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Abstract—Network coding is a fundamental tool that enables
higher network capacity and lower complexity in routing algo-
rithms, by encouraging the mixing of information flows in the
middle of a network. Implementing network coding in the core
Internet is subject to practical concerns, since Internet routers
are often overwhelmed by packet forwarding tasks, leaving
little processing capacity for coding operations. Inspired by the
recent paradigm of network function virtualization, we propose
implementing network coding as a new network function, and
deploying such coding functions in geo-distributed cloud data
centers, to practically enable network coding on the Internet. We
target multicast sessions (including unicast flows as special cases),
strategically deploy relay nodes (network coding functions) in
selected data centers between senders and receivers, and embrace
high bandwidth efficiency brought by network coding with dy-
namic coding function deployment. We design and implement the
network coding function on typical virtual machines, featuring
efficient packet processing. We propose an efficient algorithm for
coding function deployment, scaling in and out, in the presence
of system dynamics. Real-world implementation on Amazon EC2
and Linode demonstrates significant throughput improvement
and higher robustness of multicast via coding functions as well
as efficiency of the dynamic deployment and scaling algorithm.

I. INTRODUCTION

Network coding is a simple yet elegant technique that en-
courages information mixing as data flows traverse a network.
Departing from the traditional store-and-forward paradigm,
network coding represents a general routing model where
nodes (e.g., routers) in the network can both forward and
encode packets. Extensive theoretical studies on network cod-
ing have identified a number of advantages, e.g., higher end-
to-end throughput, lower transmission cost, and achieving
network capacity with low-complexity algorithms [1], [2],
[3], [4]. Because of practical constraints, routers on today’s
Internet mostly forward or drop received packets only, with
no capacity equipped for computation-intensive tasks such as
packet encoding and decoding. Real-world implementation of
network coding has been confined to the overlay layer, e.g.,
in a peer-to-peer (P2P) network [5], [6], [7]. Due mainly to
the unreliability of peers, P2P-based network coding has not
seen mainstream deployment in the Internet.
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Latest developments of the network function virtualization
(NFV) paradigm shed light on practical, reliable deployment
of network coding. Leveraging software implementation that
runs on virtualization-based platforms and industry-standard
hardware, NFV aims to enable great flexibility and cost
effectiveness in deployment and maintenance of network func-
tions, which used to be realized on dedicated hardware [8].
Without relying on routers equipped with coding capacity,
we advocate implementing network coding as a new type of
virtual network function (VNF), and deploying coding func-
tions in geo-distributed cloud data centers, to practically enable
network coding for bandwidth-efficient flow transmission on
the Internet. Coding function deployment is in the charge
of service providers managing large-scale flow transmissions,
e.g., content distribution service providers hosting unicast and
multicast sessions, video conferencing service providers with
conference streaming sessions. Network coding functions can
be used for bandwidth efficiency in their systems, with low-
cost, dynamic deployment of the relay and coding nodes.

As compared to P2P-based and other overlay-based net-
work coding systems, implementing network coding as a
VNF embraces great flexibility and cost effectiveness while
guaranteeing reliability and performance predictability, thanks
to the central control of deployment by a service provider and
the application of NFV paradigm. In addition, VNFs (VMs)
deployed in cloud platforms are much more reliable than peers
in a P2P system [9]. As compared to classic client-server
service (e.g., CDN) based on direct source to destination flows,
adding relay nodes may circumvent bandwidth bottlenecks
and long-delay links; the network coding function improves
throughput in cases of stored data downloading, and achieves a
target throughput with less bandwidth consumption in cases of
real-time data streaming. The flexibility of the NFV paradigm
enables dynamic, minimal-effort deployment of necessary cod-
ing nodes according to traffic demand, for cost effectiveness
at the service provider.

This work aims to virtualize network coding as a type of net-
work function, towards full-fledged implementation of network
coding on the Internet, achieving its bandwidth saving poten-
tial with minimal modification in network infrastructures. We
target multicast from a sender to multiple receivers (subsuming
unicast as a special case) as our use cases. As IP multicast is
largely unavailable in today’s Internet, NFV-based multicast is
an effective alternative to support applications such as video
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conferencing, large file sharing, and on-demand multimedia
streaming. Compared with existing application layer multicast
systems, e.g., SALM [10], such solution benefits from network
coding as well as the new NFV paradigm, enabling higher
throughput and great flexibility. Towards such a goal, we
address the following design challenges.

First, implementing an efficient virtual network coding func-
tion is critical for system performance, given that packets are
to be coded and forwarded at near line speed. We implement
well-optimized virtual machines (VMs) tailored for network
coding. As compared to using physical machines, elastic VM
provisioning enables agile scaling in and out of VNFs when
needed. We exploit the state-of-the-art data plane development
kit (DPDK) [11] architecture to allow network coding func-
tions to transmit/receive packets directly via network interface
cards (NICs), for high coding throughput and low coding
latency. For transparency to applications, network coding
functions are introduced as a layer between transport layer and
application layer in the Internet protocol suite. UDP is selected
as the underlying transport protocol for the network coding
function. We tune the block/generation sizes and buffer size,
to minimize extra delay introduced by coding. A control plane
working with network coding functions is carefully designed,
to facilitate the following management framework.

Second, an efficient management framework is necessary,
helping the service provider route multicast flows to net-
work functions, and decide where to deploy the network
coding functions and adjust the deployment over time for best
bandwidth efficiency with end-to-end delays. We propose a
scaling algorithm, running on a global controller, for dynamic
coding function deployment, multicast routing and efficiently
handling system dynamics (change of available bandwidths
and delays between data centers, addition and termination of
multicast sessions, arrival and departure of receivers). The
design is rooted in an optimal routing and placement problem,
formulated with the help of conceptual flows [4] for an optimal
tradeoff between throughput and cost in VNF deployment.
The dynamic deployment decisions from our algorithm design
are practiced through scaling in/out VNFs as needed, which
represents a major benefit of using NFV.

