
Hierarchical Virtual Machine Placement
in Modular Data Centers

Linquan Zhang∗, Xunrui Yin∗, Zongpeng Li∗, Chuan Wu†
∗Department of Computer Science, University of Calgary, {linqzhan, xunyin, zongpeng}@ucalgary.ca

†Department of Computer Science, The University of Hong Kong, cwu@cs.hku.hk

Abstract—This work studies how to minimize communication
cost for placing Virtual Machines (VMs) in a modular data
center. We consider a number of cooperative VMs implementing
the same job, with known inter-VM communication patterns.
The modular data center has a two-layer network structure,
where computing pods constitute basic building blocks and are
connected by a core network. At the core network layer, we design
spectral clustering algorithms to partition VMs into computing
pods, minimizing inter-pod communication cost. We then further
apply an SDP relaxation approach to decide the VM placement
within each computing pod, targeting both load balancing among
physical servers and inter-server communication cost minimiza-
tion. Extensive simulations are conducted to validate the efficacy
of the proposed hierarchical VM placement scheme.

I. INTRODUCTION

The market of cloud computing is experiencing a rapid
growth rate, as cloud services become an indispensable part
of digital daily lives. As exemplified by Amazon EC2 and
Windows Azure [1], a cloud provider organizes a large pool
of shared resources such as CPU, memory, bandwidth and
storage, to cater for the increasing yet dynamic needs of
computing resource from users in a pay-as-you-go fashion.

Data centers are the critical infrastructure that physically
hosts cloud computing resources and services. Traditional data
centers often have a complicated structure, high operating and
management costs, and poor flexibility and scalability. The
modular data center architecture is proposed to address these
drawbacks, simplifying data center management and offering
high scalability [2]. A typical modular data center employs
computing pods as a basic building block. Each pod consists
of blade servers, storage area network arrays and switches [2],
[3]. Data center operators can purchase additional computing
pods and connect them to the core network in the data center
to expand computing resources on the fly, almost in a plug-
and-play fashion.

Virtualization technologies, such as Xen and KVM, help
cloud providers allocate resources to users by packing them
into virtual machines (VMs) on demand, ensuring isolation
and high utilization of resources. As a key enabling technology
of cloud computing, virtualization also leads to a number of
challenges. For instance, recent studies have focused on i) the
impact of virtualization overhead [4]; ii) efficient allocation
mechanisms for VMs [5], [6]; iii) energy efficiency and VM
consolidation [7]. In this work, we study cost-aware VM
placement under load balancing consideration in a cloud,

leveraging algorithmic tools from spectral graph theory and
Semidefinite Programming (SDP).

A cloud user often needs dozens of VMs for concurrent
threads (e.g., front end, central processing, database) to work
in collaboration on a sophisticated computing task (e.g., on-
line games [8], enterprise applications [9], and MapReduce
applications [10]). Inter-VM communication is often important
for such collaborative job execution. The quality of inter-
VM communication may have a significant impact on Quality
of Service and user experience, depending on the concrete
deployment of VMs and topology of the data center. The
communication cost of a link in the data center depends on
the aggregate traffic transmitted through that link as well as
the latency of the link. For example, links at the core network
layer have higher latency than those within one computing
pod. Minimizing the total communication cost helps improve
throughput and reduce latency. Our first goal in VM placement
is inter-VM communication cost minimization.

Furthermore, given a fixed number of servers, balanced
placement of VMs among physical servers is desirable, since
it can improve resource utilization and VM performance.
Balanced placement does not contradict the VM consolidation
consideration from the energy perspective. Because only a
few machines, not all machines, are turned on to balance the
VM workload. Carefully choosing a number of machines that
are ON can improve both resource utilization and computing
performance. A simple solution that places all VMs into one
server may minimize the communication cost among VMs,
but can also saturate that machine, making all VMs extremely
slow due to the limited resource capacity of a single server in
the modular data center. Our second goal in VM placement is
inter-server load balancing. Combining both goals, we focus
on the problem of placing VMs most evenly into given servers
while minimizing the communication cost among all VMs.

This work focuses on a two-layer data center network as
shown in Fig. 1. Computing pods are inter-connected through
the core network layer. Inter-pod traffic cost at the core
network is higher than the intra-pod counterpart. A large-scale
computing task may involve collaboration among tens of even
hundreds of VM instances [10], and a single physical machine
or even a computing pod is not feasible in hosting all of them.
VMs are hence to be distributed across the data center. We
approach such VM placement in two steps. First, a tailored
VM placement scheme based on spectral graph theory is
designed for distributing VMs into different computing pods,

2015 IEEE 8th International Conference on Cloud Computing

2159-6190/15 $31.00 © 2015 IEEE

DOI 10.1109/CLOUD.2015.32

171

!!!

"#$ "#$ %&'(#)(*+&',#-./('

0*('2(*

!!!
!!!

3.*.#%(2*('
45#$ 45#$ 45#$

%&678*92:#
;&<

Fig. 1. An illustration of a two-layer network in a modular data center
consisting of computing pods.

while minimizing the communication cost among computing
pods. Eigenvalues and eigenvectors of the VM communication
graph, which is an abstraction of the inter-VM traffic pattern,
are calculated and utilized to partition VM instances.

