
1

Aggregation Latency-Energy Tradeoff in
Wireless Sensor Networks with Successive

Interference Cancellation
Hongxing Li, Chuan Wu, Dongxiao Yu, Qiang-Sheng Hua and Francis C.M. Lau

Department of Computer Science, The University of Hong Kong, Hong Kong

Email: {hxli, cwu, dxyu, qshua, fcmlau}@cs.hku.hk

Abstract—Minimizing latency and energy consumption is the prime objective of the design of data aggregation in battery-powered

wireless networks. A tradeoff exists between the aggregation latency and the energy consumption, which has been widely studied

under the protocol interference model. There has been however no investigation of the tradeoff under the physical interference

model which is known to capture more accurately the characteristics of wireless interferences. When coupled with the technique

of successive interference cancellation, by which a receiver may recover signals from multiple simultaneous senders, the model

can lead to much reduced latency but increased energy usage. In this paper, we investigate the latency-energy tradeoff for data

aggregation in wireless sensor networks under the physical interference model and using successive interference cancellation.

We present theoretical lower bounds on both latency and energy as well as their tradeoff, and give an efficient approximation

algorithm that can achieve the asymptotical optimum in both aggregation latency and latency-energy tradeoff. We show that our

algorithm can significantly reduce the aggregation latency, for which the energy consumption is kept at its lowest possible level.

Index Terms—Data aggregation, Latency-energy tradeoff, Wireless sensor network, Successive interference cancellation.
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1 INTRODUCTION

Wireless sensor networks have been extensively exploited

for many environment monitoring applications in recent

years. One of the core functions in these networks is data

aggregation, which is to collect data from the wireless sensor

nodes to deliver to a sink node. Typically, data aggregation

is initiated by the sink using some SQL-like queries, such

as “to find the highest temperature in the region”. Messages

generated at individual sensors carrying temperature data,

are first aggregated and processed at some relay sensors,

e.g., to derive the local maximum temperature; the locally

processed results are further aggregated, and so on, until

the final result reaches the sink. Besides the max function,

other functions such as min, sum, count, and average can

all be effectively implemented using data aggregation.

As the sensed data typically has a limited duration of

validity, a fundamental requirement is that the total ag-

gregation time, measured in time units and also referred

to as the aggregation latency, must be minimized [1]–[3].

Additionally, the sensor nodes have to observe the hard

constraint imposed by battery power and must strive for low

energy consumption in each run of the data aggregation.

Obviously, there exists some kind of tradeoff between

aggregation latency and energy consumption (the latency-

energy tradeoff) in wireless sensor data aggregation [4]–[6].

There have been some efforts to derive latency-energy

tradeoff theoretically [7] as well as practical algorithms [4]–

[6], which are all based on the protocol interference model

(or equivalently the pair-wise interference model). Under

the protocol interference model, the transmission range and

interference range of a node are simplified to two disks

with radii rt and ri (ri ≥ rt), respectively. A transmission is

successful if and only if the receiver lies within the transmis-

sion range of the sender and outside the interference range

of any other concurrent sender. There has been however

no prior study that is based on the physical interference

model (or the cumulative interference model) which has

been shown to be able to more accurately characterize the

wireless interferences than the protocol interference model

[8]–[10]. Designs based on the physical interference model

can lead to increased network capacity. Under the physical

interference model, the cumulative interference from all

concurrent transmissions, e.g. the
∑

ej∈Λi
Pj/d

α
ji part in

Eqn. (1), is taken into consideration at each receiver. A

transmission along link ei is successful if the Signal-to-

Interference-plus-Noise-Ratio (SINR) at its receiver is above

a certain threshold:
Pi/d

α
ii

N0 +
∑

ej∈Λi
Pj/dαji

≥ β. (1)

Here Λi denotes the set of links that transmit simultaneously

with ei. Pi and Pj denote the transmission powers at the

transmitter of link ei and that of link ej , respectively. dii
(dji) is the distance between the transmitter of link ei (ej)

and the receiver of link ei. Fig. 1 explains these distances

graphically. α is the path loss ratio which has a typical

value of between 2 to 6. N0 is the ambient noise power. β
is a positive constant as the SINR threshold for a successful

transmission [3], [11].
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Fig. 1: An illustration of distances with two transmission

links: ei and ej .

