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ABSTRACT
This work studies electricity markets between power grids and mi-
crogrids, an emerging paradigm of electric power generation and
supply. It is among the first that addresses the economic challenges
arising from such grid integration, and represents the first power
auction mechanism design that explicitly handles the Unit Commit-
ment Problem (UCP), a key challenge in power grid optimization
previously investigated only for centralized cooperative algorithms.
The proposed solution leverages a recent result in theoretical com-
puter science that can decompose an optimal fractional (infeasible)
solution to NP-hard problems into a convex combination of inte-
gral (feasible) solutions. The end result includes randomized power
auctions that are (approximately) truthful and computationally ef-
ficient, and achieve small approximation ratios for grid-wide social
welfare under UCP constraints and temporal demand correlations.
Both power markets with grid-to-microgrid and microgrid-to-grid
energy sales are studied, with an auction designed for each, under
the same randomized power auction framework. Trace driven sim-
ulations are conducted to verify the efficacy of the two proposed
inter-grid power auctions.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Design studies; Modeling tech-
niques; I.1.2 [Algorithms]: Analysis of algorithms

General Terms
Algorithms, Design, Economics

Keywords
Power Grid; Microgrids; Unit Commitment Problem; Mechanism
Design; Approximation Algorithms

1. INTRODUCTION
An electrical power grid is an interconnected network for deliver-

ing electricity from generators/suppliers to consumers. In a classic
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power grid, electrical power is produced at (often remote) gener-
ating stations, travels through long-distance high-voltage transmis-
sion lines to demand centers, and then through distribution lines
to end customers. A microgrid, in contrast, is a distributed electric
power system, operating autonomously to organize local generation
to meet the demand dynamically [19], e.g., a university served by
its own power generators, or a hospital supplied mainly by its local
generators. An important trend in power grid evolution is char-
acterized by the rapidly increasing percentage of power supplied
from microgrids. Such a paradigm shift has been jointly driven
by a number of related factors: (a) The economies of scale asso-
ciated with massive central generation starts to fail, as generation
units and plants become cheaper to build, and transmission cost
catches up with generation cost; (b) Concerns from grid customers
on externalized costs of central plant generation and lack of billing
control; (c) Environmental concerns, given that classic grids are of-
ten driven by non-renewable resources (coal, gas, nuclear), while
latest microgrids commonly resort to wind and solar energy that
are green and renewable [17]; (d) Reliability concerns, as exempli-
fied by the 2003 Eastern US/Canada major blackout and the largest
power outage in history (India, 2012), most power failures nowa-
days are traced back to the transmission grid instead of generation
units [1]; (e) Even with traditional fuel, co-generation in residential
microgrids provides both electricity and heat, bringing new oppor-
tunities for thermodynamically efficient use of fuel [23].

As a latest example, IKEA acquired a 46 MW wind farm in Al-
berta, Canada in November 2013, towards its eventual power self-
sustainability based on green energy. Prior to that, the furniture
giant already owns similar wind farms and solar generation plants
in Europe and Eastern Canada, respectively. Microgrids have re-
cently witnessed an impressive growing rate, and are estimated to
further grow at a 17% compound annual rate in terms of installed
capacity [4]. Global installed capacity is projected to reach 15 GW
by 2022, roughly equivalent to the total installed capacity in Portu-
gal in 2008.

For reliability reasons, a microgrid is usually connected to the
main power grid in its region (Fig. 1), where the distribution sta-
tions reside. Temporary deficits in energy supply can be resolved
by purchase from the regional grid; conversely, excess energy gen-
erated can be contributed to the regional grid. Such integration of
a large number of microgrids to the traditional power grid repre-
sents a fundamental revolution in the energy sector, and it is gen-
erally agreed that a number of challenges from both technical and
economic sides are to be addressed [1]. On the technical side, a
plethora of research has been devoted to the study of power quality,
voltage stability, harmonics, and grid-wide control and reliability
[10, 19, 21, 30], leading to a relatively clear picture for issues and
solutions regarding such grid integration. In contrast, the area of
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Figure 1: A regional power grid and microgrids.

market analysis and inter-grid energy trading mechanisms have es-
sentially remained blank, witnessing few if any dedicated studies,
despite its practical necessity towards smooth flowing of energy
between microgrids and the main power grid.

The lack of research activity is partly attributed to the hard-
ness of the problem: any sound economic mechanism design here
must appropriately model and handle the Unit Commitment Prob-
lem (UCP), engineering constraints of generation units that impose
strict limitations on their scheduling and operation. Most genera-
tors today, including traditional thermal (coal, gas, petroleum), nu-
clear, and renewable (wind, solar, hydro, wave-power, geothermal
energy), have generator-specific parameters that define (a) mini-
mum and maximum stable output levels, (b) maximum rates of
ramping up or down, and (c) minimum time a unit stays ON or OFF.
Along with the optimal power flow problem (OPF), UCP is known
as one of the two key problems at the core of power grid optimiza-
tion [28]. A series of studies in the past few decades investigate
the modelling and solution of UCP, usually through a mixed linear
integer programming model and centralized approximation algo-
rithms [28]. A market mechanism such as an auction has to further
consider economic behaviours of the two participating sides, such
as individual rationality and truthful bidding. The challenge further
escalates considering that a grid’s bid for electricity in practice is
across multiple consecutive and correlated time slots (e.g., for each
of the next 24 hours) [29].

To the authors’ knowledge, this work is among the first that de-
signs trading mechanisms for the grid-microgrid electricity mar-
ket, towards the goal of designing power auctions that explicitly
models and handles UCP and temporal demand correlations. Our
solution combines (i) two carefully formulated mixed linear in-
teger programming formulations of the social welfare optimiza-
tion problems in the inter-grid market; (ii) a recent result in the-
oretical computer science, which decomposes a fractional (infeasi-
ble) optimal solution to packing and covering-type NP-hard prob-
lems into a convex combination of integral (feasible) solutions,
enabling a randomized auction framework that translates central-
ized co-operative approximation algorithms into (approximately)
truthful and computationally efficient auction mechanisms; and (iii)
custom-designed approximation algorithms for social welfare opti-
mization in the inter-grid market, which are computationally effi-
cient, have small approximation ratios, and work in concert with
the auction framework in (ii).

As a market mechanism, auctions enable market efficiency and
agility through resource pricing based directly on realtime supply-
demand. Compared with a fixed pricing mechanism such as pre-
negotiated contracts (e.g., the FIT program in Ontario, Canada)
and flat-rate pricing [2], auctions reduce the chance of over-pricing

and under-pricing, better match resources with buyers that value
them the most, and hence increase resource utilization efficiency,
system-wide social welfare, and seller revenue. Auction based so-
lutions have recently enjoyed success in areas including online ad-
vertisement and cloud computing, and are indeed what have been
practiced in wholesale electricity markets for decades, although in
a much washed down version that avoids technical complexities of
UCP [29].

An electricity auction outcome contains information on not only
which microgrids win and at what prices, but also a generation
schedule in the case microgrids sell power back to the grid, satisfy-
ing technical limitations of generators as specified in the UCP con-
straints. Another key challenge arises from strategic bidders, who
are driven by their own commercial interests and may submit fal-
sified bids to maximize their own utilities. Truthfully bidding, as a
desirable property in practical auction mechanisms, eliminates such
strategic bids from selfish bidders. A well-known truthful auction
mechanism is the celebrated Vickrey-Clarke-Groves (VCG) auc-
tion, which ensures truthfulness and economical efficiency in terms
of social welfare maximization. Unfortunately, the winner deter-
mination problem used in the VCG mechanism is proven NP-hard
in the two electricity trading problems we study. Hence directly
applying the VCG auction becomes computationally infeasible as
the system size grows. Approximation algorithms, as an alterna-
tive to optimally solving NP-complete problems, have been sub-
stantially studied over the past few decades, providing near-optimal
solutions within polynomial time. Unfortunately, plugging an ap-
proximate algorithm into the VCG framework may result in clearly
non-truthful auction mechanisms [26].