The second step focuses on intra-pod VM placement. We
aim to minimize inter-server communication cost among VM
instances in the same pod, while simultaneously balancing the
VM loads distributed to each server. We propose a transfor-
mation that converts a weighted VM into a subgraph of unit-
weight VMs. An SDP based approach is then introduced to
capture the essence of the underlying optimization, yielding a
rough solution which will be further refined via a randomized
algorithm. The SDP has an exponential number of constraints,
and we propose two alternative efficient solutions to it. The
first employs the ellipsoid method to solve the SDP in poly-
nomial time, aided by a separation oracle. The second method
reduces the number of constraints from exponential to poly-
nomial by leveraging optimization results from the spectral
partitioning algorithm in the first layer. The resulting algorithm
is rigorously analyzed, and is shown to guarantee desired load
balancing with provable approximation in communication cost
minimization. Extensive simulation studies are conducted to
evaluate the efficacy of the algorithms. While verifying inter-
server load balancing, they also demonstrate up to 80% cost
savings compared with a randomized partitioning benchmark
algorithm, and up to 40% cost savings compared with an
existing partition algorithm [11].

In the rest of the paper, we discuss related work in Sec. II,
and introduce the system model in Sec. III. Sec. IV and Sec. V
present the two-layer VM placement algorithms. Sec. VI
presents simulation studies, and Sec. VII concludes the paper.

II. PREVIOUS LITERATURE

Biran et al. [12] study the problem of placing VMs into
physical hosts, with consideration of traffic demands, CPU
and memory requirements. A heuristic algorithm is presented,
without theoretical performance guarantee. Jiang et al. [13]
study the joint VM placement and routing problem in data
centers, and propose an online algorithm for handling dynamic
traffic and requests. Meng et al., [11] study a problem of
minimizing total communication distance among VMs. They
improve the network scalability by using traffic-aware VM

placement. A placement system, Volley [14], is proposed to
handle the VM placement problem in geo-distributed data
centers. Jayasinghe et al. [15] study structural constraint-aware
VM placement for IaaS Clouds, proposing heuristic algorithms
without theoretical performance guarantee. Our VM placement
problem has a two-layer structure, and our algorithm design
techniques (spectral graph theory and SDP relaxation) are
different from these previous studies.

Hajjat et al. [9] study migrating enterprise applications to
cloud platforms. Due to privacy and security concerns, only
some insensitive applications are hosted in cloud while others
have to be kept in local servers. However their solution does
not consider the inner structure of the cloud. Pujol et al.
[16] propose a social partitioning and replication middle-ware
helping scaling online social networks. Yet they do not take
the structure of the data center into consideration either.

A substantial body of literature exists on network archi-
tecture design in modular data centers. For example, BCube
[17] is proposed to improve the network performance inside
a container, which is a building block for a modular data
center. MDCube [18] aims at enhancing the performance of
the interconnection among these containers.

Using eigenvalues of a graph’s representation matrix for
graph partitioning has been studied in theoretical computer
science [19]. Such spectral partitioning (the eigenvalues form
the spectrum of the graph) is relatively easy to implement, and
may result in high quality partitions in practice, justifying a
computation overhead in finding the eigenvalues and eigen-
vectors [20]. The eigenvalue approach pays little attention to
balanced partitioning, focusing on merely cut minimization.
Van Driessche et al. [21] adopt spectral partitioning to balance
workload among multiple processors and to minimize inter-
processor communication. This work resorts to SDP instead
of spectral graph theory for load balancing.

III. SYSTEM MODEL AND PRELIMINARIES

Consider a modular data center with computing pods each
consisting of a number of servers. Let S = {s1, ..., sM} be
the set of servers in the data center, where si is the i-th
server. Pj denotes the j-th computing pod. We use a subset
S ′ ⊂ ∪m

j=1Pj ⊆ S , i.e., servers in m computing pods, to
serve all VM demands of the user. Let G = (V,E) be an
undirected communication graph representing a computing
and communication structure with |V | VMs in a cloud. Each
vertex represents a VM. There is an edge euv = (u, v) ∈ E if
VMs u and v communicate with each other. Let wuv represent
the traffic volume between VMs u and v (wuv = 0 if VM u
does not communicate with VM v), obtained from statistical
data or empirical estimation. The communication cost is linear
in wuv , is βpwuv within one computing pod, and is βdwuv

across computing pods. We have βd > βp. Furthermore, when
two VMs reside on the same physical server, communication
cost between them is negligible and is assumed as zero.

VM instances in the cloud are heterogeneous in nature [1],
[5]. VM i has an integer weight ci, abstracted from its con-
figurations. A large ci represents a high-end VM consuming

172

a large amount of resources. A unit VM has a weight of 1.
Suppose we want to partition the VMs into m computing
pods, P1, · · · , Pm, among which the communication cost is to
be minimized. We later discuss how to choose an appropriate
value for m in Sec. IV. Let Vj be the set of VMs assigned to
pod Pj . We further divide VMs Vj in Pj to its physical servers
such that each server contains less than (1 + ϵ)

∑
i∈Vj

ci/mj

VMs. Here ϵ ≥ 0; mj is the number of physical servers
available to host the VMs, and can be determined by i)
capacity of each server, ii) total weighted sum

∑
i∈Vj

ci in pod
Pj . Carefully chosen mj can improve both resource utilization
and VM performance.