A prototype NFV-based network coding suite is designed,
implemented, and deployed across geo-distributed cloud com-
prising of Amazon EC2 and Linode data centers. Real-world
experiments demonstrate throughput improvement and higher
robustness of multicast via coding functions, as compared
to direct sender-to-receiver transmissions and routing-only
solutions, at the cost of moderate delay increments (0.9% ∼
1.5%). The experiments also verify that the scaling algorithm
can efficiently deploy VNFs to cater for new demand, and
recycle the resource after the demand departs.

The rest of the paper is organized as follows. We review
related work in Sec. II, and discuss system design and imple-
mentation details in Sec. III. The optimization problem for
coding function deployment and multicast routing, and the
efficient dynamic scaling algorithm are presented in Sec. IV.
Experiment results are in Sec. V. Sec. VI concludes the paper.

II. RELATED WORK

A significant body of research has been conducted on
multicast in the past few decades. Network layer multicast
[12], [13] was proposed and standardized in early 1990s.
Yet most parts of the Internet still lack native multicast
capability as most commercial ISPs do not widely deploy
such a support in their network infrastructure [10]. As a
result, efforts [10], [14], [15], [16] have been devoted to
application-layer multicast protocol design, which implements
multicast forwarding functionality without the need to change
the infrastructure. Compared with the existing application-
layer multicast solutions, our work focuses on multicast with
network coding, while practically implementing network cod-
ing using the emerging NFV paradigm, which offer higher
throughput and great flexibility.

Network coding has been extensively studied since its pro-
posal at the beginning of the century [1]. Li et al. [4] introduce
conceptual flows, and use it to analyze how to efficiently
compute and achieve maximum multicast rates using network
coding. Li et al. [17] design a multicast protocol for wireless
networks using network coding, focusing on reliability and
energy efficiency. Gkantsidis et al. [6] design a network
coding scheme for P2P content distribution. Chen et al. [18]
propose a P2P overlay conferencing system based on network
coding. Yet the unreliable nature of peers hinders the overall
performance. Airlift [19] is a recent cloud service for video
conference using network coding, and is observed to outper-
form P2P based implementations. However, Airlift considers
only static scenarios, and fails to scale in/out dynamically in
accordance with system dynamics.

Considerable efforts on NFV have been devoted to bridging
the performance gap between the dedicated hardware and
virtualized network functions. Martins et al. [20] propose
ClickOS, a high performance, virtualized software middlebox
framework. ClickOS requires to modify the underlying hy-
pervisor, making ClickOS-type VNFs unsupported by current
cloud platforms that include EC2, Azure and Linode. NetVM
[21] enables virtualized network functions to operate at near
line speed on top of DPDK. Similar to ClickOS, it needs
to modify the hypervisor, which rules out NetVM in our
design. Inspired by NetVM, our network coding VNF design
leverages DPDK, using poll mode drivers to access NICs for
high performance. Different from NetVM, our implementation
can be deployed in public cloud platforms.

Along the management of NFV systems, Sherry et al. [22]
advocate that with the advent of cloud computing, middle-
boxes in enterprise networks can be replaced by cloud services
to enable cost reduction and system elasticity. They propose
a service for outsourcing middlebox processing to clouds.
Elias et al. [23] design an orchestration mechanism to control
and reduce resource congestion of the infrastructure in NFV.
Gember et al. [24] design Stratos, an orchestration layer that
offers efficient VNF placement and dynamic scaling algorithm.
Yet the above frameworks focus on virtual middleboxes where
traffic is simply routed among VNFs. Our network coding
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function brings unique challenges as it needs to encode/decode
packets, making those frameworks not applicable.

Khasnabish et al. [25] discuss the impact of NFV and SDN
on network coding, as well as the possibility of integration
of network coding in various network stack layers. Szabo
et al. [26], [27] advocate network coding as a service. Yet
their prototypes are rather simple, focusing on a single unicast
session only. Furthermore, their design cannot be deployed in
geo-distributed cloud data centers, while our implementation,
on the contrary, aims to utilize geo-distributed cloud data
centers to practically enable network coding on the Internet.

III. SYSTEM DESIGN

As shown in Fig. 1, we consider multicast sessions owned
by a service provider, with senders (sources) and receivers
(destinations) distributed in different geographic locations. A
number of cloud data centers reside across these regions, and
the service provider deploys network coding functions in data
centers to assist its multicast service. Each network coding
function is deployed on one VM in a selected data center.
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Fig. 1. An example multicast service enabled by network coding VNF: one
source and three destinations; control plane and data plane.

The system consists of two planes: the control plane decides
where to encode flows, and is responsible for VNF manage-
ment and multicast routing; the data plane is responsible for
receiving and transmitting data and performing data encod-
ing/decoding.

A. The Control Plane
A daemon program runs on each network coding node. A

central controller at a high-performance server or VM com-
municates with the daemons for implementing control-plane
functions. As a key component of the network coding NFV
system, the controller needs to be fault tolerant. Fault tolerance
in NFV is studied in a series of recent work [28], [29], and is
orthogonal to this work. The controller launches network cod-
ing VNFs in geo-distributed data centers on demand. In each
new coding node, daemons start along with initial settings,
e.g., IDs of sessions whose flows it is processing, VNF roles
(encoder or decoder) associated with different sessions, and
UDP ports used for the coding VNF. In the presence of system
dynamics, the controller adjusts coding function deployment
on the fly, i.e., updating the forwarding tables, terminating

existing coding functions and launching new ones. Daemons
need to be informed of: start/end of a network coding session,
forwarding table updates, VNF initial settings and VNF (VM)
shutdown. The signals below are designed to carry these
messages from the controller to the VNFs: NC_START: starts
network coding enabled transmission instead of normal data
transmission; NC_VNF_START: indicates the number of new
VNFs, and initializes these VNFs (VMs) in the corresponding
data center; NC_VNF_END: informs a VNF that it is no
longer used, and shuts it down in τ time; NC_FORWARD_TAB:
updates the forwarding table; NC_SETTINGS: informs the
VNF roles, session IDs, UDP ports, generation/block sizes.