The auction mechanism we design in this work follows a ran-
domized auction framework, which translates approximate social
welfare maximization algorithms into an approximate-truthful auc-
tion and an absolute-truthful auction respectively, with the help of
a fractional VCG auction and a convex decomposition technique.
The resulting auctions execute in polynomial time, are (approx-
imately) truthful in expectation, and guarantee approximate eco-
nomic efficiency. At high level, the randomized auction framework
consists of three main steps: (i) a fractional VCG auction is first
conducted after relaxing integer decision variables; (ii) then a care-
fully designed convex decomposition technique is utilized to break
the fractional solution down into a convex combination of integer
solutions; (iii) finally feasible integer solutions are chosen by view-
ing their corresponding weights as probabilities, and payments are
computed for helping the randomized auction inherit truthfulness
from the fractional VCG auction.

Specifically, we first study the market where the grid purchases
electricity from microgrids. We design an iterative primal-dual al-
gorithm for the winner determination problem (WDP1) by exploit-
ing the underlying structure of WDP1 through Lagrange relaxation
and problem decomposition. We then simulate a fractional VCG
auction by relaxing the integer decision variables, which is truth-
ful and computationally efficient. Next we utilize a pair of care-
fully designed primal and dual linear programs to decompose the
fractional solution into a convex combination of mixed integer so-
lutions by employing the approximation algorithm as a separation
oracle, under UCP constraints. The decomposition process can be
completed in polynomial time using the ellipsoid method, provid-
ing a series of weights for selected mixed integer solutions. Finally,
each candidate mixed integer solution is chosen with probability
equal to its corresponding weight. The randomized auction guaran-
tees the same approximation ratio ρ as the plug-in ρ-approximation
algorithm does, under truthful bidding. Truthfulness of the ran-
domized auction is not absolutely guaranteed, but is provided in



a best-effort fashion. We leave the design of an absolute-truthful,
computationally efficient and approximately social welfare maxi-
mizing auction for this scenario as future work.

We next study the market where microgrids purchase electricity
from the grid for their supply deficiencies. An a-approximation
algorithm is first designed for the detailed problem without consid-
ering truthfulness, based on greedy primal-dual algorithm design.
We then simulate a fractional VCG auction based on the LP relax-
ation (LPR) of the social welfare maximization, WDP2. Next, we
exploit the underlying packing nature of WDP2, and solve a pair of
tailored primal-dual linear programs again to decompose the frac-
tional solution to WDP2 into a combination of weighted integer
solutions, using the ellipsoid algorithm with the a-approximation
algorithm acting as a separation oracle. Finally, we select integer
solutions using the calculated weights as corresponding probabil-
ities. Absolute truthfulness is guaranteed by that of the fractional
VCG auction. The randomized auction again guarantees the same
approximation ratio a in terms of social welfare as the cooperative
a-approximation algorithm does.

In the rest of the paper, we review related work in Sec. 2, and
present the system model, the randomized auction framework as
well as an example approximation algorithm in Sec. 3. In Sec.
4, we design another variant of the randomized auction framework
and its corresponding approximation algorithm. Performance eval-
uation is presented in Sec. 5. Sec. 6 concludes the paper.

2. RELATED WORK
Auctions are extensively employed in traditional power grids,

e.g., Nicolaisen et al. [27] propose a computational wholesale elec-
tricity market operating in a clearing house double-auction manner.
Similarly, Tesfatsion [29] proposes centrally administered whole-
sale electricity markets with congestion management using an auc-
tion approach. Neither of them takes UCP constraints into consid-
eration. McGuire [24] propose an auction for heuristically mini-
mizing operational cost with substantially simplified unit commit-
ment constraints, by collecting cost bids from each generating unit.
No proven guarantee on the performance or computational com-
plexity analysis is provided.

Microgrids, as an emerging paradigm of power generation and
supply, have been studied in a series of recent work. Lasseter
et al. [19] was among the first to propose the concept of micro-
grids. Barnes et al. [6] summarize dozens of existing and undergo-
ing demonstration projects of microgrids across America, Asia and
Europe. Lu et al. [23] investigate microgrids, considering renew-
able energy (wind, solar) and co-generation, and propose an online
algorithm CHASE with a small competitive ratio in operation cost.
With limited prediction into the future, CHASE can be extended to
behave more intelligently.

A few studies recently appeared in the literature of auction de-
sign for microgrids. For example, Dimeas et al. [10] present a
distributed control approach for microgrids, using an auction al-
gorithm for the solution of the symmetric assignment problem. Yet
they fail to consider the key unit commitment problem in the pro-
posed solution. Tsikalakis et al. [30] consider demand side bidding
where consumers of the microgrids submit bids to purchase energy
from microgrids. Based on such bids, the microgrid central con-
troller chooses either to minimize operational cost or to maximize
profit. Their auction is not proven to be truthful.

The celebrated VCG auction mechanism due to Vickrey [31],
Clarke [9] and Groves [15], represents a general truthful auction
framework, in which no rational buyers have motivation to submit
falsified bids. Formally, an auction mechanism is truthful if bid-
ding the true valuation is a dominant strategy for each bidder. VCG

auctions are proven to be the only type of auctions that can simul-
taneously guarantee truthfulness and absolute economic efficiency.
A VCG auction requires optimally solving the social welfare maxi-
mization problem multiple times, for calculating allocation rules as
well as payments of winning buyers. Unfortunately, the underlying
optimization problem is often NP-hard, making the VCG auction
computationally infeasible, especially when facing a large number
of bidders. Approximation algorithms are known to be an efficient
alternative for solving NP-hard problems, computing sub-optimal
solutions in polynomial time. Unfortunately a VCG auction loses
its truthfulness when one applies an approximation algorithm in-
stead of an optimal algorithm for social welfare maximization [26].

In a sequence of recent work that initiated from theoretical com-
puter science [8, 20, 25, 32], a polynomial-time convex decompo-
sition technique is designed for converting fractional solution for
an NP-hard problem, modelled as a linear integer program, into
a weighted combination of integer solutions. Such a decomposi-
tion technique enables a randomized auction framework that auto-
matically translates a centralized cooperative approximation algo-
rithm into an auction mechanism, achieving the same social welfare
approximation ratio as the plug-in approximation algorithm does,
while guaranteeing truthful bidding. A key property exploited in
the decomposition is the packing or covering property. A linear
program is a packing LP if it is of the form: Maximize bTy, sub-
ject to: ATy ≤ c,y ≥ 0, where the matrix A and vectors b and c
are non-negative. The dual of a packing LP is a covering LP.

Dughmi and Roughgarden [11] recently proposed another tech-
nique that transfers an approximation algorithm into a truthful auc-
tion mechanism with the same social welfare approximation ratio.
This approach requires that the social welfare maximization prob-
lem admits an Full Polynomial-Time Approximation Scheme (FP-
TAS), which is a stronger requirement than having a polynomial-
time constant-ratio approximation algorithm. Many NP-hard opti-
mization problems (including all that are proven APX-hard) do not
have FPTAS.