A binary variable xs
u is introduced to indicate whether VM u

is placed into server s or not. The communication cost among
computing pods Cex is:

Cex =
∑

s∈Pj ̸=Pj′∋s′

∑

(u,v)∈E

βdwuvx
s
ux

s′
v /2 (1)

The term is divided by 2 since each edge is counted twice.
Similarly, the communication cost within one pod Cin is:

Cin =
∑

j

∑

s,s′∈Pj ,s ̸=s′

∑

(u,v)∈E

βpwuvx
s
ux

s′
v /2 (2)

Targeting a balanced placement within a computing pod, we
put at most (1 + ϵ)

∑
i∈Vj

ci/mj VMs into one server in pod
Pj . This leads to the following balancing constraint:

∑

u∈Vj

cux
s
u ≤ (1 + ϵ)

∑

i∈Vj

ci/mj , ∀s ∈ S ′ (3)

To ensure that a VM is placed in one server only, we have:
∑

s∈S′

xs
u = 1, ∀u ∈ V (4)

In conclusion, the optimization problem is shown as follows:

minimize Cex + Cin

subject to (3), (4) and xs
u ∈ {0, 1}, ∀u ∈ V, s ∈ S ′.

(5)

Since the graph partitioning problem is NP-hard [22], we
resort to efficient approximation algorithms for (5).

IV. A SPECTRAL PARTITIONING ALGORITHM FOR THE
FIRST LAYER

We now study how to place VMs into different computing
pods while minimizing traffic in the core network layer. We
first review basic concepts from spectral graph theory.
The Adjacency matrix A = (auv) for a weighted graph is
defined as:

auv =

{
wuv if (u, v) ∈ E
0 otherwise (6)

The degree matrix D = (duv) for a graph is defined as:

duv =

{ ∑
z∈V wuz if u = v
0 otherwise (7)

The Laplacian matrix L = (luv) is defined as L = D −A.
By definition, the Laplacian matrix is a symmetric, positive

Algorithm 1 A Bisection Spectral Partitioning
1: P1, P2 = ∅;
2: Let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues to L;
3: Pick v, the eigenvector corresponding to λ2;
4: c = the median of all entries in v;
5: for all i ∈ {1, · · · , n} do
6: if vi > c then
7: P1 = P1 ∪ {i};
8: else
9: P2 = P2 ∪ {i};

10: Output the bisection partitioning solution (P1, P2);

semi-definite matrix. We sort all eigenvalues of L in non-
decreasing order λ1 ≤ λ2 . . . ≤ λ|V |. λ1 = 0 as L1 = 01
and L is positive semi-definite.

A. A Bisection VM Placement using λ2

To familiarize readers with spectral partitioning, we first
introduce a simple bisection approach using the second-
smallest eigenvalue λ2, known as the algebraic connectivity
of a graph [23]. A larger λ2 implies better connectivity of
the graph. The Spectral Partitioning Algorithm as shown in
Algorithm 1 employs the eigenvector v corresponding to λ2,
known as the Fiedler vector, to partition a given graph into two
partitions. The median c of all entries in v is identified. For
each entry vi in v, if vi > c, vertex i is assigned to partition
P1; otherwise it is assigned to partition P2. Consequently, a
balanced partitioning is generated. The bisection process can
be recursively applied to each partition until reaching a desired
number of partitions.

The underlying intuition for such bisection is the following.
Let x ∈ {1,−1}n. If xi = 1 then vertex i is assigned to
partition P1; otherwise it is assigned to partition P2. Then
1
4x

TLx is the communication cost between P1 and P2.

Theorem 1 (Courant-Fischer theorem [24]). Let A be an n×n
symmetric matrix and let λ1 ≤ λ2 ≤ · · ·λn be the eigenvalues
of A with v1,v2, · · ·vn as corresponding eigenvectors, then

λ1 = min
x̸=0

xTAx

xTx

λ2 = min
x̸=0,x⊥v1

xTAx

xTx

λn = max
x̸=0

xTAx

xTx

Since xTx = n, i.e. ∥x∥2 = n, following Courant-Fischer
theorem, we know that:

λ2 = min
x̸=0,x⊥v1

xTLx

xTx
=

1

n
min

x̸=0,x⊥v1

xTLx

where v1 is the eigenvector corresponding to λ1. This implies
that the eigenvector corresponding to the second-smallest
eigenvalue λ2 can minimize the communication cost between
the two partitions.

173

The analysis above assumes the eigenvector x satisfies x ∈
{1,−1}n and ∥x∥2 = n, which are not always true for all
Fiedler vectors. The spectral graph approach generates a best-
effort and sub-optimal partitioning.
Simulation Illustration. We conduct a simple simulation to
illustrate this approach, based on a VM communication graph
among 10 VMs shown in Fig. 2(a). The communication cost
between any two VMs is 1. We assume that each VM is a unit
VM. We derive the Laplacian matrix and obtain the second
smallest eigenvalue and its corresponding eigenvector. We use
the median in the eigenvector to partition the communication
graph into two parts as shown in Fig. 2(a) and Fig. 2(b).

!"##

!"#$!"#%

!"#&

!"#'(

!"#)

!"#'

!"#*

!"#+

!"#,

(a) Original Graph

-"#.

-"#/
-"#0

-"#1

-"#23

-"#4

-"#2

-"#5

-"#6

-"#7

###############!"#$%&'(#)'&"%*+#,!"#$%&'(#)'&"%*+#-

(b) Partitioned Graph

Fig. 2. Using the second smallest eigenvector to partition the VM commu-
nication graph into two equal-size components.

