
Responsive Multipath TCP in SDN-based Datacenters

Jingpu Duan∗, Zhi Wang†, Chuan Wu∗
∗Department of Computer Science, The University of Hong Kong, Email: {jpduan,cwu}@cs.hku.hk

†Graduate School at Shenzhen, Tsinghua University, Email: wangzhi@sz.tsinghua.edu.cn

Abstract—A basic need in datacenter networks is to provide
high throughput for large flows such as the massive shuffle traffic
flows in a MapReduce application. Multipath TCP (MPTCP)
has been investigated as an effective approach toward this goal,
by spreading one TCP flow onto multiple paths. However, the
current MPTCP implementation has two major limitations:
(1) a fixed number of subflows are used without reacting to
the actual traffic condition; (2) the routing of subflows of a
multipath TCP connection relies heavily on the ECMP-based
random hashing. The former may lead to a waste of both
the server and network resources, while the latter can cause
throughput degradation when multiple subflows collide on the
same path. This paper proposes a responsive MPTCP system to
resolve the two limitations simultaneously. Our system employs
a centralized controller for intelligent subflow route calculation
and a monitor running on each server for actively adjusting the
number of subflows. Working in synergy, the two modules enable
MPTCP flows to respond to the traffic conditions and pursue high
throughput on the fly, at very low computation and messaging
overhead. NS3-based experiments show that our system achieves
satisfactory throughput with less resource overhead, or better
throughput at similar amounts of overhead, as compared to
common alternatives.

I. INTRODUCTION

Datacenters are extensively employed to carry out “heavy”
tasks such as masssive data processing, storage and distribu-
tion. Many large flows exist in a datacenter network, for con-
tent replication, virtual machine migration, and data shuffling
in MapReduce-like computational workloads, which constitute
the majority of datacenter traffic [1]. Efficient transfer of
these large flows is crucial to the performance of a datacenter
network. To improve the throughput of large flows, significant
efforts have been devoted to flow routing and transportation
designs.

From the routing aspect, datacenter networks are typically
built on a fat-tree topology [2], providing redundant paths
between different hosts. Flows are usually routed using ECMP
[4], which spreads the flows onto different paths by hashing
flow data in the packet headers. However, existing studies
have pointed out that multiple flows may collide on the same
path using ECMP hashing, causing significant throughput
degradation [3] [4]. To alleviate such throughput degrada-
tion, more active flow path scheduling should be undertaken,
which responds to the traffic conditions. Based on Software
Defined Network (SDN) [5], Hedera [3] employs a centralized
controller to monitor the network condition and periodically
replace congested flow paths with less congested ones for data
transfer. However, replacing the flow path for established flows

This work was supported in part by a grant from RGC under the contract
HKU 717812 and NSFC under the grant No. 61402247.

will cause potential packet reordering and loss. In contrast,
our work tries to establish new subflows for established flows,
which totally avoids packet reordering and loss. We also design
our own route calculation strategy that fits our subflow adding
scheme better.

From the transportation aspect, TCP is not efficient in
datacenter networks, and different variants of TCP-like proto-
cols have been proposed to improve large flow transportation.
DCTCP [6] and D2TCP [7] are two representatives. DCTCP
provides a guaranteed RTT by actively controlling queue
lengths in switches, and D2TCP guarantees that flow transfers
meet their deadlines. The limitation is that both of them
cannot provide a near-optimal throughput for large flows, since
they adopt a single transport path per flow and fail to grab
extra throughput by exploiting path diversity in a datacenter
network.

To achieve higher throughput, a large flow can be split and
transmitted using multiple paths. Sen et al. [8] proposes to
dynamically split flows at the switches. However, splitting
flows at a switch requires the switch to be able to match the
TCP sequential number, which is an advanced new feature
and not widely deployed. MPTCP [4] [9] splits a flow into
multiple subflows at the end host, each to be sent on a dif-
ferent path. Though theoretically better to use more subflows
[10], maintaining more subflows incurs more overhead. With
MPTCP, a flow’s packets are scattered onto multiple paths, and
hence the receiver needs to maintain a large buffer to assemble
the out-of-order packets, causing increased memory footprint.
In addition, each subflow is maintained as a sub-socket in
the kernel and additional system calls need to be made to
manipulate the sub-sockets, consuming CPU capacity [11].
The current Linux kernel implementation of MPTCP hence
limits the maximum number of available subflows per MPTCP
session to 8 [12]. What’s more, in a software defined network,
adding subflows leads to installing more forwarding rules at
the switches, consuming the precious TCAM resource. It is
therefore crucial to achieve the maximal MPTCP throughput
using as few subflows as possbile. Most existing MPTCP
proposals employ a fixed number of subflows, and route the
subflows using ECMP [4], which cannot achieve high flow
throughput as well as the minimal resource consumption at
the switches and the end hosts. A better approach is in need.