3. THE MICROGRID-TO-GRID ELECTRIC-
ITY MARKET

3.1 Generator constraints and social welfare
optimization

We consider the microgrid-to-grid market in this section, con-
sisting of a regional power grid and a set N (|N | = n) of micro-
grids. Each microgrid has its own generator that produces electrical
power. An example microgrid in operation is shown in Fig. 2. Each
generator incurs an operational cost in the active generation mode,
which depends on the type of generation (e.g., gas or diesel). There
is further an amortized infrastructure and maintenance cost. Both
costs are private information at the microgrid. The regional power
grid (the auctioneer) solicits electricity sales from the microgrids
(the bidders) during periods of under-supply, through a (reversed)
auction. If the total amount of energy purchased from the auction
falls short to bridge the gap, the grid may further purchase electric-
ity from generation plants based in the near-term markets (which
are usually more expensive) [27], or from electricity storage [12].
We consider an operation period T from t = 1 to t = T , during
which the demand of the grid can be predicted. In practice, auctions
in an electricity market are conducted based on forecasts of power
demand in an upcoming time period (e.g., the next 24 hours or sev-
eral days [3]). Correspondingly, near-future demands are assumed
to be known in advance.



Figure 2: The Sendai microgrid [1], with an output capacity
of 1 MW, remained in full service during and after the March
2011 Great East Japan Earthquake, supplying power and heat
to the community around Tohoku Fukushi University.

Let xi(t) be a binary variable indicating whether microgrid i ∈
N is ON or OFF at t ∈ T . yi(t) indicates the power output of
microgrid i ∈ N . z(t) is the total energy supplied by plants or
batteries rather than microgrids at t ∈ T . si(t) is the amortized
infrastructure/maintenance cost of microgrid i ∈ N at time t. ui(t)
is a unit cost ($ per MWh) of microgrid i ∈ N at t ∈ T . p(t) is a
unit cost ($ per MWh) of the energy supplied by plants or batteries
rather than microgrids at t ∈ T . D(t) is the power demand at
t ∈ T , known by the grid. δ is the maximum output level change
between two consecutive time slots. ∆+ is the maximum output
level at the first time slot of a commitment period, known as startup
ramp limit. Similarly ∆− is the maximum output level at the last
time slot of a commitment period, known as shutdown ramp limit.

The auction of electricity from the microgrids to the regional
power grid is conducted once, at t = 1, for the period T = [1, T ],
based on predicted information for T . The grid (auctioneer) sched-
ules its power supply for t ∈ T . Each microgrid (bidder) i submits
its bid containing its private costs si(t) and ui(t), and can con-
tribute a maximum output level of Pmax. At each time t, total
supply should cover total demand in the grid:

∑

i

yi(t) + z(t) ≥ D(t), ∀t ∈ T

Then we have the UCP constraints dictating generator schedules.
We assume that all microgrids are off at t = 0, and all microgrids
keep the same status as t = T after the operation period T , i.e.,
xi(T ) = xi(T + 1) = xi(T + 2) = . . ., for facilitating constraint
formulation.

First, a generator, once turned ON, must remain active for at least
Ton time slots. Similarly it must stay deactive for at least Toff time
slots once turned OFF:

UCP1 :
t+Ton∑

τ=t+1

xi(τ) ≥ Ton(xi(t+ 1)− xi(t)),∀t ∈ T , i ∈ N

t+Toff∑

τ=t+1

(1− xi(τ)) ≥ Toff (xi(t)− xi(t+ 1)), ∀t ∈ T , i ∈ N

The output level of a microgrid cannot exceed its capacity Pmax,
and the minimal output is Pmin if it is active:

UCP2 :Pmaxxi(t) ≥ yi(t),∀t ∈ T , i ∈ N
yi(t) ≥ Pminxi(t),∀t ∈ T , i ∈ N

Furthermore, the output level of a generator cannot vary abruptly.
The ramping rate is upper-bounded:

UCP3 :yi(t)− yi(t− 1) ≤ δxi(t− 1)

+∆+(1− xi(t− 1)),∀t ∈ T , i ∈ N

yi(t− 1)− yi(t) ≤ δxi(t) +∆−(1− xi(t)),∀t ∈ T , i ∈ N

There are three types of costs.
∑

i,t si(t)xi(t) is the amortized
hardware/maintenance cost1;

∑
i,t ui(t)yi(t) is fuel cost;

∑
t p(t)z(t)

is the total expense in power purchase from plants/batteries, which
is a cost of the regional power grid (auctioneer). A system-wide
(grid and microgrids) social welfare maximization translates into
the objective of minimizing the aggregated cost, while meeting the
grid’s demand. The winner determination problem (WDP1) with
xi(t), yi(t) and z(t) as decision variables is:

minimize
∑

i,t

si(t)xi(t) +
∑

i,t

ui(t)yi(t) +
∑

t

p(t)z(t) (1)

subject to:
∑

i

yi(t) + z(t) ≥ D(t), ∀t (1a)

t+Ton∑

τ=t+1

xi(τ) ≥ Ton(xi(t+ 1)− xi(t)), ∀t, i (1b)

t+Toff∑

τ=t+1

(1− xi(τ)) ≥ Toff (xi(t)− xi(t+ 1)), ∀t, i (1c)

Pmaxxi(t) ≥ yi(t), ∀t, i (1d)

yi(t) ≥ Pminxi(t), ∀t, i (1e)

yi(t)− yi(t− 1) ≤ δxi(t− 1) +∆+(1− xi(t− 1)), ∀t, i (1f)

yi(t− 1)− yi(t) ≤ δxi(t) +∆−(1− xi(t)), ∀t, i (1g)

xi(t) ∈ {0, 1}, yi(t) ≥ 0, z(t) ≥ 0, ∀t, i (1h)

Generator scheduling under UCP is in general NP-hard [16].
This rules out a direct application of the VCG auction mechanism
for truthful auction design. We instead exploit the underlying struc-
ture of WDP1 for designing a randomized auction that is computa-
tionally efficient.

3.2 The randomized auction framework
The electricity auction we design leverages a randomized auc-

tion framework that consists of three main steps, as illustrated in
Algorithm 1.

Step 1. Simulating the fractional VCG auction. We first simu-
late the fractional VCG auction with the linear programming relax-
ation (LPR) of WDP1 as the aggregated cost minimization prob-
lem, which is obtained by relaxing the binary variable xi(t) to
0 ≤ xi(t) ≤ 1. Such a fractional VCG auction is truthful but the
solution is fractional and therefore infeasible. Let (x∗,y∗, z∗) be
the optimal fractional solution to the LPR of WDP1. Prices charged
in the fractional VCG mechanism, Πf , are computed as follows:

Πf
k =

∑

i,t

(
si(t)x

′
i(t) + ui(t)y

′
i(t) + p(t)z′(t)

)

−
∑

i̸=k,t

(
si(t)x

∗
i (t) + ui(t)y

∗
i (t) + p(t)z∗(t)

) (2)

1There are two types of infrastructure/maintenance costs: amortized hard-
ware cost and running cost. The former is amortized over the generator’s
lifetime, while the latter is applicable only when the generator is turned on.
This work focuses on the latter.



Algorithm 1 A Randomized Microgrid-to-Grid Power Auction
1: Step 1. Simulating the fractional VCG auction.
2: — Compute the fractional VCG allocation x∗, and payment

Πf , through solving the LPR of WDP1.
3: Step 2. Decomposing the optimal fractional solution
4: — Decompose the fractional solution (x∗,y∗,z∗) to a

convex combination of mixed integer solutions, i.e.,∑
q∈I λ

q(xq,yq, zq) ≤ ρ(x∗,y∗,z∗), through solving
a pair of primal-dual LPs in (4) and (5) using the ellipsoid
method, leveraging a ρ−approximation algorithm verify-
ing the integrality gap of ρ as a separation oracle.

5: Step 3. Randomized winner selection and payment
6: — Select each (xq,yq,zq) randomly with probability λq .