B. Multi-Way VM Placement
VM Placement via Multiple Eigenvectors. Similar to the
bisection process using the second-smallest eigenvalue, mul-
tiple eigenvalues can be used towards multiple-way parti-
tioning. To divide all VMs into m computing pods, we
choose the m-smallest eigenvalues of the Laplacian matrix
L, i.e., λ1,λ2, · · · ,λm. Using their corresponding eigenvec-
tors, v1,v2, · · · ,vm, we form a new n × m matrix U =
[v1,v2, · · · ,vm]. Embed these n VMs into m-dimensional
Euclidean space by choosing each row of U as a set of
coordinates for a point. We next apply the k-means algorithm
to these n points to partition them into m parts. Algorithm 2
summarizes our multi-way VM partitioning algorithm.

Algorithm 2 A Multi-way Spectral Partitioning for VMs
1: //Choose an appropriate m, the number of computing pods
2: Let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues to L;
3: Check available number of computing pods m1;
4: Find an m2 so that λ1, · · · ,λm2 are small while λm2+1

is relatively large;
5: m = min{m1,m2};
6:
7: //Partition the VMs into m parts
8: Pick v1,v2, · · · ,vm, the eigenvectors corresponding to

λ1,λ2, · · · ,λm;
9: U = [v1,v2, · · · ,vm] using the eigenvectors as columns;

10: Select each column in Y = UT = [Y1, Y2, · · · , Yn] as a
point;

11: Apply the k-means algorithm to partition these n points
into m parts;

12: Output the m-partitioning solution;

How Many Computing Pods (Partitions) and How Many
Dimensions? Since we adopt the k-means algorithm, whose
performance is sensitive to the target number of partitions,
we have to carefully choose m to achieve low communication
cost. The best number of computing pods is decided by several
factors. First, the total number of computing pods that are
available. The cloud provider customarily turns some com-
puting pods off during low-demand periods, e.g., midnight,
to reduce energy consumption. Second, the available capacity
at the computing pod. The pod may already host other users’
VMs, hence the available capacities of pods are heterogeneous.

Besides these aforementioned resource capacity constraints,
the structure of the communication graph has a considerable
impact on pods sizing. For a given graph G = (V,E), a subset
S ⊆ V , the conductance φ(S) of S is defined as

φ(S) =
|E(S, S̄)|

min{|D(S)|, |D(S̄)|}
(8)

where S̄ is the complement of S, E(S, S̄) is the set of edges
from S to S̄, and D(S) is the sum of degrees for nodes in
S. Then the following higher-order Cheeger’s inequalities [25]
provides us useful insight on how many pods are suitable:

Theorem 2. Given a graph G = (V,E), and k ∈ N, then

λk/2 ≤ φk(G) ≤ O(k2)
√

λk

where φk(G) = minS1,··· ,Sk max1≤i≤k φ(Si). S1, · · · , Sk are
non-empty, disjoint subsets of V .

A small φk(G) implies that the graph can be divided into
k parts with a small number of cuts. Theorem 2 suggests that
if λ1, · · · ,λm are rather small, while λm+1 is substantially
larger, then we can choose m as the number of computing
pods. This is because dividing VMs into m pods will lead to
a small number of cuts, i.e., relatively low communication cost
while m + 1 pods will incur a high cost in communication.
We summarize this rule in Algorithm 2. As a special case,
if λ1 = λ2 = · · · = λm = 0,λm+1 > 0, then according to
Theorem 2, this implies that φ1(G) = · · · = φm(G) = 0, and
further suggests that there exist m disjoint partitions in the
graph already that can be exploited.

The dimensions used for representing each VMs in k-means
clustering have a considerable impact on the performance
of the partitioning. Optimally solving the k-means problem
with n vertices incurs O(ndm+1 logn) time complexity [26],
where m is the number of partitions and d is the number of
dimensions. Large number of dimensions would lead to high
computation complexity. Low dimensions would degrade the
quality of the partitioning, as we observed in Sec. VI. We
choose d = m as a trade-off.

V. AN SDP ALGORITHM FOR INTRA-POD VM
PLACEMENT

Next we study how to place VMs into physical servers
within one computing pod. Comparing the capacity of a physi-
cal machine with total VM demand, we assume that the cloud
provide would allocate a bunch of vacant identical physical
machines in each pod to cater for VM requests. The two

174

objectives for VM placement here are: (i) Minimizing inter-
server communication cost within the pod, and (ii) Balancing
the (weighted) number of VMs placed in different servers.

Different from the spectral clustering problem in Sec. IV,
here we need to ensure balanced VM placement across
physical machines, besides communication cost minimization.
Using the Fiedler vector to recursively separate a graph
into two partitions could provide a balanced VM placement.
However such recursive partitioning provides no guarantee on
approximation ratio, as compared to optimal partitioning.

Fig. 3. Coverting a VM whose weight is 3 to three unit VMs. Communication
cost among these three unit VMs is H and is very high.

We first describe a procedure that translates the problem
of placing heterogeneous VMs into the problem of placing
uniform VMs, and assume uniform VMs subsequently.
Placement of Heterogeneous VMs.

As illustrated in Fig. 3, given a VM u and its weight cu, we
construct a subgraph containing cu unit VMs, each of which
connects to the other cu − 1 unit VMs with a sufficiently
high communication cost H . We then arbitrarily pick one of
these cu unit VMs, u′, and reconnect the communication links,
which are originally connect to VM u, to the unit VM u′.

