Dickstein, Roy Frostig, and George E Dahl. Measuring the ef-
fects of data parallelism on neural network training. arXiv preprint
arXiv:1811.03600, 2018.

[33] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr
Ahmed, Vanja Josifovski, James Long, Eugene J Shekita, and Bor-
Yiing Su. Scaling distributed machine learning with the parameter
server. In 11th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 14), pages 583–598, 2014.

[34] NVIDIA. Nvidia collective communications library. https://github.com/
NVIDIA/nccl, May 2018.

[35] Peter Goldsborough. A tour of tensorflow. arXiv preprint
arXiv:1610.01178, 2016.

[36] Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong Ho, Xiaodan
Liang, Zhiting Hu, Jinliang Wei, Pengtao Xie, and Eric P Xing.
Poseidon: An efficient communication architecture for distributed deep
learning on {GPU} clusters. In 2017 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 17), pages 181–193, 2017.

[37] Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and Roy H Campbell.
Tictac: Accelerating distributed deep learning with communication
scheduling. arXiv preprint arXiv:1803.03288, 2018.

[38] Nathan R Tallent, Nitin A Gawande, Charles Siegel, Abhinav Vishnu,
and Adolfy Hoisie. Evaluating on-node gpu interconnects for deep learn-
ing workloads. In International Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems,
pages 3–21. Springer, 2017.

[39] Hang Qi, Evan R Sparks, and Ameet Talwalkar. Paleo: A performance
model for deep neural networks. 2016.

[40] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object detection
via region-based fully convolutional networks. In Advances in neural
information processing systems, pages 379–387, 2016.

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In Advances in neural information processing systems,
pages 5998–6008, 2017.

[42] Taesup Kim, Inchul Song, and Yoshua Bengio. Dynamic layer nor-
malization for adaptive neural acoustic modeling in speech recognition.
arXiv preprint arXiv:1707.06065, 2017.

[43] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for
youtube recommendations. In Proceedings of the 10th ACM Conference
on Recommender Systems, pages 191–198. ACM, 2016.

[44] Jason Weston, Ron J Weiss, and Hector Yee. Nonlinear latent factor-
ization by embedding multiple user interests. In Proceedings of the 7th
ACM Conference on Recommender Systems, pages 65–68. ACM, 2013.

[45] Sebastian Ruder. An overview of gradient descent optimization algo-
rithms. arXiv preprint arXiv:1609.04747, 2016.

[46] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos,
Erich Elsen, David Garcia, Boris Ginsburg, Michael Houston, Oleksii
Kuchaiev, Ganesh Venkatesh, et al. Mixed precision training. arXiv
preprint arXiv:1710.03740, 2017.

[47] Guoping Long, Jun Yang, Kai Zhu, and Wei Lin. Fusionstitching: Deep
fusion and code generation for tensorflow computations on gpus. arXiv
preprint arXiv:1811.05213, 2018.

[48] Myeongjae Jeon, Shivaram Venkataraman, Junjie Qian, Amar Phan-
ishayee, Wencong Xiao, and Fan Yang. Multi-tenant gpu clusters for
deep learning workloads: Analysis and implications. Technical report,
MSR-TR-2018, 2018.

[49] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus
Fontoura, and Ricardo Bianchini. Resource central: Understanding and
predicting workloads for improved resource management in large cloud
platforms. In Proceedings of the 26th Symposium on Operating Systems
Principles, pages 153–167. ACM, 2017.



[50] Wanling Gao, Jianfeng Zhan, Lei Wang, Chunjie Luo, Daoyi Zheng, Fei
Tang, Biwei Xie, Chen Zheng, Xu Wen, Xiwen He, et al. Data motifs:
a lens towards fully understanding big data and ai workloads. arXiv
preprint arXiv:1808.08512, 2018.

[51] Mauricio Guignard, Marcelo Schild, Carlos S Bederián, Nicolás
Wolovick, and Augusto J Vega. Performance characterization of state-
of-the-art deep learning workloads on an ibm” minsky” platform. In
Proceedings of the 51st Hawaii International Conference on System
Sciences, 2018.

[52] Steven WD Chien, Stefano Markidis, Chaitanya Prasad Sishtla, Luis
Santos, Pawel Herman, Sai Narasimhamurthy, and Erwin Laure. Char-
acterizing deep-learning i/o workloads in tensorflow. arXiv preprint
arXiv:1810.03035, 2018.

[53] Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin
Recht, and Ion Stoica. Ernest: efficient performance prediction for large-
scale advanced analytics. In 13th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 16), pages 363–378, 2016.

[54] Ali Bakhoda, George L Yuan, Wilson WL Fung, Henry Wong, and Tor M
Aamodt. Analyzing cuda workloads using a detailed gpu simulator.
In 2009 IEEE International Symposium on Performance Analysis of
Systems and Software, pages 163–174. IEEE, 2009.

[55] Daniel Justus, John Brennan, Stephen Bonner, and Andrew Stephen
McGough. Predicting the computational cost of deep learning models.
In 2018 IEEE International Conference on Big Data (Big Data), pages
3873–3882. IEEE, 2018.