— for each winning microgrid i: charge a payment
Πi = Πf

i

∑
t(si(t)x

q
i (t)+ui(t)y

q
i (t))∑

t(si(t)x
∗
i (t)+ui(t)y

∗
i (t)) , if

∑
t(si(t)x

∗
i (t) +

ui(t)y
∗
i (t)) ̸= 0; Πi = 0 otherwise.

where (x′,y′, z′) is an optimal fractional solution without buying
any power from microgrid k ∈ N .

Step 2. Decomposing the optimal fractional solution.
Applying the recent convex decomposition technique [8, 20, 25],

we decompose the optimal fractional solution into a convex com-
bination of integral solutions each with a fractional weight that
sums up to 1. This step requires a separation oracle, an effective
polynomial-time approximation algorithm to WDP1 satisfying:

∑

i,t

si(t)xi(t) +
∑

i,t

ui(t)yi(t) +
∑

t

p(t)z(t) ≤ ρOPTLPR1 (3)

where OPTLPR1 is the value of the objective function for the op-
timal fractional solution (x∗,y∗, z∗) for WDP1.

The goal of the decomposition is to find combination weights
λq ≥ 0, such that

∑
q∈I λ

q = 1,
∑

q∈I λ
qxq ≤ ρx∗,

∑
q∈I λ

qyq

≤ ρy∗ and
∑

q∈I λ
qzq ≤ ρz∗, where I is the index set for all fea-

sible mixed integer solutions to WDP1.
We compute such a weight vector λ through solving the follow-

ing pair of primal and dual LPs:

Primal: maximize
∑

q∈I
λq (4)

subject to:
∑

q∈I
λq(xq ,yq ,zq) ≤ ρ(x∗,y∗,z∗) (4a)

∑

q∈I
λq ≤ 1 (4b)

λq ≥ 0, ∀q ∈ I (4c)

Dual: minimize ρ
(∑

i,t

αi(t)x
∗
i (t) +

∑

i,t

βi(t)y
∗
i (t)

+
∑

t

η(t)z∗(t)
)
+ γ

(5)

subject to:
∑

i,t

αi(t)x
q
i (t) +

∑

i,t

βi(t)y
q
i (t) +

∑

t

η(t)zq(t) ≥ 1− γ, ∀q ∈ I (5a)

α,β,η ≽ 0, γ ≥ 0 (5b)

THEOREM 1. LPs (4) and (5) can be solved in polynomial time,
and the optimal value is 1.

PROOF. First (α = 0,β = 0,η = 0, γ = 1) is a feasible
solution to the dual, hence the optimal value is at most 1. By way
of contradiction, we assume that

ρ
(∑

i,t

αi(t)x
∗
i (t) +

∑

i,t

βi(t)y
∗
i (t) +

∑

t

η(t)z∗(t)
)
+ γ < 1

To solve the dual, we need to apply a cooperative approximation
algorithm to WDP1:

∑

i,t

αi(t)x
q
i (t) +

∑

i,t

βi(t)y
q
i (t)

+
∑

t

η(t)z(t) ≤ ρOPTLPR1(α,β,η)

where (xq,yq, zq) and OPTLPR1(α,β,η) are a feasible mixed
integer solution and the value of the optimal fractional solution, re-
spectively, to WDP1 withα as bidding prices , β as fuel prices and
η as the unit prices of energy purchased from plants or batteries.
Note that:

OPTLPR1(α,β,η) ≤
∑

i,t

αi(t)x
∗
i (t)

+
∑

i,t

βi(t)y
∗
i (t) +

∑

t

η(t)z∗(t)

which implies
∑

i,t

αi(t)x
q
i (t) +

∑

i,t

βi(t)y
q
i (t) +

∑

t

η(t)zq(t)

≤ ρ(
∑

i,t

αi(t)x
∗
i (t) +

∑

i,t

βi(t)y
∗
i (t) +

∑

t

η(t)z∗(t))

< 1− γ

The above inequality violates the dual constraints, leading to a
contradiction. Therefore the optimal dual objective value is 1. Fol-
lowing strong LP duality, we conclude that the optimal primal ob-
jective value is 1 as well.

We observe that the primal LP (4) has an exponential number of
variables, which may take exponential time to solve directly. We
instead resort to the dual LP (5) that has an exponential number
of constraints. The ellipsoid method can solve the problem within
polynomial time despite an exponential number of constraints [14].
The cooperative approximation algorithm serves as a separation or-
acle [8], providing a polynomial number of hyperplanes to cut the
ellipsoid, making the dual LP solvable in polynomial time. Each
hyperplane corresponds to a constraint in the dual, providing a fea-
sible solution (xq,yq, zq) as well as corresponding primal vari-
able λq . The primal LP then can be transformed to an optimization
problem with a polynomial number of variables corresponding to
these hyperplanes. We hence can solve the primal LP in polyno-
mial time, obtaining weights of the convex decomposition that sum
to 1. ⊓'

Step 3. Randomized winner selection and payment. Following
the decomposition, each possible solution (xq,yq, zq) is selected
randomly with a probability equal to its corresponding weight λq



computed in the decomposition in the second step. Then micro-
grid i receives a payment Πi = Πf

i

∑
t(si(t)x

q
i (t)+ui(t)y

q
i (t))∑

t(si(t)x
∗
i (t)+ui(t)y

∗
i (t)) , if

∑
t(si(t)x

∗
i (t) + ui(t)y

∗
i (t)) ̸= 0; Πi = 0 otherwise.

Assume truthful bidding, and then the expected social welfare is:

∑

q

(λqsTxq + λquTyq + λqpT z)

≤ ρsTx∗ + ρuTy∗ + ρpT z∗ ≤ ρOPTWDP1

where OPTWDP1 is the optimal mixed integer solution. Above
inequality implies that the randomized auction framework achieves
an approximation ratio of ρ with respect to the aggregated cost if
users bid truthfully.

Recall that the auction in Sec. 3 is a reverse auction. Assume
truthful bidding again, and then we have the expected utility of
microgrid i ∈ N :

E[Πi]− v̄i(
∑

q

λq(xq ,yq)) =

(
Πf

i −
∑

t

(si(t)x
∗
i (t)+ui(t)y

∗
i (t))

)∑
t,q λ

q(si(t)x
q
i (t) + ui(t)y

q
i (t))∑

t(si(t)x
∗
i (t) + ui(t)y∗i (t))

Therefore the expected utility of microgrid i is larger than zero
since the fractional VCG auction is individual rational, i.e., Πf

i −∑
t(si(t)x

∗
i (t) + ui(t)y

∗
i (t)) ≥ 0.

3.3 The approximation algorithm for WDP1
Plug-in nature of the approximation algorithm. The randomized
auction framework in Algorithm 1 requires an efficient approxima-
tion algorithm for solving WDP1. We emphasize that any approx-
imation algorithm to WDP1 can be applied as a plug-in module to
the auction framework. Such a plug-in approximation algorithm
should be computationally efficient, and computes a feasible solu-
tion with a cost that is as close as possible to the LPR of WDP1. Be-
low we present an example approximation algorithm design based
on primal-dual optimization.
An example primal-dual algorithm. A key observation regarding
WDP1 is that (1a) is the only set of constraints that couple sched-
ule variables from different microgrids. Lagrangian relaxation can
naturally be applied to relax this set of constraints, such that the re-
laxed optimization problem is decomposable into a series of inde-
pendent single-microgird UCP optimization. We introduce a non-
negative Lagrangian multiplier ξt corresponding to each coupling
constraint (1a), remove constraint (1a), and add a corresponding
penalty term into the objective function of WDP1, which becomes:

∑

i,t

si(t)xi(t) +
∑

i,t

yi(t)ui(t) +
∑

t

z(t)p(t)

+
∑

t

ξt(D(t)−
∑

i

yi(t)− z(t))

=
∑

i,t

si(t)xi(t) +
∑

i,t

yi(t)(ui(t)− ξt)

+
∑

t

z(t)(p(t)− ξt) +
∑

t

ξtD(t)

Note that the objective function may be unbounded when p(t) <
ξt, z(t) → +∞. Hence primal feasibility requires that p(t) ≥
ξt, ∀t. The Lagrangian dual problem to WDP1 is then:

maximize L(ξ) (6)

subject to

ξt ≤ p(t), ∀t ∈ T (6a)

ξ ≽ 0 (6b)

where L(ξ) = minx,y∈P

(∑
i,t si(t)xi(t) +

∑
i,t yi(t)(ui(t)−

ξt) +
∑

t ξtD(t)
)

, and P is the polytope defined by constraints
(1b)− (1g).