The control plane modules are illustrated in Fig. 2. The
controller computes a coding deployment and multicast rout-
ing scheme by a dynamic algorithm, to be introduced in
Sec. IV, specifying the deployment locations and the num-
ber of coding functions to deploy in each location. The
controller then sends NC_SETTINGS to source(s) to in-
form initial settings, and then further informs next-hop’s
address(es) via NC_FORWARD_TAB. The controller also sends
NC_VNF_START to itself to start the computed number of
VNFs in the data centers decided by the dynamic algorithm.
Starting new VNFs (VMs) is implemented by APIs provided
by cloud providers, e.g., Linode APIs and EC2 CLI/AMI. The
controller then informs the newly started VNFs about their
roles, session and port information via NC_SETTINGS, and
the forwarding table via NC_FORWARD_TAB. When a new
VNF is ready, the controller sends NC_START to inform the
daemon on the VNF to start the network coding function.
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Fig. 2. An illustration of the control plane modules for coding VNFs.

The forwarding table is a text file, recording the next
hops’ IP addresses for each relevant multicast session the
coding function belongs to. After a daemon receives the new
forwarding table file, it sends SIGUSR1, a user-defined signal
in Linux, to temporarily pause its coding function, inform
the coding function of the new forwarding table, and then
resume the function. After loading the new forwarding table,
the network coding function resumes.

Each VNF creates a UDP socket listening at a designated
port, and checks if a packet has the network coding protocol
header (to be discussed next). Encoders extract the payload
of the packets, perform encoding operations, and send the
encoded packets out via NIC to next-hop VNFs. When decoder
VNFs receive encoded packets, they execute decoding opera-
tions and forward the recovered payload to the destinations.

When the network coding topology evolves over time, e.g.,
due to changes of bandwidth and delay, addition and termina-
tion of multicast sessions, arrival and departure of receivers,
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the controller updates the VNFs’ forwarding tables using
NC_FORWARD_TAB. In case of VNF population changes,
NC_VNF_START and NC_VNF_END are employed to launch
and shut down VNFs (VMs), respectively. After a daemon
receives a NC_VNF_END signal, it shuts down its VNF (VM)
in a threshold time τ , instead of immediately, for potential
reuse of the VNF if traffic load increases within τ . The idle
VNF is shut down after τ for saving operational cost. Such
VNF reuse helps mitigate the overhead of launching new
VNFs.

B. The Data Plane

1) Network Coding Details: Generation and Block. In
each multicast session, source data are divided into a number
of generations, each assigned with a session-wide unique
generation number. Within a generation, the data is further
divided into blocks. Network coding happens within each
generation. An encoded block is a linear combination of blocks
within a generation. Fig. 3 shows the relation between the
original data, generation, blocks and encoded block.
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Fig. 3. An illustration of the generation, blocks and encoded blocks.

Randomized Network Coding. We apply randomized net-
work coding (RNC), a powerful coding scheme that guarantees
the receivers can successfully recover the original data with
a high probability [30]. In RNC, each encoded block is
computed by linear combination of blocks within a generation,
and the coefficients in the combination are random numbers
in a Galois field. We follow the practice in the literature
and choose the field GF (28), which was observed to enable
the maximum throughput among all field sizes [2], [19]. We
implement coding by using an open source network coding
library: Kodo [31], which offers high performance RNC.
Network Coding over UDP. In the Internet protocol stack,
the network coding layer is introduced between the application
layer and the transport layer. A network coding (NC) header
is designed to carry information related to the network coding
scheme, including session ID, generation ID, and encoding co-
efficients, with a total of 8 bytes plus the length of coefficients,
which depends on the number of blocks in each generation. We
assume that the system uses the same generation size (number
of bytes in a generation) and block size (number of bytes in a
block) across all sessions. The generation and block sizes are
sent to each network coding function at its initialization stage.

Our network coding function uses UDP as the underlying
transport protocol. The TCP retransmission mechanism makes

TCP not suitable for our network coding function as our
system is not concerned with out-of-order packets or the loss
of a single encoded packet. The data can be successfully
recovered as long as sufficient number of packets are received.
The retransmission mechanism does not help the network
coding function, even worse, could deteriorate the performance
as the sending rate is reduced when retransmission is triggered.
Block and Generation Sizes. We set the block size to 1460
bytes, which together with the NC header (12 bytes, with 4
blocks in each generation), the UDP header (8 bytes) and the
IP header (20 bytes) make up the MTU size (1500 bytes) of
NICs in EC2. Such a setting prevents NC packet fragmenta-
tion. As for the generation size, if there are many blocks in one
generation, the encoding and decoding complexity is high, and
the delay for collecting enough encoded blocks for decoding
increases, especially in cases of packet losses. If there are very
few blocks in a generation, a larger field size is needed for
controlling the chance of linear dependency among encoded
blocks, which in turn increases the coding complexity [31]. We
conduct a comparison study of generation sizes for multicast
in a butterfly topology, as shown Fig. 6 in Sec. V. Fig. 4
shows that the throughput reaches the maximum when each
generation contains four blocks, and plunges when the number
of packets is over 16. As a result, we allow each generation to
contain 4 blocks in our system, in pursue of high throughput
and low latency.
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Fig. 4. A comparison among gener-
ation sizes; each block = 1460 bytes.
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Fig. 5. A comparison among various
sizes of buffer.

2) Virtual Network Coding Function: Towards high data
processing speed, the network coding function (i.e., the VNF)
is designed with the following highlights.
DPDK polling for retrieving packets from NIC. Traditional
interrupt based mechanisms, e.g., netfilter [32], interrupt the
packets, extract the payload, and pass it to an encoding
process in the user mode. Such a mechanism is not suitable
for high performance packet processing due to its costly
context switching and need of thousands of CPU cycles.
The efficiency deteriorates when the number of interrupts
grows. Intel’s DPDK [11] allows applications in user-space
to transmit/receive data directly via NICs using the poll
mode rather than interrupts, reducing unnecessary context
switches for low latency and high throughput. We employ
DPDK for receiving and transmitting packets, which further
provides a gadget named kernel NIC interface (KNI) [11] for
utilizing the kernel network stack for easy packet processing
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on the Internet. We employ KNI to access the kernel network
stack, and assign IP addresses to DPDK enabled NICs. DPDK
separates NICs from the Linux kernel, and these interfaces
under DPDK control cannot obtain an IP address from the
system. This would prevent the deployment of our system
on the Internet. KNI provides a channel between interface
management in the kernel and the DPDK driver, which makes
these interfaces accessible again on the Internet. Additionally,
it allows socket-fashion programming in user space for further
packet processing, which reduces implementation complexity.