This paper proposes a responsive MPTCP system for SDN-
based datacenters, which decides the number of subflows for
each MPTCP session and the best subflow paths in responding
to the current traffic condition. The system consists of two
main modules: (1) a controller that carries out light-weighted
algorithms to compute the additional number of subflows to

Fig. 1: An Overview of the Responsive MPTCP System

add and the best subflow paths, and (2) a monitor on each
server for actively adjusting the number of subflows. The
two modules work in concert through light-weighted message
passing, enabling MPTCP flows to pursue high throughput
on the fly, at very low computation, memory and bandwidth
overhead. We carry out extensive NS3-based experiments
and the results show that our system achieves satisfactory
throughput with less resource overhead, or better throughput
using the same amount of resource, as compared to common
alternatives.

II. SYSTEM ARCHITECTURE

We consider a datacenter network built on the k-Ary fat-tree
topology with three layers of k-port switches interconnected
using homogeneous links to provide non-blocking switching
ability for k3

4 servers [2]. An SDN controller is connected
to the switches as well as the data plane of the datacenter
network, and is able to communicate with each server. Each
server is configured to use MPTCP when transmitting large
flows (e.g., flow with a total data size larger than 256KB),
and runs an active monitor module, which is responsible for
communicating with the controller.

In the data plane, the controller constantly estimates the
maximally achievable throughput for each MPTCP flow (re-
ferred to as demand of the flow) and delivers the updated
demand of the existing flows to the monitors of the respective
source servers. The monitor records the flow’s throughput and
issues a path adding request when it detects a significant gap
between the achieved throughput and its achievable demand.
When the controller receives a path adding request from a
monitor, it notifies the monitor the number of subflows to add,
in order to achieve the demand.

In the control plane, a switch notifies the controller about
new flow arrivals and expiration through OpenFlow messages.
Upon receiving such a message, the controller updates flow
entries in demand table and configures the flow paths for
new subflows by installing forwarding rules in the involved
switches. The overall architecture of the proposed system is
presented in Fig. 1. The detailed design of the controller and
the monitor will be presented in what follows.

III. CONTROLLER

Fig. 2 illustrates interfaces and function modules of the con-
troller. Upon receiving the path adding request from a monitor,
the controller runs its route calculation algorithm, to compute
the additional flow paths the respective MPTCP session can
add, saves the computed paths, and sends the number of addi-
tional subflows back to the monitor. For communication with

Fig. 2: Controller Architecture

the switches, two types of Openflow messages are of particular
interest to the controller, the Packet-In messages and Flow-
Removed messages. A Packet-In message is generated when
the first packet of a new (sub)flow arrives at a switch, which
notifies the controller about the arrival of a new (sub)flow.
A Flow-Removed message is sent by a switch to notify the
controller about the departure of an existing flow, when the
respective flow rules expire in the switch. The controller main-
tains a demand table that records all the existing flows with
their demand. Upon receiving a Packet-In or a Flow-Removed
message, the controller updates the corresponding flow entries
in the demand table, and proceeds following one of the two
cases. (1) The arrival of a new subflow of an existing MPTCP
flow: the controller finds one saved path from its previous
route computation (which led to subflow addition notification
to the monitor and hence the arrival of this new subflow), and
then installs routing rules on the switches along the path. (2)
The arrival of the first subflow of a new MPTCP flow: the
controller runs its route calculation algorithm to identify the
path for this new subflow, and then dispatches the rules to the
involved switches. Upon (sub)flow arrival or departure, the
controller also runs its demand estimation algorithm to update
the maximally achievable throughput target (i.e., the demand)
for all the existing flows, and dispatches updated demand
to the respective monitors whenever the demand change is
significant.

We next present the two algorithmic modules of the con-
troller, demand estimation and route calculated, in details.