Next, the Lagrangian dual problem can be separated into a series
of single-microgrid optimal schedule problems, solved for each mi-
crogrid independently. We can write L(ξ) =

∑
i gi(ξ)+

∑
t ξtD(t),

where gi(ξ), ∀i ∈ N are defined as follows:

gi(ξ) = min
P

(∑

t

si(t)xi(t) +
∑

t

yi(t)(ui(t)− ξt)
)

The Lagrange dual problem can be solved by a subgradient algo-
rithm, as shown in Algorithm 2. In each iteration, the sub-problems
for each microgrid are first solved, then we update the dual vari-
ables by ξt = ξt + bk(D(t)−

∑
i yi(t)− z(t)). Due to constraint

(6a), the inner optimization L(ξ) always chooses z(t) = 0, and
we ignore z(t). Here bk is a step size sequence that satisfies (i)
limk→∞ bk = 0, and (ii)

∑∞
k=0 bk = ∞. A typical such sequence

is in the form of 3/(2k + 1).

Algorithm 2 A subgradient algorithm for WDP1
1: Dual initialization. Set ξt = p(t), ∀t ∈ T
2: repeat
3: — Primal update. For each microgrid i, given current ξ,

compute optimal schedule xi(t) and yi(t) by solving
gi(ξ), ∀i, through dynamic programming.

4: — Dual update. Given current x and y, update the dual
variables by ξt = ξt + bk(D(t)−

∑
i yi(t)).

5: until convergence

The single-microgrid optimization is a classic UCP problem with
one generator, and can be solved by dynamic programming effi-
ciently [13, 28].

Upon convergence of the subgradient algorithm, the relaxed pri-
mal constraint (1a) on grid-wide demand-supply is not always sat-
isfied, although it has been observed that the gaps are rather small
[16]. In this study, primal feasibility can be ensured by: (1) pur-
chasing more from power reservoirs (plants or batteries), i.e., in-
creasing z(t) in WDP1 to satisfy the demand; or using existing
techniques from the literature, e.g., Frangioni et al. [13] use a
heuristic strategy to adjust the commitment status of generators to
meet the demand; Aoki et al. [5] solve least square type problems
to find a feasible solution.
The approximation ratio ρ. The auction framework in Algorithm
1 requires the approximation algorithm to compute an integral so-
lution that is within an integrality gap of ρ from the LPR. While the
subgradient method can always compute optimal solutions for the
dual (and hence the primal) when the original optimization problem
is a linear program, it leads to a duality gap when the original prob-
lem is a linear integer program. However, fortunately, a series of
previous studies have verified that such a duality gap is extremely
small for UCP-type problems, often within 1-2% [16]. The over-
all ratio ρ should be bounded by a constant in most cases, and can
be estimated by empirically studies. The auction framework actu-
ally allows some flexibility in the value selection of ρ — precisely
selecting the smallest upper-bound for the integrality gap serves



the best interest of approximate truthfulness and social welfare but
is hard; choosing a non-exact upper-bound works in practice with
some compromise in truthfulness and social welfare. Our auction
in this section is not an absolutely truthful auction. Nonetheless,
it strikes to achieve a high level of (approximate) truthfulness, and
from the bidder’s point of view, it is unclear what strategy other
than truthful bidding will lead to a higher utility.

4. THE GRID-TO-MICROGRID ELECTRIC-
ITY MARKET

4.1 Market constraints and social welfare max-
imization

In this section, we consider a regional power grid (auctioneer)
who sells electricity to a number of microgrids (bidders) denoted
by M. The system runs in a round-by-round fashion from t = 1
to t = T , for which time period a microgrid i ∈ M submits one
or more bids. Bi denotes all bids submitted by microgrid i ∈ M.
Each bid j ∈ Bi of microgrid i, (bi,j ,di,j), specifies a willingness
to pay, bi,j , for a demand curve di,j that contains entries di,j(t),
which is the amount of electricity demand at each time slot t. In
practice, di,j is derived from a microgrid’s prediction of near fu-
ture power consumption. Similar to the microgrid-to-grid market
in Sec. 3, the auction of electricity from the regional power grid to
the microgrids is conducted at t = 1, when all bids are collected.
Moreover, χi,j is a binary decision variable indicating whether mi-
crogrid i wins bid j or not. Let v̄i(χ) denote the true valuation
of microgrid i, known by microgrid i only. We assume that v̄i(χ)
is linear in χ. The available capacity of the regional grid, C(t),
varies over time, due to fluctuation in both the output from wind
and solar generators and background demand. For example, Fig. 3
illustrates the fluctuation of hourly demand and available capacity
within Ontario, Canada [3]. We assume that at each time, a sin-
gle bid cannot exceed the total available capacity of the grid, i.e.,
C(t) > R(t) ! maxi,j di,j(t).
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Figure 3: The fluctuation of hourly Electrical power demand
and available capacity from October 29 to November 04, 2013
within Ontario, Canada.

We employ the XOR-bidding language [22], such that among all
bids submitted by a microgrid, at most one bid can win:∑

j

χi,j ≤ 1,∀i ∈ M

Furthermore, the total power demand of all winning bids at each
time slot cannot exceed the available capacity of the grid:∑

i,j

di,j(t)χi,j ≤ C(t),∀t

The winner determination problem (WDP2) then maximizes so-
cial welfare (total utility of both the grid and the microgrids, with
payments from the latter cancelling revenue of the former), under

the above two constraints:

maximize
∑

i,j

bi,jχi,j (7)

subject to:
∑

j

χi,j ≤ 1, ∀i ∈ M (7a)

∑

i,j

di,j(t)χi,j ≤ C(t), ∀t (7b)

χi,j ∈ {0, 1}, ∀i ∈ M, j ∈ Bi (7c)

A salient feature in the grid-to-microgrid electricity market lies
in the temporal dimension constraint that couples demand-supply
across different time slots, as evident in (7b). As a result, WDP2
becomes NP-hard (proven below), making it highly non-trivial to
design an auction that simultaneously guarantees truthfulness and
good social welfare efficiency.

THEOREM 2. WDP2 in (7) is NP-hard.