Buffer space is needed for storing packets received so far.
A newly arriving packet is stored based on its session ID
and generation ID for further encoding operations. The system
therefore can quickly encode the newly received packets with
existing packets from the same session and same generation.
We employ a FIFO buffer management strategy that discards
the oldest packets once the buffer is full. We measure the
impact of buffer size for a multicast session, as shown in
Fig. 5. Results suggest that buffer size of 1024 generations is
sufficient to guarantee good performance (larger buffer gains
little benefit). Thus, we choose 1024 generations as the buffer
size for each session in the system.

We implement the network coding function on each coding
node in the socket fashion for packet processing. The virtual
network coding function decapsulates received UDP packets
from NICs, obtains the coded blocks, which are placed into its
buffer. The network coding function processes received pack-
ets in a pipelined fashion, i.e., an intermediate VNF generates
an encoded packet immediately after it receives a packet from
the same session and generation, and sends encoded packets
out to the next hops specified in the forwarding table according
to session IDs. In case of the packet is the first one in its
generation received by the VNF, the VNF simply forwards it.

IV. DYNAMIC DEPLOYMENT AND SCALING OF NETWORK
CODING FUNCTIONS

We then design a dynamic algorithm for coding VNF
scaling and multicast routing, executed by the controller.

A. Optimization Problem for Coding Topology Generation
We first formulate the optimization problem of decide the

coding function deployment locations, the number of coding
functions to deploy, and traffic routing among sources, coding
functions, and destinations. There are a set of multicast ses-
sions M (|M | ≥ 1), each assigned a unique session id by the
controller. The source in session m is sm, and the destinations
are dkm, k = 1, ...,Km. Let V be the set of data centers that
the service provider can access for deploying coding functions,
and E be the set of directed links between the data centers
and between the data centers and sources/destinations. Each
destination is capable of decoding; possibly with the help of
a coding VNF in a nearby cloud. The delay along a link
e ∈ E is L(e), which may be time varying. The available
inbound bandwidth and outbound bandwidth of a VNF in data
center v are Bin(v) and Bout(v), respectively. It is common
for data centers to set a bandwidth cap for incoming and

outgoing traffic at each VM from/to the Internet, which can
be time varying as well according to our measurements shown
in Tab. I. A recent study on inter-data center networking [33]
also identified the same phenomenon. Assume VMs of the
same hardware configuration are used for deploying the coding
functions in the same data center, and each coding function
in data center v can encode packets at the maximum rate of
C(v) (bytes/s). We allow each VNF in the system to encode
data for multiple sessions, up to its capacity.

TABLE I
TIME VARYING INBOUND AND OUTBOUND BANDWIDTH FOR ONE HOUR IN
TWO EC2 DATA CENTERS IN OREGON AND CALIFORNIA, RESPECTIVELY.

Time (min) 0 10 20 30 40 50
Oregon 926 918 906 915 915 893

In/Out (Mbps) /920 /938 /889 /929 /914 /881
CA In/Out 919 938 883 924 912 876

(Mbps) /928 /923 /909 /917 /919 /901

Feasible paths. Let Lmax
m be the max tolerable delay from the

source to each destination in session m. For example, if the
multicast is for live video streaming or video conferencing,
then Lmax

m is small, to ensure real-time playback at destina-
tions; for file downloading or stored video streaming, the delay
can be larger. Lmax

m restricts the flow paths that a multicast
session can use, i.e., the coding VNFs that the flow can be
relayed through. Given the set of candidate data centers V ,
we can decide all feasible paths (whose end-to-end delay is no
larger than Lmax

m ) between the source and each destination in a
multicast session m, by running a modified depth-first-search
(DFS) on the graph consisting of sources, destinations, data
centers and the links in-between: the DFS continues to search
for paths for each pair of source and destination, as long as the
path currently obtained has a delay smaller than Lmax

m and has
no cycles. In practice, the number of candidate data centers is
usually small, around 5 ∼ 20. Such DFS can quickly compute
the feasible paths in topologies of this scale. Let P k

m, ∀m, k, be
the resulting path set from source sm to destination dkm. The
set includes the direct path from the source to the destination,
if the delay on the direct link is below Lmax

m .
Decisions. Conceptual flows [4], [19] is a classic technique
in network coding for formulating routing problems of coded
multicast flows. A multicast session of K destinations is
deemed as containing K conceptual flows, each from the
source to one destination. The actual multicast flow rate on
a link is the maximum of the rates of all conceptual flows
using this link. Let fk

m be the conceptual flow to destination
dk in session m, which may contain multiple paths in set P k

m.
Let fk

m(p) be the conceptual flow rate along the path p ∈ P k
m.

Let fm(e) denote the actual flow rate of multicast session m
along link e. We have

fm(e) = max
k∈{1,...,Km}

∑

p∈Pk
m:e∈p

fk
m(p), (1)

where
∑

p∈Pk
m:e∈p f

k
m(p) is the total rate of conceptual flow

fk
m going through link e. fm(e) decides the actual routing of

multicast session m: if fm(e) is zero, the multicast flow is not
sent along link e; otherwise, the flow is sent along e at the rate
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specified by fm(e). Network coding happens at a data center if
multiple incoming flows in the same session arrive at it. Let an
integer variable xv be the number of VNFs to deploy in data
center v, to handle all incoming flows of multiple sessions. Our
optimization problem is to compute VNF deployment in the
data centers (xv’s where xv = 0 indicates no coding function
at v) and flow routing for each session (fm(e)), given the
pre-computed paths based on delay constraint.
Objectives. Let λm indicate the end-to-end throughput of
session m, i.e., the rate that each destination in session m
can receive the data at. Our objectives are to maximize the
throughputs of multicast sessions while minimizing the total
number of VNFs deployed (which decides cost of the service
provider). To pursue two objectives in the same optimization
problem, we combine them into one objective function, by
a factor α ≥ 0 that converts the number of VNFs into the
same unit as throughput and also gauges the tradeoff between
throughput maximization and deployment cost minimization.
The optimization problem is formulated as follows:

maximize
∑

m

λm − α
∑

v∈V

xv (2)

subject to: λm ≤
∑

p∈Pk
m

fk
m(p), ∀m, k (2a)