A. Demand Estimation

Fat-tree datacenter networks with uniform link bandwidth
are fully non-blocking networks [10][3]. In such a network,
the bandwidth bottleneck along a flow’s path can only happen
at the sender’s access link or the receiver’s access link,
and a flow’s demand is the throughput achieved in TCP
equilibrium state. We employ the same algorithm as in Hedera
[3] to estimate a flow’s demand in a non-blocking network,
which proportionally increases flows’ transmission rates at the
senders’ access links and proportionally decreases excessive
rates at the receivers’ access links until all the flow rates
stablize. The rationale is that the TCP congestion control

Algorithm 1 Demand Estimation and Dispatching
Input: demand record d t, new flow f n or expired flow f e

1: save d t as an old demand record old d t, old d t← d t ;
2: update d t to include f n or exclude f e;
3: run Hedera demand estimation algorithm with d t as input;
4: for each flow f in d t do
5: if f is not in old d t then
6: dispatch d t[f] to the monitor at sender of f ;
7: else
8: if | d t[f]− old d t[f] |> δDDT ∗ old d t[f] then
9: dispatch d t[f] to the monitor at sender of f ;

10: end if
11: end if
12: end for

process strives for max-min fairness among flows sharing the
same link when the network enters an equilibrium state.

Our complete demand estimation algorithm is summarized
in Alg. 1. The controller maintains a demand table d t that
records all the existing flows with their current demand. After
receiving a Packet-In message or a Flow-Removed message,
the Hedera demand estimation algorithm is invoked to reesti-
mate the demand for all the existing flows. If the change of a
flow f ’s demand exceeds a factor δDDT times the old demand
or if f is a new flow, the updated demand for this flow will
be dispatched to the flow sender’s monitor.

B. Route Calculation

The route calculation algorithm is invoked in two cases:
(i) when a monitor detects that the throughput of one flow
is significantly lower than its current demand received from
the controller and issues a path adding request to notify the
controller about the demand gap (i.e., demand minus current
throughput), and (ii) when a switch notifies the arrival of a
new MPTCP flow, in which case the new flow’s demand is
estimated through the demand estimation module and used
as the demand gap. Using the demand gap as input, the
route calculation algorithm computes a set of new paths for
the flow, whose aggregate throughput can cover as much
the demand gap as possible, and notifies the monitor to
add additional subflows on these paths. We next propose an
approach for estimating the expected throughput for a new
subflow on a given path, which serves as the base for the route
calculation algorithm. This method relies on the following two
observations.

(1) Aggregate MPTCP Flows Fairly Share Link Band-
width: When multiple subflows of a MPTCP flow are travers-
ing the same link, they can be viewed as one aggregate flow.
The MPTCP congestion control enables fair sharing among
aggregate MPTCP flows. So when n MPTCP flows are con-
tending for a link with bandwidth B, the expected throughput
of each MPTCP flow can be calculated as B/n, which is an
upper bound to the expected throughput of individual subflows
in the MPTCP flow.

(2) Subflows at most Share Links in the Aggregation-
ToR Layer but not in the Core-Aggregation Layer: Due
to the fairness constraint, it would be meaningless if multiple

Fig. 3: Two Subflows Share Links in Aggregation-ToR Layer

Fig. 4: An Illustration of Marginal Throughput

Algorithm 2 Route Calculation
Input: flow f , demand gap d g, number of existing subflows n sf

1: set number of additional subflows n new sf = 0;
2: while n new sf + n sf < M do
3: find out a subflow path p with the largest expected throughput
e t;

4: if f is a new flow then
5: install switch rules on p;
6: return;
7: end if
8: if e t == 0 then
9: return;

10: end if
11: save path p;
12: n new sf+ = 1;
13: if e t > d g then
14: notify the sender monitor of f of n new sf ;
15: return;
16: else
17: d g = d g − e t;
18: end if
19: end while
20: notify the sender monitor of f of n new sf ;

subflows of the same MPTCP flow take the same paths. In a
fat-tree network as shown in Fig. 3, subflows of a intra-pod
flow should never share links on their paths (except access
links), and subflows of an inter-pod MPTCP flow may share
links in the aggregation-ToR layer, as long as they use different
links in the core-aggregation layer. If multiple subflows of an
inter-pod flow share the same aggregation-ToR uplink, then
they must also share the same aggregation-ToR downlink, and
vice-versa.