The cu-clique resulting from the conversion above should
not be separated (physically infeasible) during the VM place-
ment procedure, which can be guaranteed by setting the
communication cost H among these unit VMs to a sufficiently
high value. Fig. 4(a) and Fig. 4(b) provide an example of
heterogeneous VM placement.

!)#!

"##$ "##%

"##&

"##'

"##(

"##)

"##*

(a) Original Graph

+##,

+##-

+##. +##/

+##0

+##1

+##2

+##3
##########!"#$%&4(##4&"%*+#/!"#$%&4(##4&"%*+#2

(b) Partitioned Graph

Fig. 4. Placing weighted VMs into two servers, where the weight of VM 7
is 3 and other VMs are of unit-weight.

Randomized VM Placement within One Pod. After the
conversion, we obtain a new subgraph (V ′

j , E
′
j) where V ′

j

represents all unit VMs, E′
j is the set of communication edges

whose two VMs are both in V ′
j , .

Let n′ = |V ′
j |. Let v be a vector in Rn′

, associated with
VM v ∈ V ′

j . We formulate an SDP to capture the intra-pod
VM placement optimization:

minimize
∑

(u,v)∈E′
j

1
2
w′

u,v∥u− v∥22 (9)

subject to:

∥u− v∥22 + ∥v − z∥22 ≥ ∥u− z∥22 ∀u, v, z ∈ V ′
j (9a)

∑

v∈S

1
2
∥u− v∥22 ≥ |S|− n′/mj ∀u ∈ S, S ⊂ V ′

j (9b)

∥u∥22 = 1 ∀u ∈ V ′
j (9c)

The above SDP essentially projects the VM instances to
a hyper-sphere surface for partitioning into physical servers.
Constraint (9a) expresses triangular inequality in the geo-
metric space. Constraint (9b) makes sure that VMs are not
too close to each other. Constraint (9c) ensures that all VMs
spread over the surface of a unit sphere. While SDP belongs
to convex optimization and has general solution techniques
such as the interior-point algorithm, the SDP here has an
exponential number of constraints and requires special solution
techniques. Below we discuss two alternative solutions that
both run in polynomial time.

We propose a heuristic solution to the SDP that achieves
polynomial time complexity by first reducing the number of
constraints in (9b) from exponential to polynomial, and then
applying an interior-point solution algorithm. Recall that the
spectral partitioning algorithm described in Sec. IV.B embeds
the n′ VMs into an mj-dimension Euclidean space, based on
which the k-means clustering algorithm generates a good (but
possibly unbalanced) partition. We refer to this embedding
to enforce a restriction on the order of the squared distances
∥u−v∥22, with which (9b) can be simplified into n′(2n′−3) ∈
O(n′2) constraints.

Specifically, let u′ be the coordinates of node u in the
embedding generated by the spectral partitioning algorithm.
We replace (9b) with the following two sets of constraints:
for each u ∈ V ′

j ,

∥u− vi∥22 ≤ ∥u− vi+1∥22, 1 ≤ i ≤ n′ − 2
l−1∑
i=1

1
2∥u− vi∥22 ≥ l − n′/mj , l = 2, 3, · · ·n′

where v1, v2, · · · , vn′−1 is a rearrangement of nodes V ′
j \{u}

such that ∥u′ − v′
1∥22 ≤ ∥u′ − v′

2∥22 ≤ · · · ≤ ∥u′ − v′
n′−1∥22.

Algorithm 3 A Heuristic Partitioning Algorithm for Intra-Pod
VM Placement

1: //Assume weighted VMs have been converted into unit
VMs and {u, u ∈ V ′

j } is the optimal solution of SDP (5)
2: Call Algorithm 4 to obtain solution C;
3: if ϵ ≥ 1 then
4: Call Algorithm 5 to obtain solution C ′;
5: Replace C with C ′ if C ′ has a smaller cost;

Given the SDP solution method above, we first solve SDP
(9), obtaining a relaxed solution to intra-pod VM placement
in polynomial time. This solution acts as a lower bound on the
cost of an optimal solution to the mj-partitioning problem. We
then use the randomized partitioning algorithm in Algorithm
5 to generate each server partition. The high level picture

175

Algorithm 4 A Heuristic SDP Rounding Algorithm
1: C = ∅;
2: while |V | > (1 + ϵ)n′/mj do
3: for all u ∈ V do
4: S(u) = {v ∈ V | ∥u− v∥22 ≤ ϵ

1+ϵ};

5: u0 = argmax{|S(u)|, u ∈ V };
6: C = C ∪ {S(u0)};
7: V = V \ S(u0);
8: if |V | > 0 then
9: C = C ∪ {V };

10: while |C| > mj do
11: Let C1 ∈ C be the smallest partition
12: for all u ∈ C1 do
13: i = argmax{w(u,Ci), Ci ∈ C and |Ci| + 1 ≤

(1 + ϵ)n′/mj}
14: //where w(u,Ci) =

∑
v∈Ci

w(u, v)
15: Ci = Ci ∪ {u};
16: C = C \ {C1};