PROOF. We present a polynomial-time reduction from the knap-
sack problem, a classic NP-hard problem [18] defined as:

max
χ

{
n∑

i=1

viχi s.t.
n∑

i=1

wiχi ≤ W,χi ∈ {0, 1}}

Let us consider a special case of the WDP2: |M| = n, each
bidder submits a single bid and only one time slot is considered.
WDP2 degrades into:

max
χ

{
n∑

i

biχi s.t.
n∑

i

diχi ≤ C,χi ∈ {0, 1},∀i ∈ M}

which is exactly a classic knapsack problem. Apparently, the re-
duction can be done within polynomial time. Therefore, WDP2 in
(7) is NP-hard. ⊓'

4.2 The randomized auction framework
Theorem 2 suggests that solving WDP2 becomes daunting as the

number of microgrids grows, which rules out a direct application of
the VCG auction mechanism in the grid-to-microgrid market, since
it requires optimally solving multiple WDP2 instances. We resort
to the LPR of WDP2 by relaxing constraint (7c) to (χi,j ≤ 1, ∀i ∈
M, j ∈ Bi, is redundant and hence ignored):

χi,j ≥ 0, ∀i ∈ M, j ∈ Bi (7c’)

Similar to the framework applied in Sec. 3, we design an elec-
tricity auction following the randomized auction framework below.
Step 1. Simulate the fractional VCG auction. Compute the
optimal fractional solution χ∗ to the LPR of WDP2. Compute
fractional VCG payments: buyer k pays πf

k =
∑

i,j bi,jχ
′
i,j −∑

i̸=k,j bi,jχ
∗
i,j , where χ′ is the optimal solution to WDP2’s LPR

without selling any energy to microgrid k. The fractional (infeasi-
ble) solution χ∗ is decomposed into integral (feasible) solutions in
Step 2.
Step 2. Decompose the fractional solution χ∗. We next decom-
pose χ∗ into a combination of a series of feasible integer solutions
by finding non-negative multipliers {νq}q∈J , such that

∑
q∈J ν

q =
1,

∑
q∈J ν

qχq = χ∗/a, where J is the index set for all feasible
integer solutions to WDP2.

Similar to the decomposition in Sec. 3, the decomposition step
solves a pair of primal-dual LPs through the ellipsoid method, which
requires an approximation algorithm to WDP2 that computes an in-
teger solution χ, satisfying:



∑

i,j

bi,jχi,j ≥ 1/a
∑

i,j

bi,jχ
∗
i,j

Step 3. Randomized winner selection and payment scaling. Se-
lect χq with probability νq , with following defined scale-down
payment πi for guaranteeing truthfulness and individual rational-
ity, as analyzed below.

πi =
{
πf
i

∑
j bi,jχ

q
i,j∑

j bi,jχ
∗
i,j

if
∑

j bi,jχ
∗
i,j ̸= 0

0 otherwise

Truthfulness. Since the auction in Sec. 4 is an ordinary (forward)
auction, the expected utility of microgrid i is:

v̄i(
∑

q

νqχq
j(t))− E[πi] = (v̄i(χ

∗)− πf
i )/a.

Then truthfulness of the 3-step auction follows from the truthful-
ness of the fractional VCG auction.

The convex decomposition. We compute values for νq , which are
weights required in the decomposition of χ∗ for solution feasibil-
ity, by solving a pair of primal-dual LPs below:

Primal: minimize
∑

q∈J
νq (8)

subject to:
∑

q∈J
νqχq = χ∗/a

∑

q∈J
νq ≥ 1

νq ≥ 0, ∀q ∈ J

Dual: maximize
∑

i,j

wi,jχ
∗
i,j/a+ ι (9)

subject to:
∑

i,j

wi,jχ
q
i,j + ι ≤ 1,∀q ∈ J

wi,j unconstrained, ι ≥ 0,∀i, j

Our goal is to solve the primal to optimal with
∑

q ν
q = 1. We

next prove that
∑

q ν
q = 1 indeed happens at optimum.

THEOREM 3. Given a polynomial time approximation algorithm
to WDP2 that computes an integer solutionχ, satisfying

∑
i,j bi,jχi,j

≥ 1/a
∑

i,j bi,jχ
∗
i,j , the primal (8) and the dual (9) can be opti-

mally solved in polynomial time, with optimal objective value of
1.

PROOF. First note that w = 0, ι = 1 constitutes a feasible solu-
tion to the dual, yielding an objective value of 1. Hence the optimal
dual objective is at least 1.

By way of contradiction, we assume that
∑

i,j wi,jχ
∗
i,j/a+ ι >

1. The only potential problem is that the dual variable wi,j can
be negative, making the approximation algorithm not applicable.
Let w+

i,j = max{wi,j , 0}. Instead of wi,j , we use w+
i,j as input

for the approximation algorithm. Assume given w+
i,j , we apply the

approximation algorithm for verifying the integrality gap of WDP2:

∃q,
∑

i,j w
+
i,jχ

q
i,j ≥

∑
i,j w

+
i,jχ

∗∗
i,j/a, where χ∗∗ is the optimal

fractional solution given w+ as input. Let

χ̄i,j =

{
χq
i,j if wi,j ≥ 0

0 otherwise

χ̄i,j can be verified to be a feasible integer solution to WDP2. We
then have

∑

i,j

wi,jχ̄i,j =
∑

i,j

w+
i,jχ

q
i,j ≥

∑

i,j

w+
i,jχ

∗∗
i,j/a

≥
∑

i,j

w+
i,jχ

∗
i,j/a ≥

∑

i,j

wi,jχ
∗
i,j/a

> 1− ι

implying
∑

i,j wi,jχ̄i,j + ι > 1, which violates the first dual con-
straint. A contradiction occurs. Hence the optimal dual objective
is 1. Due to strong LP duality, the optimal primal objective is 1 as
well.

Similar to Sec. 3, the primal LP (8) has an exponential number
of variables. We resort to the dual LP (9), which has an exponential
number of constraints, and can be solved using the ellipsoid method
in polynomial time, given a separation oracle (the approximation
algorithm in Sec. 4.3). Once the dual LP is solved, by using a
polynomial number of hyperplanes found by the separation oracle,
we then convert the primal LP to an optimization with a polynomial
number of variables corresponding to these hyperplanes, which can
be solved in polynomial time as well. The weights then are found
as a byproduct of solving the primal LP. ⊓'

4.3 The approximation algorithm for WDP2
Dual of WDP2’s LPR. We now focus on designing an approxima-
tion algorithm to WDP2 that verifies its integrality gap, as required
in the ellipsoid method to solve dual (9). Introducing dual variables
φ and ψ for constraints (7a) and (7b), respectively, we obtain the
dual of WDP2’s LPR:

minimize
∑

i

φi +
∑

t

C(t)ψt (10)

subject to:

φi +
∑

t

di,j(t)ψt ≥ bi,j , ∀i, j (10a)

φi,ψt ≥ 0 ∀i, t (10b)

A Greedy Primal-Dual Algorithm. We apply the classic greedy
primal-dual framework that is proven effective for approximating
NP-hard problems with an IP formulation [7], and design Algo-
rithm 3 for WDP2 in (7). Algorithm 3 first initializes the primal and
dual variables (lines 2-6). Then a while loop iteratively updates
the primal and dual variables by choosing the highest unit-weight
bids from microgrids (line 10-13). The while loop terminates
when all microgrids are satisfied or the generated primal variable
χ becomes infeasible, i.e., allocated resources exceed the capacity
of the grid. In the following analysis, let φτi ,ψτt be the dual vari-
ables, and pτ be the primal objective at the end of the τ -th iteration
of the while loop.
Primal feasibility. We study the feasibility of solutions returned
by Algorithm 3 first.

THEOREM 4. Algorithm 3 provides a feasible solution to WDP2,
i.e., IP (7).

PROOF. Constraint (7a) will be respected because once Algo-
rithm 3 finds a power supply curve for user i, no more power re-



Algorithm 3 The Greedy Primal-Dual Approximation Algorithm
1: // Initialization
2: θ = mint C(t)/R(t);
3: p = 0; U = ∅;
4: ∀i, j : χi,j = 0;
5: ∀i : φi = 0;
6: ∀t : ψt = 1/C(t);
7:
8: // Iterative update of primal and dual variables:
9: while ∑

t C(t)ψt < T exp(θ − 1) AND U ̸= M do
10: for all i ∈ M\ U do
11: ji = argmaxj{bi,j};
12: end for
13: µ = argmaxi∈M\U

{ bi,ji∑
t di,ji (t)ψt

}
;

14: χµ,jµ = 1; φµ = bµ,jµ ;
15: p = p+ bµ,jµ ; U = U ∪ {µ};
16: for all 1 ≤ t ≤ T do
17: ψt = ψt · (T exp(θ − 1))(dµ,jµ (t))/(C(t)−R(t));
18: end for
19: end while

source will be allocated to i in the future. Values in x are always
binary (0 or 1) since they are initialized to 0 (line 4) and updated to
1 only (line 14). Constraint (7c) therefore will not be violated.