Based on Observation (1), we can calculate an upper bound
of a subflow sf ’s throughput on path p, by finding the link
along p shared by the largest number of aggregate MPTCP
flows, nmax, and obtaining the upper bound as B/nmax. If
there is no other subflow of the same MPTCP flow f on p,
this B/nmax is exactly the expected throughput of sf .

If there are other subflows sharing one or more links

on p, we seek to compute a marginal throughput of p,
which quantifies the achievable throughput of subflow sf on
p. Suppose that there are m existing subflows of MPTCP
flow f that use the same aggregation-ToR uplink as on p.
According to Observation (2), the m subflows constitute an
aggregate flow faggre on both p’s aggregation-ToR uplink
and aggregation-ToR downlink. Suppose that there are nu
aggregate MPTCP flows on p’s aggregation-ToR uplink and
nd aggregate MPTCP flows on p’s aggregation-ToR downlink.
Then the expected throughput of aggregation flow faggre is at
most min(B/nu, B/nd). Also suppose that ui is the upper
bound of the expected throughput of flow f ’s ith existing
subflow that uses p’s aggregation-ToR uplink, calculated based
on Observation (1). Then the marginal throughput on path p is
computed as [min(B/nu, B/nd)−

∑m
i=1 ui]

+. Note that this
marginal throughput represents an estimation of achievable
throughput on path p (instead of accurate computation), which
nevertheless is shown to perform well in our experiments.

Fig. 4 gives an illustration of the marginal throughput on a
path. Each box represents a link with the same unit bandwidth.
Subflow 1-1 is an existing subflow of flow 1, and subflow
1-2 is a new subflow of flow 1. Subflow 1-1 shares two
links in the core-aggregation layer with three other aggregate
MPTCP flows. The upper bound of the expected throughput of
subflow 1-1 is 1/4. Subflow 1-2 shares the same aggregation-
ToR uplink and aggregation-ToR downlink with subflow 1-1.
The expected throughput of their aggregate flow on the two
aggregation-ToR links is 1. So the marginal throughput on
subflow 1-2’s path is 3/4.

We apply the following two rules to calculate the expected
throughput of a new subflow sf of flow f on a given path p.

Rule 1: If there is no other subflow of f that uses p’s
aggregation-ToR uplink, find out the largest number of aggre-
gate flows sharing the same link on p, nmax. The expected
throughput of sf on p is B/nmax.

Rule 2: If there are m existing subflows of f that use
p’s aggregation-ToR uplink, calculate p’s marginal through-
put m t, as well as the upper bound of sf ’s expected
throughput B/nmax. The expected throughput of sf on p is
min(m t,B/nmax).

Employing these two rules, our route calculation algorithm
is given in Alg. 2. The algorithm generates n new sf ad-
ditional subflows for input flow MPTCP f in order to fill
up its demand gap as much as possible, by exploring new
subflow paths as long as the total number of subflows does
not exceed a cap M . When the algorithm exits, it notifies
flow f ’s sender monitor to add n new sf more subflows. All
the generated paths are saved. When the controller receives
a Packet-In message for a new subflow of f , the controller
picks up one of the paths and installs corresponding rules on
switches along this path.

IV. MONITOR

The monitor on each server executes three main function-
alities: (1) keeping track of the achieved throughput for each
existing flow sent out from the server, (2) deciding whether to

Algorithm 3 Monitor Loop
Input: monitored flows f [n], previous flow rates p r[n], counters
count[n], flow demand demand[n]

1: for i = 1 : n do
2: obtain instant throughput i r for flow f [i];
3: p r[i] = 0.2 ∗ p r[i] + 0.8 ∗ i r;
4: if | i r − p r[i] |< δRV T ∗ p r[i] then
5: count[i] = count[i] + 1;
6: if count[i] == R then
7: count[i] = 0;
8: if p r[i] < (1− δDGT) ∗ demand[i] then
9: gap = demand[i]− p r[i];

10: issue path adding request for f [i] with gap;
11: return;
12: end if
13: else
14: return;
15: end if
16: else
17: count[i] = 0;
18: return;
19: end if
20: end for

issue a path adding request for a flow upon receiving updated
demand of the flow, and (3) instructing flow f to add additional
subflows after receiving a message containing the additional
number of subflows from the controller.