Algorithm 5 A Randomized Partitioning Algorithm for ϵ ≥ 1

1: C = ∅;
2: ν is a value such that Pr(X ≥ ν) = 2mj/ϵ, where X ∼

N(0, 1).
3: while |V | > (1 + ϵ)n′/mj do
4: Generate a random vector r, each element of which

is generated from normal distribution N(0, 1);
5: Vtmp = {v|v ∈ V, g(v) · r ≥ ν};
6: if |Vtmp| ∈ (0, (1 + ϵ) n′

mj
) then

7: C = C ∪ {Vtmp};
8: V = V \ Vtmp;
9: if |V | > 0 then

10: C = C ∪ {V };

of Algorithm 3 is as follows. Subroutine Algorithm 4 and
Algorithm 5 are designed to handle the two cases ϵ < 1
and ϵ ≥ 1, respectively. For the case ϵ < 1, we propose
Algorithm 4, which is a heuristic SDP rounding algorithm.
The basic ideas are: with an SDP solution, the set of nodes
near a node u ∈ V ′

j cannot be too large. Specifically, the
set S(u) = {v ∈ V | ∥u − v∥22 ≤ ϵ

1+ϵ}} is of size no
more than (1 + ϵ)n′/mj [27]. The SDP relaxation ensures
that the rounding subroutine generates an optimal solution if
the number of partitions is not restricted. If there are more
than mj partitions after the rounding subroutine, we merge
small partitions into larger ones according to the link weights.

For the case ϵ ≥ 1, we run both subroutines, select the
one with minimum communication cost by comparing the two
results. Subroutine Algorithm 5 works as follows: randomly
choose a vector and assign all vertices that are close to this
vector to a new potential cluster. If the selected cluster is empty
or too crowded, then pick a new randomized vector and choose
a new cluster again until a good cluster is found. In Algorithm
5, each component is at most (1 + ϵ)n′/mj when ϵ ≥ 1. The

function g(v) defined in line 9 is a transformation that converts
distances in l22 on Rd to distances in Rn′

Euclidean space. If
we obtain all vertices v ∈ Rd = Rn′

by solving the SDP
relaxation, then we can simply set g(v) = v. In simulation
studies, we observe that d ≤ n′ for the solution to SDP (9).

The following theorem provides a performance guarantee
that the placement into physical machines will not incur a
high cost in inter-server VM communication.

Theorem 3. Given ϵ ≥ 1, for the subgraph (V ′
j , E

′
j) in the

computing pod Pj , Algorithm 3 can produce mj partitions
each of which is at most (1 + ϵ)n′/mj in size, in expected
polynomial time with expected communication cost at most
O(

√
log n′ logmj) times the optimum.

Proof: Subroutine Algorithm 5 may produce more than mj

partitions, but the following lemma shows that they can be
converted to no more than mj partitions while the number
of VMs in each partition is less than (1 + ϵ)n′/mj without
increasing the communication cost.

Lemma 1. For ϵ ≥ 1 and the subgraph (V ′
j , E

′
j) in the

computing pod Pj , if Algorithm 5 produces a solution with
more than mj partitions, then we can merge the two smallest
partitions together recursively to covert the solution to exact
mj partitions without increasing the communication cost and
violating the constraint that each partition’s size is at most
(1 + ϵ)n′/mj .

Proof to the Lemma: Assume Algorithm 5 produces mj +q
partitions, |C1| ≤ |C2| ≤ · · · ≤ |Cmj+q|. For the sake of con-
tradiction, suppose the new partition created by merging the
two smallest partition C1 and C2 is larger than (1+ ϵ)n′/mj ,
then we have |C2| ≥ (1 + ϵ)n′/2mj which implies that

|Cmj+q| ≥ · · · ≥ |C2| ≥ (1 + ϵ)n′/2mj

therefore the total size for partitions C2, · · · , Cmj+q is larger
than (1+ϵ)n′

2mj
(mj + q− 1) > n′. It contradicts the fact that the

total size is n′. Thus the new created partition is not larger
than (1 + ϵ)n′/mj .

Merging two partitions reduces the communication cost
since it reduces the communication links across partitions.
That concludes the proof to Lemma 1. Combining Lemma
1 with techniques of Krauthgamer et al. [27], we can verify
claims in Theorem 3 regarding mj VM groups.

VI. PERFORMANCE EVALUATION

We simulate 50 VM instances in a collaborative cloud
task. Each VM has a weight of 3 by default. The traffic
pattern is randomly generated. We assume the modular data
center consists of a hundred computing pods, each of which
hosts blade servers, storage area network arrays and switches
and, can host up to 100 unit VMs. Considering that some
existing VMs have already occupied the physical machines,
we assume that there are 50 available computing pods, each
with residual capacity of 30 unit VMs. The communication
cost among computing pods is higher than that within one

176

pod due to bandwidth, delay, as well as traffic congestion. We
set βd = 10,βp = 1 accordingly.

A. VM Placement in the First Layer

We use the eigenvalue method described in Sec. IV.B
to determine the computing pods used to host VMs. First
we examine the eigenvalues of the Laplacian matrix of the
communication graph, shown in Fig. 5 in ascending order.
Since the smallest eigenvalue of a given graph is always 0, we
do not consider the eigenvalue difference between λ1 and λ2.
We observe that λ2, · · · ,λ5 are small, while λ6 is relatively
large compared with λ2, · · · ,λ5.

0 10 20 30 40 500

2

4

6

8

10

12

Eigenvalue #

Fig. 5. The 50 eigenvalues in acceding order.

Based on the above observation, we execute Algorithm 2
to partition the VMs into 5 computing pods. Fig. 6 shows
the exact placement for the first layer for various numbers of
pods. The algorithm generates a rather balanced placement for
5 computing pods, in each of which 10 VMs are placed. The
placement becomes rather unbalanced when the numbers of
computing pods are 2, 3, 4 and 6.