∑

p∈Pk
m:e∈p

fk
m(p) ≤ fm(e), ∀m, k, e (2b)

∑

m∈M

∑

e:e=(u,v),
∀u∈V ∪{sm̃}m̃∈M

fm(e) ≤ Bin(v)xv, ∀v ∈ V, (2c)

∑

e:e=(u,dkm),
∀u∈V ∪{sm}

fm(e) ≤ Bin(d
k
m), ∀m, k (2c′)

∑

m∈M

∑

e:e=(u,v),∀v∈V

fm(e) ≤ Bout(u)xu, ∀u ∈ V, (2d)

∑

e:e=(sm,v),∀v∈V

fm(e) ≤ Bout(sm), ∀m ∈M, (2d′)

∑

m∈M

∑

e:e=(u,v),
∀u∈V ∪{sm̃}m̃∈M

fm(e) < C(v)xv, ∀v ∈ V, (2e)

fk
m(p) ≥ 0, fm(e) ≥ 0, ∀m, k, p, e (2f)

λm ≥ 0, xv ∈ Z+
0 , ∀v ∈ V,m ∈M. (2g)

Constraint (2a) defines the throughput of multicast ses-
sion m according to λm = mink{flow rate of conceptual
flow fk

m}, where flow rate of fk
m is the overall rate of the

conceptual flow along all its possible paths
∑

p∈Pk
m
fk
m(p).

Constraint (2b) is derived based on the relation between
conceptual flow and actual flow in Eqn. (1). Constraint (2c)
and (2d) enforce the inbound and outbound bandwidth limits
of a VM in each data center. In particular, constraint (2c’)
defines the inbound bandwidth limits for all destinations, and
constraint (2d’) limits the outbound bandwidth for all sources.
Constraint (2e) indicates that the total incoming flow rate to
data center v cannot exceed the overall capacity of VNFs

deployed.
The optimization problem is expressive in catering for

different scenarios. We can set λm to a given multicast rate
if the rate is fixed for multicast session m (e.g., in case of
live streaming), while focusing on finding the most bandwidth
efficient routes of the flow to achieve the end-to-end rate while
minimizing coding function deployment cost. In the case that
the number of VNFs to deploy in each data center is fixed,
i.e., x(v) is given, we can set α = 0 and find the best routes to
maximize throughputs of the multicast sessions. Without loss
of generality, we discuss our scaling algorithm in the following
for the case of achieving the best tradeoff between throughput
maximization and cost minimization, gauged by α.

Optimization (2) is an integer linear program. To solve it
efficiently for practical applications, we can relax the integer
constraint (2g), and then use standard LP solvers, e.g., glpk,
to solve the relaxed program optimally and efficiently. We will
then round the fractional solutions to nearest integer values.
Alternatively, we can apply certain LP solvers, e.g., cplex, to
directly solve the integer linear program under practical inputs,
which can derive an approximate solution in polynomial time.

An optimal solution of (2) contains the number of VNFs
and a set of conceptual flows, guiding the flow routing. In the
case where only one flow of a session arrives at a data center
V , direct forwarding is sufficient and coding is unnecessary.
The controller informs the VNFs at data center V to simply
forward all packets from that session. After encoding, the
encoded packet is forwarded according to its conceptual flow.
If there is only one VNF launched in the next hop data center,
then the next hop address is the VNF’s address. In case of
multiple VNFs launched in one data center, we dispatch the
incoming packets across these VNFs based on session id and
generation id to those VNFs. Packets belonging to the same
generation are dispatched to the same VNF instance. The
forwarding information is sent to the VNFs at previous hop
nodes of all the incoming flows.

B. Dynamic Scaling Algorithm
The initial coding function deployment and multicast rout-

ing can be decided by solving (2). Over time, the coding topol-
ogy needs to be adjusted, upon the following events: i) avail-
able inbound/outbound bandwidth increases or drops; ii) delay
between two data centers or between a source/destination and a
data center increases or decreases; iii) a new multicast session
arrives, or an existing multicast session ends; a new receiver
joins a session, or an existing receiver leaves a session.
Bandwidth variation. Iperf3, a tool to measure bandwidth,
is installed on network coding VNFs and periodically executed
to obtain the inbound and outbound bandwidth of a single VNF
in a data center. Results are sent to the controller for use of the
dynamic scaling algorithm. When the bandwidth on a VNF
increases, we may take up the extra bandwidth to increase
the throughput of sessions that traverse the VNF, or retain
the same flow rate. Increasing flow rate may lead to overload
of the VNF handling the link. If the VNF is overloaded, we
need to deploy additional VNFs in the same data center for
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Algorithm 1 Bandwidth Variation
1: function BANDWIDTH VARIATION
2: for all v ∈ V and v is used for conceptual flows do
3: if B(v) changes by more than ρ1% and the situation

lasts for τ1 then
4: update Bin(v) and Bout(v);
5: g = solve (2) based on the current deployment and flows

except affected data center and flows using bandwidth input B;
6: if g > current objective value then
7: scale out according to new x via NC_VNF_START;
8: update the routing table via NC_FORWARD_TAB;

coding the extra flow, which may increase the second term
of (2). To strike the best tradeoff, we solve (2) again based
on the current VNF deployment and flow routing except the
affected data centers and multicast flows using the link whose
bandwidth has changed. If the new objective value is larger
than the old one, we increase flow rates and deploy new VNFs
accordingly; otherwise, we retain the existing rates and the
same VNF deployment. When the bandwidth on a VNF drops,
which triggers packet loss, the throughput of sessions using the
VNF may drop if there would be no new VNF deployment.
We compute (2) again based on the current VNF deployment
and flow routing except the affected data centers and flows.
Such computation may provide new routes for the multicast
sessions and new VNF deployment in the affected data centers.
The algorithm is shown in Alg. 1.