(1) and (2) are achieved through the monitor loop, peri-
odically executed every monitoring interval tm. Its detailed
algorithm is summarized in Alg. 3. Here n is the number
of MPTCP flows being monitored. The monitor samples the
instant throughput i r of each flow f [i] in each monitor
loop and maintains a weighted average historical throughput
p r[i] for each flow, with a higher weight for new rate
samples. The difference between the instant throughput and
the historical rate is compared against δRV T ∗ p r[i], where
δRV T is a rate-varying threshold to evaluate whether the flow
rate changes drastically. If the instant rate i r does not exhibit
any significant change after R (R is set to 5 in our simulation)
consecutive monitor loops, the average historical throughput
p r[i] is examined to determine if the demand gap is large
enough for issuing a path adding request. We employ a demand
gap threshold δDGT : if p r[i] is smaller than (1−δDGT) times
the demand demand[i] received from the controller, a path
adding request with demand gap demand[i] − p r[i] is sent
to the controller.

V. PERFORMANCE EVALUATION

A. Experiment Setup

We evaluate our responsive MPTCP system using a NS3
simulator, where we implement our customized SDN con-
troller and the monitor. According to the datacenter network
configuration in [2], we simulate a datacenter network with a
8-Ary fat-tree topology which contains 128 servers connected
using 1Gbps links. This topology is large enough to carry
out our simulation because it contains 16 different paths
for each intra-pod flow. The link delay is 20us, 30us and

TABLE I: Summary of Experiment Results

Random Traffic Permutation Traffic Shuffling Traffic
NS TP(Mbps) NS TP(Mbps) JCT(ms) NS

tm = 2ms, δDGT = 0.15 3.72 521 3.88 766 1402 1.92
tm = 4ms, δDGT = 0.25 3.40 513 3.82 767 1441 1.28
tm = 8ms, δDGT = 0.35 2.47 506 3.75 760 1454 1.03

4 subflows+ECMP 4 530 4 734 1332 4
2 subflows+ECMP 2 493 2 643 1394 2
1 subflow+Hedera 1 438 1 747 1652 1

NS: Average number of subflows per flow.
TP: Average throughput per flow.
JCT: Average shuffle completion time per MapReduce job.

40us for links in the access link layer, aggregation-ToR layer
and aggregation-core layer, respectively. XMP [9] is used as
the default MPTCP congestion control algorithm, which can
provide a stable transmission rate and maintain lower queue
occupancy. We configure each server to have two different IP
addresses such that it allows up to 4 subflows per MPTCP
connection. The maximum subflow number M = 4 is set
due to the following: In an 8-Ary fat-tree topology, there
are only four shortest paths between two servers in different
pods that do not share links from aggregation-ToR layer;
adding more than 4 subflows does not help much in increasing
the MPTCP flow’s throughput. We set δDDT = 0.15 and
δRV T = 0.15 throughout the simulations because these two
parameters do not directly determine whether the monitor
issues path adding requests and have only a minor influence on
the performance. For comparison, we also implement ECMP
routing and Hedera flow scheduling to work with MPTCP,
instead of our algorithms.

All the messages exchanged between the controller and
a server (see Fig. 1) are encapsulated into 64-byte packets,
which only impose negligible communication overhead. Sup-
pose that a large flow issues 10 path adding requests per
second during its life time and large flows arrive and depart
at a 100ms interval. Then an average of 10 large flows per
server generate 150Kbps communication traffic at the server,
less than 0.1% of the server bandwidth.

Metrics. In our experiments, we use the following metrics
to benchmark the performance of different approaches: (1) the
throughput of the MPTCP flow, (2) the number of subflows
used by each MPTCP flow, and (3) the shuffle completion time
in experiments with MapReduce shuffling traffic.

B. Experiment Results

Our experiments are carried out under three types of typical
datacenter traffic: (1) random traffic, (2) permutation traffic
and (3) shuffling traffic in MapReduce. A summary of the
experiment results is given in Table I, and the details follow.

1) Random Traffic: In this set of experiments, each server
randomly picks a destination server and transmits a MPTCP
flow whose size follows a uniform distribution within the range
of 32MB to 400MB, under the restriction that each server
receives no more than 4 flows. When a server finishes one flow
transmission, it immediately starts a new flow. The experiment
stops when the number of transmitted flows reaches 500.