1 2 3 4 5 60

10

20

30

40

50

No. of Computing Pods

No
. o

f V
irt

ua
l M

ac
hin

es

Pod #1
Pod #2
Pod #3
Pod #4
Pod #5
Pod #6

Fig. 6. The detailed partitions for different numbers of computing pods.

Fig. 7 shows the communication costs under different num-
bers of computing pods. Generally, the communication cost
increases as the number of computing pods increases. The
cost for 5 pods is rather close to that for 3 and 4 pods. This
is in line with the results from the analysis of the eigenvalues.
Therefore we choose m = 5, to divide these VMs into 5
computing pods in the first layer.

0 10 20 30 40 500

500

1000

1500

2000

No. of Computing Pods

Co
m

m
un

ica
tio

n
Co

st

Fig. 7. Communication cost when the number of computing pods increases.

We next investigate the impact of the dimensions used for
embedding VMs in Algorithm 2. The default choice is m

dimensions. Fig. 8 illustrates the relation among the number
of computing pods, the dimensions of points and the commu-
nication cost. Given a fixed number of computing pods, the
communication cost decreases as the number of dimensions
increases, e.g., for the case m = 5, the communication cost
first deceases as the number of dimensions increases, then it
becomes relatively stable after 5 dimensions, with only small
fluctuations.

2
4

6
246810

0

500

1000

Dimensions of PointsNumber of Pods

Co
m

m
un

ica
tio

n
Co

st

Fig. 8. Different dimensions of points in Algorithm 2 in the first layer.

B. VM Placement within Each Computing Pod
According to the first layer’s partition results, we focus on

the case that the VMs have been divided into 5 computing
pods, and apply Algorithm 3 to further place the VMs to
physical servers.

We choose mj = 3 for each computing pod Pj . In the simu-
lations, the parameter ϵ is chosen from {0.2, 0.5, 0.8, 1.1, 1.4},
which corresponds to the cases that each physical machine
can hold (1 + ϵ)n′/mj = 4, 5, 6, 7, 8 VMs, respectively. A
partition result is shown in Fig. 9(a)-9(c) for various ϵ. We
can see that the partition is fairly balanced, where only a few
physical machines are assigned with the max number of VMs.

For each computing pod, we repeat Algorithm 3 for 1000
times, and show the average inner-pod communication costs in
Fig. 10. We can see that the communication costs within each
computing pod decrease as ϵ increases. This is because with a
large ϵ, the partition algorithm is allowed to assign more VMs
to one physical machine.

1 2 3 4 50

2

4

6

8

Pod #

Co
m

m
un

ica
tio

n
Co

st

ε = 0.20
ε = 0.50
ε = 0.80
ε = 1.10
ε = 1.40

Fig. 10. The role of unbalance ratio ϵ.
We further compare Algorithm 3 with a simple partitioning

algorithm and the Cluster-and-Cut algorithm proposed by
Meng et al. [11]. The simple partitioning algorithm randomly
picks a balanced partition. We also use the parameter ϵ to
represent the balanced partition constraint. The Cluster-and-
Cut algorithm does not aim to a balanced partition. Instead, it
assumes each physical server has a constant capacity. In the
experiment, we set an appropriate capacity for each server such
that the Cluster-and-Cut algorithm has the same number of
partitions as the others do. The communication costs are shown
in Fig. 11. We can see that under the same unbalance ratio ϵ,

177

Pod #1 Pod #2 Pod #3 Pod #4 Pod #50

2

4

6

8

10

Computing Pods

No
. o

f V
irt

ua
l M

ac
hin

es

Server #1 Server #2 Server #3

(a) ϵ = 0.2

Pod #1 Pod #2 Pod #3 Pod #4 Pod #50

2

4

6

8

10

Computing Pods

No
. o

f V
irt

ua
l M

ac
hin

es

Server #1 Server #2 Server #3

(b) ϵ = 0.5

Pod #1 Pod #2 Pod #3 Pod #4 Pod #50

2

4

6

8

10

Computing Pods

No
. o

f V
irt

ua
l M

ac
hin

es

Server #1 Server #2 Server #3

(c) ϵ = 0.8

Fig. 9. VM placement in each computing pod.

our algorithm achieves a VM communication cost reduction of
60% – 80% compared with the simple partitioning algorithm,
and 5% – 40% compared with the Cluster-and-Cut algorithm.

1 2 3 4 50

2

4

6

8

10

12

Pod #

Co
m

m
un

ica
tio

n
Co

st

Alg.3 (ε = 0.2)
Alg.3 (ε = 0.5)
Simple Random Partition (ε = 0.2)
Simple Random Partition (ε = 0.5)
Cluster and Cut

Fig. 11. Comparison of performance between Algorithm 3 and a randomized
partitioning algorithm.

VII. CONCLUSION

This work studied VM placement for simultaneous commu-
nication cost minimization and load balancing in a modular
data center, where computing pods as basic building blocks
are connected by a core network. In this two-layer datacenter
network, spectral clustering is employed to partition VMs
into computing pods in the core network layer. Then an
SDP relaxation approach is further applied to decide the VM
placement within each computing pod, aiming at both load
balancing across physical servers and minimizing inter-server
communication cost. To our knowledge, this work is the first
that conducts a systematic study of hierarchical VM placement
in a modular data center.