Let us examine the second constraint (7b). Suppose that the so-
lution is feasible so far. Let j̃ ∈ Bĩ be the first bid that breaks
the feasibility when added to the current solution, say, in iteration
τ . That is, ∃t, such that

∑
i,j∈Γ di,j(t) ≤ C(t) and dĩ,j̃(t) +∑

i,j∈Γ di,j(t) > C(t), where Γ is the set of bids added to the
solution before bid j̃. Since each single bid cannot exceed the ca-
pacity constraint, i.e., C(t) > R(t) ≥ maxi,j di,j(t), we have

∑

i,j∈Γ

di,j(t) > C(t)−R(t) ⇒
∑

i,j∈Γ

di,j(t)/(C(t)−R(t)) > 1

and that leads to:

C(t)ψτ−1
t = (T exp(θ−1))

∑
i,j∈Γ di,j(t)/(C(t)−R(t)) > T exp(θ−1)

which satisfies the first stopping condition in line 14. This implies
that iteration τ − 1 is the last iteration, and the bid j̃ would not be
added to the solution at all. ⊓'

Dual feasibility: dual fitting. The primal solution is always fea-
sible during the execution, but the dual is not necessarily so. The
following lemma ensures that the dual variables can be made fea-
sible through posterior scaling by a carefully chosen factor (dual
fitting).

LEMMA 1. If (φτ−1,ψτ−1) is the (possibly infeasible) dual so-
lution at the beginning of the τ -th iteration, then (φτ−1, ϵf(ψτ−1,
jτi )ψ

τ−1) is a feasible solution to the dual (10), where f(ψ, ji) !
bi,ji/(

∑
t di,ji(t)ψt), ϵ ! maxj′,j′′∈Bi,i,t di,j′(t)/di,j′′(t).

PROOF. According to line 11, we have ∀i, j, bi,j ≤ bi,ji . Be-
cause φµ is set to bµ,jµ where bµ,jµ ≥ bµ,j , ∀µ ∈ U , j ∈ Bµ. That
is:

φµ ≥ bµ,j , ∀µ ∈ U , j ∈ Bµ

which implies that constraint (10a) is satisfied ∀µ ∈ U , j ∈ Bµ.
Next we examine the bidders µ ∈ M \ U . Also note that jτi is

decided by a maximization in line 13. Therefore,

f(ψτ−1, jτi ) ≥
bi,ji∑

t di,ji (t)ψ
τ−1
t

, ∀i ∈ M\ U ⇔

f(ψτ−1, jτi )
∑

t

di,ji (t)ψ
τ−1
t ≥ bi,ji , ∀i ∈ M\ U (11)

Note that ϵdi,j1(t) ≥ di,j2(t), ∀j1, j2 ∈ Bi, i, t, Eqn. (11) fur-
ther suggests that the constraint (10a) is respected by the scaled
solution, i.e.,

ϵf(ψτ−1, jτi )
∑

t

di,j(t)ψ
τ−1
t ≥ bi,ji ≥ bi,j ,∀i ∈ M\ U , j ∈ Bi.

This completes the proof. ⊓'
Approximation ratio.

THEOREM 5. Algorithm 3 computes an a-approximate solution
to WDP2 in polynomial-time, and also verifies that the integrality
gap of WDP2 is bounded by a, where a = 1 + ϵΛ(eTΛ−1 − 1),
Λ = θ

θ−1 .

PROOF. First we analyze the approximation ratio of Algorithm
3. Let d1(τ) =

∑
i∈M φτi , d2(τ) =

∑
t C(t)ψτt . Let d be the

optimal value to the dual (10). Let jµ denote the bid selected in the
τ -th iteration. ω is denoted the last iteration of the loop.
Case 1: Algorithm 3 stops at ω-th iteration where U = M and∑

t C(t)ψt < T exp(θ − 1). We know that each microgrid wins
one bid. In fact the algorithm produces an optimal solution to IP (7)
in this case. Theorem 4 guarantees that pω is the value of a feasi-
ble solution to IP (7). Meanwhile since φωµ = maxj∈Bµ{bµ,j} ≥
bµ,j , ∀µ ∈ U , j ∈ Bµ, thus constraint (10a) is satisfied regardless
of ψ, e.g., (φω,ψ = 0) is a feasible solution, whose value is ex-
actly pω as well, to the dual of the LPR. By weak duality for the LP
relaxation, any feasible solution to the dual (10) is an upper bound
of IP (7). Thus pω is the optimal value to IP (7).
Case 2: Algorithm 3 stops at ω-th iteration where

d2(ω) =
∑

t

(C(t)ψωt ) ≥ T exp(θ − 1).

We analyze the approximation ratio in following two sub-cases.
Sub Case 2.1: If ∃ an iteration τ ≤ ω, such that a ≥ d

d1(τ−1) ,
then an a-approximate ratio is found, since (i) d1(τ) is a non-
decreasing function of τ because it becomes larger when the it-
eration continues; (ii) d1(τ − 1) = pτ−1, which is the value of the
primal solution;

Sub Case 2.2: a < d
d1(τ−1) , for all iterations τ ≤ ω. For any

iteration τ ≥ 1, we have:

d2(τ) =
∑

t

C(t)ψτ−1
t (T exp(θ − 1))(dµ,jµ (t))/(C(t)−R(t))

=
∑

t

C(t)ψτ−1
t (1 +

δ
C(t)
R(t) − 1

)(dµ,jµ (t))/R(t))

≤
∑

t

C(t)ψτ−1
t (1 +

δ
C(t)
R(t) − 1

dµ,jµ (t)/R(t))

≤ d2(τ − 1) +∆
∑

t

dµ,jµ (t)ψ
τ−1
t

where δ = (C(t)
R(t) − 1)((T exp(θ − 1))

1/(
C(t)
R(t)

−1) − 1), ∆ =

maxt
δC(t)

C(t)−R(t) . The first inequality is due to (1 + a)x ≤ 1 +

ax, ∀x ∈ [0, 1].
Note that δC(t)

C(t)−R(t) is a non-increasing function of C(t)
R(t) > 1,

and θ = mint C(t)/R(t), then δC(t)
C(t)−R(t) reaches the maximum

when C(t)
R(t) = θ, i.e., ∆ = θ(eT 1/(θ−1) − 1).



Recall the definition of f(ψτ−1, jµ), then we have:
∑

t

dµ,jµ (t)ψ
τ−1
t = bµ,jµ/f(ψ

τ−1, jµ)

Since pτ is the value of the primal solution at the end of τ -th
iteration, then pτ − pτ−1 = bµ,jµ , this leads to:

d2(τ) ≤ d2(τ − 1) +∆
pτ − pτ−1

f(ψτ−1, jµ)
(12)

Following Lemma 1, we covert the dual variables (φτ−1,ψτ−1)
at the τ -th iteration to (φτ−1, f(ψτ−1, jµ)ψ

τ−1), which is a fea-
sible solution to the dual (10). Therefore we have the following
inequality to associate d with d1 and d2:

d ≤ d1(τ − 1) + ϵf(ψτ−1, jµ)d2(τ − 1)

⇒ f(ψτ−1, jµ) ≥ 1
ϵ
d−d1(τ−1)
d2(τ−1)

Recall that for all iterations τ ≤ ω, a < d
d1(τ−1) , implying:

1

f(ψτ−1, jµ)
≤ ϵ

d2(τ − 1)

d− d1(τ − 1)
≤ ϵ

a

a− 1

d2(τ − 1)

d

Substitute this bound on 1/f(ψτ−1, jµ) in Eqn. (12):

d2(ω) ≤ d2(ω − 1)(1 + ϵ
a∆

(a− 1)d
(pω − pω−1))

≤ d2(ω − 1) exp(ϵ
a∆

(a− 1)d
(pω − pω−1))

≤ d2(0) exp(ϵ
a∆

(a− 1)d
pω)

the second inequality is due to 1 + x ≤ ex, ∀x ≥ 0.
Note that the stopping condition in this sub case is d2(ω) ≥

T exp(θ − 1) and d2(0) = T , as a result, we have:

T exp(θ − 1) ≤ T exp(ϵ
a∆

(a− 1)d
pω)

⇔ d/pω ≤ ϵ
a∆

(a− 1)(θ − 1)

Due to the weak duality theorem in linear programming and the
relaxation of IP (7), the following inequality holds:

OPTWDP2/pω ≤ d/pω

where OPTWDP2 is the value of the optimal solution to WDP2.
This means d/pω is an upper bound of the approximation ratio.