We investigate the impact of the monitoring interval (tm)
and the demand gap threshold (δDGT). Fig. 5(a) and the first
column in Table I show that with the increase of the monitor
loop interval and the demand gap threshold, the number of
subflows used by the flows decreases. This is because when the
monitor loop interval and the demand gap threshold increase,
the frequency that a monitor issues path adding requests is
decreased, leading to few subflows on average.

We also make comparison of our system with two existing
approaches: MPTCP+ECMP routing, and MPTCP with single
subflow+Hedera flow scheduling. Fig. 5(b) gives the CDFs of
flow throughput achieved with our design under three different
settings of tm and δDGT , as well as those achieved with
MPTCP+ECMP with 4 subflows per flow, MPTCP+ECMP
with 2 subflows per flow, and MPTCP+Hedera with 1 subflow
per flow. From this figure and the second column in Table I,
we can make the following observations: (1) The 4-subflow
ECMP scheme achieves the highest flow throughput, and the
1-subflow Hedera scheme achieves the lowest throughput; (2)
Our design under all 3 settings achieves similar performance
with the 4-subflow ECMP scheme, indicating that our respon-
sive MPTCP system can achieve high throughput using simple
algorithms and less resource consumption (reflected by the
fewer number of subflows needed per flow from Fig. 5(a)).

2) Permutation Traffic: In this set of experiments, each
server randomly selects a destination server and transmits only
one flow, while each server also only serves as the destination
of one flow (emulating the permutation traffic pattern). The
flow size follows a uniform distribution within 64MB to
512MB. All servers start flow transmission simultaneously.
The experiments stops after the 128 flows from each server
have been transmitted.

Fig. 5(c) and the third column in Table I show that in
our system, most flows under the permutation traffic pattern
use 4 subflows. The reason is that each flow has a demand
(maximally achievable throughput) of 1Gbps, and tends to use
all four paths to achieve the demand.

Fig. 5(d) and the fourth column in Table I demonstrate that
our design with the setting tm = 4ms, δDGT = 0.25 achieves
the best average throughput, among all different schemes. This
result shows that when the number of subflows used by each
flow in our system approaches the upper bound, the throughput
of the flows benefits because of our better route selection
mechanism.

3) Shuffling Traffic in MapReduce Jobs: In the next set of
experiment, we simulate the shuffling traffic in the shuffling
stage of MapReduce jobs, i.e., the traffic incurred when
mappers send intermediate data to each reducer. We choose
8 servers as the reducers. Each reducer reads from 8 different
mapper servers concurrently by sending a read request (2KB)
to them; then each of the 8 mappers transmits a data flow
of 16MB to the reducer. We define the shuffle completion
time as the duration from when the reducer sends the first
read request to the time when it has completely received
the last data flow from the mappers. The reducers repeat the
above procedure until 30 shuffle jobs are completed. We also

1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

Number of Subflows

C
D

F
Random Traffic

t
m

=2ms, δ
DGT

=0.15

t
m

=4ms, δ
DGT

=0.25

t
m

=8ms, δ
DGT

=0.35

(a)

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Throughput(Mbps)

C
D

F

Random Traffic

t
m

=2ms, δ
DGT

=0.15

t
m

=4ms, δ
DGT

=0.25

t
m

=8ms, δ
DGT

=0.35

4 subflows+ECMP

2 subflows+ECMP

1 subflow+Hedera

(b)

1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

Number of Subflows

C
D

F

Permutation Traffic

t
m

=2ms, δ
DGT

=0.15

t
m

=4ms, δ
DGT

=0.25

t
m

=8ms, δ
DGT

=0.35

(c)

200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Throughput(Mbps)

C
D

F

Permutation Traffic
t
m

=2ms, δ
DGT

=0.15

t
m

=4ms, δ
DGT

=0.25

t
m

=8ms, δ
DGT

=0.35

4 subflows+ECMP

2 subflows+ECMP

1 subflow+Hedera

(d)

Fig. 5: (a) Number of subflows used by flows with random traffic. (b) Throughput of flows with random traffic.
(c) Number of subflows used by flows with permutation traffic. (d) Throughput of flows with permutation traffic.