Algorithm 2 Delay Changes
1: function DELAY CHANGES(L)
2: for all e ∈ E and e is used for conceptual flows do
3: if L(e) changes by more than ρ2% and the situation lasts

for τ2 then
4: update P k

m: remove or add paths
5: solve (2) based on the existing VNF deployment and unaf-

fected conceptual flows using new path set P k
m, ∀k,m;

6: scale out according to new x via NC_VNF_START ;
7: update the routing table via NC_FORWARD_TAB;

Delay changes. Delay changes influence path selection in
our flow routing. A path becomes infeasible as its overall
delay exceeds the maximum tolerable value, and more feasible
paths appear if the delays of links drop. Ping is periodically
executed on the VNFs to detect delay changes on links.
Measurements are sent to the controller. After detecting the
increase of delay on a link, we check whether the currently
used flow paths are affected. If so, the controller eliminates
the affected paths from the feasible path sets P k

m, ∀m, k, and
solves (2) again to obtain new flow routes for affected sessions
and possible additional VNF deployment based on the current
VNF deployment. When the delay on a link drops, some
path sets P k

m, ∀m, k may be expanded, which implies that the
solution space is expanded. Optimization (2) is solved again
using the new path sets based on existing VNF deployment,
to compute new routes for affected sessions and possible new
deployment of VNFs. The algorithm is summarized in Alg. 2.
Session arrivals and departures. The flow routing and new

Algorithm 3 Session/Receiver Arrivals and Departures
1: function SESSION JOIN(m′)
2: run path preselection for Pm′

k ;
3: solve (2) for the new session only based on current concep-

tual flows fk
m(p);

4: scale out according to new x via NC_VNF_START;
5: update the routing table for fk

m′(p) via NC_FORWARD_TAB;
6:
7: function RECEIVER JOIN(tm

′
k )

8: solve (2) based on VNF deployment and flows of unaffected
sessions, to obtain the conceptual flow for Tm

k ;
9: scale out according to new x via NC_VNF_START;

10: update routing table via NC_FORWARD_TAB;
11:
12: function SESSION/RECEIVER QUIT
13: g1 = solve (2) based on existing VNF deployment;
14: g2 = solve (2) based on existing flow rates;
15: if g1 > g2 then
16: increase corresponding flows;
17: else
18: shut down VNFs according to g2 via NC_VNF_END;
19: update the forwarding table via NC_FORWARD_TAB;

coding function deployment for the new session are attained by
solving (2), for the new sessions only, exploiting any surplus
capacity of existing VNFs. The controller accordingly deploys
new VNFs and routes the flow. When a session is terminated,
we can either increase the existing flow rates to use any
surplus VNF capacities or reduce the number of VNFs for cost
saving. The controller recomputes (2) twice, once to derive the
throughput increase based on the existing VNF deployment
and the second time to decide the VNFs to retain based on
the existing flow rates, and compares the objective values. If
the former leads to a larger objective value, existing flows will
maximally use the freed capacities; otherwise, some VNFs will
be shut down without affecting the existing flow rates. Alg. 3
shows the algorithm for this case.
Receiver arrivals and departures. When a new receiver
joins a multicast session or when an existing receiver departs,
optimization (2) is computed again using the new receiver set
based on existing VNF deployment and flows of unaffected
sessions. Flows may be rerouted. New VNFs may be launched
(new receiver arrival case) and some VNFs can be shut down
(receiver departure case). The algorithm is shown in Alg. 3.

Discussions. Upon session changes and receiver changes,
VNFs are adjusted immediately. In cases of bandwidth/delay
variation, the controller instructs flow rerouting (by updating
forwarding table of affected VNFs), as well as VNF launch
or shutdown only when the change is larger than a threshold
percentage, e.g., ρ1% and ρ2%, and such phenomenon has
lasted for a threshold time, e.g., τ1 and τ2, to avoid unnecessary
scaling in cases of brief spikes of bandwidth/delay. The
threshold values depend on VNF launch/termination cost as
well as the applications the framework supports. During the
adjustment, some VNFs may become under-utilized. If such
a situation lasts for a threshold time, the controller re-steers
traffic among the under-utilized VNFs in the same data center,
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and shuts down redundant VNFs. We perform incremental
update of the coding topology in all cases of system dynam-
ics, instead of solving the optimization completely anew, to
minimize overhead of VNF adjustment and flow migration.

V. EXPERIMENTAL EVALUATIONS

A. Prototype Implementation
We implement a prototype system for evaluating our de-

sign and algorithms. A file transmission application is built
upon the system for driving the evaluation. VMs in six data
centers, including three Amazon EC2 data centers located in
California, Oregon and Virginia, and three Linode data centers
in Texas, Georgia and New Jersey are rented for deploying
coding functions, and acting as sources and destinations.

All VMs in Amazon EC2 are C3.xlarge instances,
configured with four Intel Xeon E5-2680 v2 cores, 1000 Mbps
virtualized NIC and 7.5 GB RAM. EC2 Enhanced Networking
[34] is also enabled in these instances, such that SR-IOV is
used. SR-IOV [35] is a high performance I/O pass-through
system, allowing the NIC to be partitioned into several “Virtual
NICs”, guaranteeing higher performance, lower latency and
lower jitter. These NICs work as general devices in VMs. Our
system is built upon these virtual devices for high networking
performance. The instances from Linode are configured with
one Intel Xeon E5-2680 v2 core, 1GB RAM, 40 Gbps and
125 Mbps for incoming and outgoing traffic, respectively. A
server located at the University of Hong Kong is used as
the controller, equipped with Intel Xeon CPU E5-2650, 64GB
RAM and an Emulex Corporation OneConnect 10Gbps NIC.
All VMs are installed with Ubuntu Server 14.04 (v3.19) and
DPDK-16.04. DPDK KNI is loaded to create a bridge between
the Linux network stack and the DPDK poll mode driver.