REFERENCES

[1] Windows Azure, http://www.microsoft.com/windowsazure/.
[2] T. Sherbak and C. Auger, “Computing Pods: Large-Scale Building

Blocks for Intelligent, Automated Data Center Deployments,” Dell
Power Solutions, pp. 37 – 41, June 2009.

[3] Cisco Virtualized Multi-Tenant Data Center, Version 2.0 Design Guide,
http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data Center/
VMDC/2-0/large pod design guide/vmdc20Lpdg.pdf.

[4] G. Wang and T. Ng, “The Impact of Virtualization on Network Perfor-
mance of Amazon EC2 Data Center,” in Proc. IEEE INFOCOM, 2010.

[5] L. Zhang, Z. Li, and C. Wu, “Dynamic Resource Provisioning in
Cloud Computing: A Randomized Auction Approach,” in Proc. of IEEE
INFOCOM, 2014.

[6] W. Shi, L. Zhang, C. Wu, Z. Li, and F. C. Lau, “An Online Auction
Framework for Dynamic Resource Provisioning in Cloud Computing,”
in Proc. of ACM SIGMETRICS, 2014.

[7] A. Beloglazov, R. Buyya, Y. C. Lee, A. Zomaya et al., “A Taxonomy
and Survey of Energy-Efficient Data Centers and Cloud Computing
Systems,” Advances in Computers, vol. 82, no. 2, pp. 47–111, 2011.

[8] RightScale, “Social Gaming in the Cloud: A Technical White Paper,”
White Paper, 2010.

[9] M. Hajjat, X. Sun, Y.-W. E. Sung, D. A. Maltz, S. Rao, K. Sri-
panidkulchai, and M. Tawarmalani, “Cloudward Bound: Planning for
Beneficial Migration of Enterprise Applications to the Cloud,” in Proc. of
ACM SIGCOMM, 2010.

[10] Amazon Elastic MapReduce, http://aws.amazon.com/elasticmapreduce/.
[11] X. Meng, V. Pappas, and L. Zhang, “Improving the Scalability of Data

Center Networks with Traffic-aware Virtual Machine Placement,” in
Proc. of IEEE INFOCOM, 2010.

[12] O. Biran, A. Corradi, M. Fanelli, L. Foschini, A. Nus, D. Raz, and E. Sil-
vera, “A Stable Network-Aware VM Placement for Cloud Systems,” in
Proc. of IEEE/ACM CCGrid, 2012.

[13] J. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang, “Joint VM placement
and routing for data center traffic engineering,” in Proc. of IEEE
INFOCOM, 2012.

[14] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, and H. Bhogan,
“Volley: Automated Data Placement for Geo-distributed Cloud Ser-
vices,” in Proc. of USENIX NSDI, 2010.

[15] D. Jayasinghe, C. Pu, T. Eilam, M. Steinder, I. Whally, and E. Snible,
“Improving Performance and Availability of Services Hosted on IaaS
Clouds with Structural Constraint-Aware Virtual Machine Placement,”
in Proc. of IEEE SCC, 2011.

[16] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris, P. Chhabra,
and P. Rodriguez, “The Little Engine(s) That Could: Scaling Online
Social Networks,” in Proc. of ACM SIGCOMM, 2010.

[17] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang,
and S. Lu, “BCube: A High Performance, Server-centric Network
Architecture for Modular Data Centers,” in Proc. of ACM SIGCOMM,
2009.

[18] H. Wu, G. Lu, D. Li, C. Guo, and Y. Zhang, “MDCube: A High Per-
formance Network Structure for Modular Data Center Interconnection,”
in Proc. of ACM CoNEXT, 2009.

[19] D. Spielmat and S.-H. Teng, “Spectral Partitioning Works: Planar Graphs
and Finite Element Meshes,” in Proc. of IEEE FOCS, 1996.

[20] J. Teresco, K. Devine, and J. Flaherty, “Partitioning and Dynamic Load
Balancing for the Numerical Solution of Partial Differential Equations,”
in Numerical Solution of Partial Differential Equations on Parallel Com-
puters, ser. Lecture Notes in Computational Science and Engineering,
A. Bruaset and A. Tveito, Eds. Springer Berlin Heidelberg, 2006,
vol. 51, pp. 55–88.

[21] R. V. Driessche and D. Roose, “An Improved Spectral Bisection
Algorithm and its Application to Dynamic Load Balancing,” Parallel
Computing, vol. 21, no. 1, pp. 29 – 48, 1995.

[22] S. Arora, S. Rao, and U. Vazirani, “Expander Flows, Geometric Em-
beddings and Graph Partitioning,” in Proc. of ACM STOC, 2004.

[23] M. Fiedler, “Algebraic Connectivity of Graphs,” Czechoslovak Mathe-
matical Journal, vol. 23, no. 98, pp. 298–305, 1973.

[24] D. Spielman, Spectral Graph Theory. Chapman and Hall/CRC, 2012.
[25] J. R. Lee, S. Oveis Gharan, and L. Trevisan, “Multi-way Spectral

Partitioning and Higher-order Cheeger Inequalities,” in Proc. of ACM
STOC, 2012.

[26] M. Inaba, N. Katoh, and H. Imai, “Applications of Weighted Voronoi
Diagrams and Randomization to Variance-based K-clustering,” in Proc.
of ACM SCG, 1994.

[27] R. Krauthgamer, J. Naor, and R. Schwartz, “Partitioning Graphs into
Balanced Components,” in Proc. of ACM-SIAM SODA, 2009.

178