We hence obtain the approximation ratio:

a = 1 + ϵΛ(eTΛ−1 − 1).

Recall that the integrality gap of WDP2 is defined as the ratio be-
tween OPTLPR2 and OPTWDP2, where OPTLPR2 is the value
of the objective function for the optimal fraction solution χ∗. We
notice that d ≥ OPTLPR2 and OPTWDP2 ≥ pω , which lead to

OPTLPR2/OPTWDP2 ≤ OPTLPR2/pω ≤ d/pω = a

Thus Algorithm 3 verifies the integrality gap, providing an inte-
ger solution of value at least 1/a times OPTLPR2.

Finally we examine the computation complexity of Algorithm 3.
The termination conditions ensure that the while loop in Algo-
rithm 3 iterates at most |M| times, linear to the input size. Within

the loop, lines 10-18 can be finished in polynomial time. Therefore,
Algorithm 3 runs in polynomial time overall. ⊓'

Exploiting the dual fitting result in Lemma 1 and LP duality,
we prove that Algorithm 3 guarantees an a-approximation of so-
cial welfare, as well as verifying an integrality gap of WDP2 of a,
where a = 1+ ϵΛ(eTΛ−1 − 1), Λ = θ

θ−1 . In practice, the volume
of a grid’s power capacity is substantially larger than a single mi-
crogrid’s demand, i.e., θ ≫ 1. The number of predicted time slots
T is a relatively small constant. Consequently,

lim
θ→∞

a = lim
Λ→1

(1 + ϵΛ(eTΛ−1 − 1)) = 1 + ϵ(e− 1)

which suggests that the approximation ratio a is close to 1+ ϵ(e−
1). When each microgrid only submits one bid, i.e., ϵ = 1, then
a ≈ 2.72.

5. PERFORMANCE EVALUATION
5.1 The microgrid-to-grid market

We adopt the hourly demand curve of the grid in Ontario, Canada
from 00:00, Jan. 3, 2013 to 23:59, Jan. 3, 2013 [3] in evaluating the
microgrid-to-grid auction. The order of magnitude has been scaled
down by 100, under the rationale that microgrids are not expected
to fully support the grid, but will act as a supplement supplier. The
trend of hourly demand remains the same after such scaling. The
maximum and minimum outputs of each microgrid are Pmax =
10MW and Pmin = 0, respectively. The ramping rate is δ =
1MW/h. Once a generator is turned ON, it must remain active for
at least Ton = Toff = 2h. All generators are OFF at the beginning
of the simulation.
Performance of the approximation algorithm. We first imple-
ment and evaluate Algorithm 2. The results are shown in Fig. 4.
Compared with the optimum, the approximation algorithm achieves
an impressive performance, approaching the optimum rather closely
in most cases. We observe that the cost goes down when the num-
ber of microgrids increases. This is because a small number of
microgrids means little cheap energy to the grid. In order to sat-
isfy the power demand, the grid has to resort to more expensive
alternatives.
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Figure 4: A comparison between optimum and Algorithm 2.

We also compare the energy purchased from plants to supple-
ment the temporary deficits in energy, as illustrated in Fig. 5.
We observe that the grid purchases a large amount of energy from
plants in the first few hours. This is because all generators are OFF
at the beginning. Even if they want to sell energy to the grid, they
cannot increase the energy output abruptly due to the UCP3 con-
straint. In this case, the grid needs to purchase energy from plants
or batteries at a relatively high cost. Later a large number of micro-
grids could help decrease the cost.
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Figure 5: A comparison of energy purchased from plants to
supplement the deficits in energy, among different numbers of
bidders.

5.2 The grid-to-microgrid market
In this case, microgrids submit bids to purchase energy from the

grid for satisfying their own demands. We again use the hourly
zonal demands data, shown in Fig. 6, from Ontario, Canada [3] to
drive the simulation. These data have been scaled down to meet the
reality in practical microgrids, e.g., a community or a university.
The trend in demand fluctuation remains the same. We use these
data to emulate a number of microgrids, from 10 microgrids to 80
microgrids. The total capacity of the grid is set according to Fig. 3.
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Figure 6: Hourly power demands from 00:00 Jan. 3, 2013 to
23:59 Jan. 3, 2013 in the Northeast, Northwest, East and Ot-
tawa regions in the province of Ontario, Canada [3].

Performance of the Approximation Algorithm. We first inves-
tigate the performance of the proposed approximation algorithm,
Algorithm 3. The number of microgrids (bidders) varies from 10
to 80. We compare the social welfare of Algorithm 3 with the op-
timum as well as the theoretical bounds, as illustrated in Fig. 7.
We observe that the performance of Algorithm 3 in terms of social
welfare, is close to the optimum, and is much better than suggested
by the worst-case theoretical guarantee we have been able to prove.
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Figure 7: A comparison among the optimum, Algorithm 3 and
theoretical bounds.

We further study the performance of the proposed approximation
algorithm when demand predictions in di,j are not perfect, when
microgrids underestimate their near future demand by a percentage
within 5% and 40%, as shown in Fig. 8. Their bidding prices
for unit cost ($ per MWh) remain the same. We observe a close
to linear relationship between the achieved social welfare and the
prediction error, and the social welfare decreases when the error
grows.
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Figure 8: Social welfare achieved by Algorithm 3 under de-
mand prediction errors, when the numbers of bidders are 40
and 80, respectively.

The Randomized Auction. By applying the ellipsoid method and
the approximation algorithm, we implement the randomized auc-
tion. We obtain the average social welfare by simulating each auc-
tion for 20 times, as shown in Fig. 9. The results show that the ex-
pected social welfare fluctuates around the theoretical bound. Fig.
10 shows the corresponding total payments. Note that the seem-
ingly high social welfare achieved by the fractional VCG auction
is actually infeasible, since the fractional solution to WDP2 cannot
be implemented in practice.
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Figure 9: Social welfare of the randomized auction, compared
with the fractional VCG auction.

6. CONCLUSION
A fundamental trend in power grid evolution is the proliferation

of distributed generation through the microgrid paradigm. The in-
tegration of microgrids with traditional power grids requires so-
lutions to both technical and economic challenges. This work is
among the first that addresses the latter, through the design of com-
putationally efficient electricity auctions that target good social wel-
fare and truthfulness. The auction designed for the microgrid-to-
grid market further represents the first electricity auction mecha-
nism that explicitly models the UCP constraints that are critical in
power grid optimization. The proposed auction mechanisms are not
completely ready for immediate application in practice, due to its
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Figure 10: Total payment of the randomized auction, compared
with the fractional VCG auction.

limitations in assumptions and computational overhead. We hope
the gap will be closed by future work.
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