Our evaluation aims to verify the following: (i) our network
coding VNF can achieve high throughput close to line speed;
(ii) the additional latency introduced by network coding is
small; (iii) network coding can improve the robustness of
flow transmission on the Internet; (iv) our dynamic scaling
algorithm can ensure the best tradeoff between throughput and
VNF deployment cost at all times. Our experiments include
two parts: (1) we examine the performance of our network
coding VNF in detail on a fixed butterfly topology in Fig. 6,
to test the throughput and coding delay of the VNF, as well as
robustness of flow transmission; (2) we evaluate the system in
realistic scenarios with multiple multicast sessions to demon-
strate the performance of the dynamic scaling algorithm.

B. Evaluation on Butterfly Topology
The butterfly network is a classic example demonstrating

benefits of network coding [1]. We deploy VMs in California,
Oregon, Virginia and Texas to construct the butterfly network.
Total link capacity of all outgoing links of a VNF is bounded
by its outbound bandwidth, while total link capacity of all
incoming links of the VNF is bounded by its inbound band-
width. To emulate the bottleneck between T and V2 in the
butterfly topology, we restrict the link capacities to the values
labelled on the links of Fig. 6 using netem. We first test the
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Fig. 6. Butterfly network with VNFs
and link bandwidth (Mbps) labelled.
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Fig. 7. Throughput comparison in
the butterfly topology.

performance of our network coding VNF using one multicast
session where two receivers retrieve a 1000 MB file from one
source, with four data centers in-between, each hosting one
coding function. The multicast topology and locations of the
source, destinations and data centers are given in Fig. 6 (O for
Oregon, C for California, T for Texas and V for Virginia).

1) Throughput: The throughput of the multicast session is
the minimum of the end-to-end rates achieved by the two
receivers. We can compute the theoretical maximal throughput
of the multicast session using the Ford-Fulkerson algorithm
[36], which is 69.9 Mbps. We evaluate the actual multicast
throughput with and without coding functions enabled.

In Fig. 7, we observe that rerouting the flows through a
number of intermediate data centers leads to higher throughput
as compared to the direct connections due to additional band-
width. Enabling network coding further pushes the throughput
approaching the theoretical maximum. It verifies that network
coding as VNFs can improve utilization of network resource
to increase throughput, in cases that direct connections do
not provide good bandwidth. Network coding leads to a
throughput close to the theoretical maximum, despite the
complicated encoding/decoding processes.

2) Delay: Network coding introduces extra delay to end-to-
end flow transmission due to coding computation and packet
synchronization (the decoder has to collect a sufficient number
of packets to recover a generation). We examine the latency
introduced by network coding by measuring the average
round-trip delay between source and destinations. End-to-end
delays of the following paths are evaluated: (1) from the source
in Virginia (V1) directly to each of the receivers in Oregon and
California, respectively; (2) from the source to receiver 1 via
the relay nodes; (3) from the source to receiver 2 via the relay
nodes. For (1), we measure the round-trip time using standard
ping tests with the same packet size as that of our coded
packets. For (2) and (3), we measure the round-trip delay
when network coding is in place and not (in the latter case,
intermediate data centers directly forward received packets),
as the time from when the first generation is completely
sent out from the source to the time the acknowledge is
received back from the receiver (we allow each receiver to
send an acknowledge directly back to the source once it has
successfully received the (decoded) first generation).

We measure the delays along different paths for multiple
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TABLE II
DELAY COMPARISON.

Receiver O2 (ms) Receiver C2 (ms)
min max average min max average

Direct path 90.85 90.93 90.879 77.01 77.04 77.03
Relayed path 167.59 169.75 168.80 167.49 168.92 168.22

w. coding
Relayed path 165.95 168.08 167.27 165.61 168.68 166.46
w/o coding

times, and obtain the minimum, maximum and average round-
trip times, as shown in Tab. II. Compared with direct ping
test, relayed paths lead to longer round-trip times (but higher
throughput). Along the relayed paths, network coding only
introduces 0.9% to 1.5% additional delay, which is minor.
For example, the average delay increases from 167.27ms to
168.80ms for path (2), from 166.46ms to 168.22ms for path
(3) when network coding functions are enabled.
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different burst drop rates.

3) Robustness: We next examine the impact of packet loss
in the links. We emulate i.i.d. random packet loss and burst
packet loss in the link between T and V2 using netem. In
Fig. 8, we emulate the uniform packet loss rate ranging from
0% to 50%. In Fig. 9, we emulate the burst packet loss, where
the loss rate of the n-th packet is Pn = 25% × Pn−1 + P ,
P0 = 0 and P ranges from 0% to 5%. In both packet loss
models, we evaluate the impact of packet loss in the following
cases: (1) NC0: there is no redundant coded packet produced
at each coding node for each generation, i.e., 4 coded packets
are produced per generation (since each generation contains
4 blocks); (2) NC1: one extra coded packet is produced per
generation; (3) NC2: two extra coded packets per generation;
(4) Non-NC: intermediate nodes do forwarding only.

In both figures, we observe the same trend. The throughput
of NC0 drops sharply when the packet loss rate increases,
since a receiver has to wait for retransmissions to collect all 4
packets for decoding a generation. For the same reason, even
Non-NC works better than NC0 at high packet loss rates. The
robustness of the system is improved as extra coded packets
are added, e.g., the cases of NC1 and NC2. The receivers can
recover the original generation, as long as they receive four
linearly independent packets rather than all encoded packet
for the generation. As compared to Non-NC, NC1 and NC2
can retain a relatively high throughput when there are packet
losses. On the other hand, redundancy wastes bandwidth in
case of low loss rate, as we can see that the throughput of
NC1 is lower than that of NC0 when packet loss rate is close
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Fig. 10. Total multicast throughput
and total # of VNFs over time;
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to 0%. Similarly, NC1 outperforms NC2 when packet loss rate
is not high. So, it is desirable to produce a small number of
extra coded packets for each generation in cases of high packet
loss rate, and no extra coded packets if the links are reliable.