1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

Completion Time(ms)

C
D

F

Shuffling Traffic

t
m

=2ms, δ
DGT

=0.15

t
m

=4ms, δ
DGT

=0.25

t
m

=8ms, δ
DGT

=0.35

4 subflows+ECMP

2 subflows+ECMP

1 subflow+Hedera

(a)

1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

Number of Subflows

C
D

F

Shuffling Traffic

t
m

=2ms, δ
DGT

=0.15

t
m

=4ms, δ
DGT

=0.25

t
m

=8ms, δ
DGT

=0.35

(b)

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Throughput(Mbps)

C
D

F

Shuffling Traffic

t
m

=2ms, δ
DGT

=0.15

t
m

=4ms, δ
DGT

=0.25

t
m

=8ms, δ
DGT

=0.35

4 subflows+ECMP

2 subflows+ECMP

1 subflow+Hedera

(c)

Fig. 6: (a) Completion time of shuffle jobs. (b) Number of subflows used by flows under shuffling traffic. (c) Throughput of
flows under shuffling traffic.

schedule background random large flows to transmit during
the execution of the shuffle jobs and the size of large flows
follows a uniform distribution within the range of 32MB to
400MB.

Fig. 6(a) and the fifth column in Table I illustrate that the
average shuffle completion time with our design is slightly
larger (5%) than that of the 4-subflow ECMP routing scheme.
Nevertheless, our design utilizes a much smaller number
of subflows (1-2 subflows for most flows), as illustrated
in Fig. 6(b), leading to lower overhead. As compared to
the 1-subflow Hedera scheme, our design under the setting
tm = 2ms, δDGT = 0.35 employs an average number of
subflows 1.03, similar to that in the Hedera scheme (see the
last column in Table I), while achieving a 12% smaller average
shuffle completion time. The reason to this good performance
can be explained by Fig. 6(c) as the throughput of MPTCP
flows achieved by our design is larger than that of the Hedera
scheme and close to that of the 4-subflow ECMP scheme.

Results in this subsection indicate that our design can
achieve comparably good performance using smaller numbers
of subflows, or a better performance when a similar number
of subflows are used.

VI. CONCLUSION

This paper presents a responsive MPTCP system. In our
system, subflows are dynamically added to each MPTCP
connection in responding to the actual traffic condition and
are intelligently routed under the government of a centralized
controller. NS3-based experiments show that compared with

the existing approaches, our system achieves high throughput
for large flows with less resource consumption, or even better
throughput using similar amounts of resource.

REFERENCES

[1] T. Benson, A. Akella, and D. A. Maltz, “Network Traffic Characteristics
of Data Centers in the Wild,” in Proc. of ACM IMC, 2010.

[2] M. Al-Fares, A. Loukissas, and A. Vahdat, “A Scalable, Commodity
Data Center Network Architecture,” in Proc. of ACM SIGCOMM, 2008.

[3] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic Flow Scheduling for Data Center Networks,” in
Usenix NSDI, 2010.

[4] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, “Improving Datacenter Performance and Robustness with
Multipath TCP,” in Proc. of ACM SIGCOM, 2011.

[5] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” ACM SIGCOMM Computer Communication
Review, 2008.

[6] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data Center TCP (DCTCP),” in
Proc. of ACM SIGCOMM, 2011.

[7] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware Datacenter
TCP (D2TCP),” in Proc. of ACM SIGCOMM, 2012.

[8] S. Sen, D. Shue, S. Ihm, and M. J. Freedman, “Scalable, Optimal Flow
Routing in Datacenters Via Local Link Balancing,” in Proc. of ACM
CoNEXT, 2013.

[9] Y. Cao, M. Xu, X. Fu, and E. Dong, “Explicit Multipath Congestion
Control for Data Center Networks,” in Proc. of ACM CoNEXT, 2013.

[10] X. Yuan, W. Nienaber, Z. Duan, and R. Melhem, “Oblivious Routing for
Fat-tree Based System Area Networks with Uncertain Traffic Demands,”
in Proc. of ACM SIGMETRICS, 2007.

[11] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene,
O. Bonaventure, M. Handley et al., “How Hard Can It Be? Designing
and Implementing a Deployable Multipath TCP,” in Usenix NSDI, 2012.

[12] Multipath Linux Kernel Implementation, http://www.multipath-tcp.org/.