C. Evaluation of Dynamic Scenarios
We next evaluate our dynamic deployment and scaling

algorithm. We generate six multicast sessions, each with a
uniformly random number of receivers in the range of [1, 4].
The sources and receivers are distributed uniformly randomly
across the six data centers in North America. The interval for
collecting bandwidth, throughput and delay data is 10 minutes.
The threshold values, τ , τ1 and τ2 are all 10 minutes, ρ1 =
ρ2 = 5%. By default, the conversion factor α is 20 (Mbps per
VNF), and the max tolerable delay Lmax

m is 150ms, ∀m ∈ M .
1) Throughput and # of VNFs: We initially launch three

multicast sessions. Then one extra session arrives every 10
minutes until the system contains six sessions in total. After
that, one session leaves the system every 10 minutes until
only three sessions remain. One receiver is added into one
existing session at 70, 80, 90 minute, then one receiver leaves
at 100, 110, 120 minute. We measure the throughput at each
receiver to obtain the multicast throughput for each session
and the total number of launched VNFs needed for fulfilling
the network coding functions. In Fig. 10, the total multicast
throughput, i.e.,

∑
m λm in (2), increases for the first half

an hour as the number of sessions grows and then decreases
as some sessions leave the system, and the total number of
VNFs also grows for the first 30 minutes, same as the total
throughput, but it keeps stable for the next 10 minutes which
is due to the scaling algorithm, and then decreases for another
30 minutes. In case of receiver arrivals/departures, we observe
similar trend on the number of VNFs. We also notice that the
total multicast throughput keeps stable from 70 to 120 minute
as the arriving/leaving receivers may not affect the multicast
throughput within a session as long as they are not the ones
experiencing the minimum rate. This verifies that the system
can launch sufficient VNFs to cater for a new demand, and
also recycle the resource after it departs.

2) Bandwidth Variation: We investigate the performance
when the system facing varying bandwidth and delays. We
launch six sessions in the system at the beginning. After 10
minutes, we randomly select a current used data center, and
cut inbound/outbound bandwidth of all our own VNFs in
that data center by half using netem. We then repeat the
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bandwidth cut on a randomly selected data center every 20
minutes. We measure the total multicast throughput and the
total number of VNFs needed. Results are shown in Fig. 11.
We see that the throughput drops when the bandwidth is cut by
half, but it recovers back in 10 minutes as the scaling algorithm
notices that the low bandwidth last for τ1 = 10 minutes, and
launches new VNFs to mitigate the changes. But interestingly
the throughput is not recovered for the third bandwidth cut.
The reason is that the scaling out operation leads to a lower
objective value, so the system chooses to not scale out.

3) End-to-End Delays: Next we examine the impact of
Lmax
m . We vary Lmax

m from 75ms to 200ms while retaining
six sessions in the system and disabling the scaling algorithm.
The experiment is completed within a relatively short time,
during which the delay and bandwidth between data centers
largely remain the same. Fig. 12 shows the aggregate multicast
throughput in all sessions. The results suggest that larger
Lmax
m leads to larger throughput since the feasible paths

set is enlarged. The throughput does not grow further when
Lmax
m > 150ms, as the newly added feasible paths do not

contribute to the solution.
4) The impact of α: We now study how α influences the

throughput and the number of VNFs. When α = 0, (2) is
simplified to a pure throughput maximization problem. In
Fig. 13, we observe a general trend: the throughput decreases
as α increases; meanwhile the number of VNFs launched
for network coding functions decreases. An interesting ob-
servation is that the system refuses to launch any new VNF
when α = 200 as shown in Fig. 13. The reason is that the
deployment cost increase outweighs the throughput increase.
We clearly see that α should be set to a high value if the
system is cost-sensitive, while a smaller α is preferred if it is
performance (throughput) sensitive.

5) Delay Overhead for VNF Launch and Update: We then
investigate the delay overhead to launch or update a network
coding function. We evaluate the time needed in three cases,
with VNFs running in the EC2 data center in Oregon: i) launch
a new VM instance; ii) start a network coding function on a
launched VM; iii) update the forwarding table in a running
VNF. A forwarding table with ten entries is used to ii) and
iii) above. We measure the delays for ten times. Average
results are 35s for i) and 376.21ms for ii), i.e., launching a
new instance is the most time consuming (100× slower than
starting a new network coding function on a launched VM).
This justifies our design that after receiving a NC_VNF_END

message, a VNF remains alive for τ time before shutting down.
The relaunching cost is saved if the VNF is needed again
within τ time. Tab. III shows that the average time increases
from 78.44ms to 310.61ms when the forwarding table update
percentage rises from 20% to 100%. The delays incurred in
case ii) and iii) are relatively small as the VNF adjustment
occurs at intervals of 10 minutes. Overall, we conclude that
the performance is satisfactory when using our network coding
VNFs and the scaling algorithm in practical scenarios.

TABLE III
TIME OVERHEAD FOR FORWARDING TABLE UPDATE

Update Percentage 20% 40% 60% 80% 100%
Average Time (ms) 78.44 145.82 194.06 264.82 310.61

VI. CONCLUSION

Network coding is a powerful technique that can achieve
high throughput and lower routing complexity. We propose
implementing network coding as a virtual network function
in geo-distributed clouds on the Internet, following the NFV
paradigm. We carefully build the virtual network coding
functions upon the latest techniques in NFV, and design
efficient algorithms for dynamic coding function deployment
and scaling. We deploy our system across geo-distributed
clouds in Amazon EC2 and Linode, and carry out extensive
experiments to evaluate the efficacy, robustness and overhead.
Results show that the proposed system achieves substantially
higher throughput than a non-network coding based system,
while only incurring small additional delay overhead. We
believe that our attempt is an important step towards un-
leashing the full potential of network coding in practical
Internet applications. We believe our work may shed light
on the design and implementation of other dynamic Internet
applications/services using the NFV paradigm, in terms of geo-
distributed dynamic network function deployment and scaling.
Modularizing the system design is a possible future direction
to explore, so that our system can directly support a broad
range of application scenarios beyond network coding, once
the network coding related modules are replaced by other
application-specific modules.
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