With the physical interference model, a receiver can only

successfully recover one signal from one sender in each
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time slot, among possibly several or many simultaneous

transmissions. In recent years, it has been shown that, by

applying Multi-Packet Reception (MPR) techniques [12], it

is possible to break this one-timeslot-one-sender barrier to

let a receiver recover multiple individual signals from the

mixed signal coming from multiple simultaneous senders.

Successive Interference Cancellation (SIC), one subcategory

of MPR, has been demonstrated practical by experimental

study [13] implemented for the IEEE 802.15.4 [14] (ZigBee)

physical layer (a common physical-layer standard for sensor

networks and other wireless personal area networks). The

idea of SIC is to repeatedly identify the strongest signal

and then remove (cancel) it from the mixed one using

channel estimation, signal regenerating and subtraction [15].

To make it work, an interference cancellation sequence

needs to be identified, such that for the ith signal to be

canceled, the following criterion is satisfied:

Pi/d
α
ii

N0 +
∑

ej∈Λi−Γi
Pj/dαji +

∑

ek∈Γi,k≻i Pk/dαki
≥ β, (2)

where Γi is the set of concurrent transmission links con-

necting to the same receiver as ei’s, and k ≻ i denotes

that link ei is canceled before link ek. Extra energy is

needed to recover the ith signal if it is not the last canceled

one, in order to compensate for the cumulative interference

from those links that are later canceled. Meanwhile, extra

decoding delay, proportional to the number of canceled

signals, is incurred for the entire signal cancellation process

[13].

SIC techniques can potentially reduce the aggregation

latency in wireless sensor networks significantly, because

multiple transmissions can be scheduled in the same time

slot while the saved scheduling latency overwhelms the

incurred decoding delay (To be compared in Sec. 3.2).

Inevitably, the cost is increased energy consumption. To the

best of our knowledge, there is no previous study that has

tried to characterize the latency-energy tradeoff under SIC.

Such characterization is needed in order to accurately gauge

the practical benefits of applying SIC in typical wireless

applications.

In this paper, we investigate the aggregation latency-

energy tradeoff in wireless sensor networks under the

physical interference model with successive interference

cancellation. Our contributions are as follows:

⊲ We prove a theoretical lower bound on the aggregation

latency under the physical interference model with SIC:

Ω(max{D, logX+1 n}), where D is the network diameter

in terms of the number of hops (the maximum of the

minimum number of hops between any pair of nodes,

when the nodes are transmitting using PM and scheduled

without mutual interference), n is the number of nodes,

and X = ⌊log1+β
PM

N0β
+ 1⌋ with PM being the maximum

transmission power of any node.

⊲ We prove a theoretical lower bound, applicable to both the

case with and that without SIC, on energy consumption un-

der the physical interference model: N0β
(nmisdM )α

nα−1 , where

nmis is the size of the maximum independent set with PM

(see Definition 1 in Section 4) of the given network and dM
is the maximum transmission range with maximum power

PM and zero interference.

⊲ We prove a theoretical lower bound on the latency-

energy tradeoff under the physical interference model with

SIC that, for any aggregation algorithm, the product of the

energy consumption approximation ratio and the (α − 1)th

power of the aggregation latency approximation ratio is

lower bounded by Ω(∆α−1), where ∆ is the maximum node

degree (maximum number of nodes within the transmission

range dM of any node).

⊲ We propose EMA-SIC, an Energy-efficient Minimum-

latency Aggregation algorithm under the physical inter-

ference model with SIC. As compared to existing work

[3], [11] on minimum-latency data aggregation under the

physical interference model, EMA-SIC can significantly

lower the upper bound of the aggregation latency, to O(D),
and at the same time achieves an energy consumption

approximation ratio that is the lowest possible with respect

to the latency-energy tradeoff lower bound. In other words,

our proposed algorithm achieves the asymptotical optimum

in both aggregation latency and latency-energy tradeoff.

The remainder of the paper is organized as follows. We

discuss related work in Sec. 2, and present the problem

model in Sec. 3. We study the theoretical lower bounds for

aggregation latency, energy consumption and their tradeoff

in Sec. 4. The EMA-SIC algorithm and its analysis are

presented in Sec. 5 and 6, respectively. The latency-energy

efficiency of EMA-SIC is further studied via extensive sim-

ulations in Sec. 7. Finally, we conclude the paper in Sec. 8.

2 RELATED WORK

2.1 Minimum-Latency Data Aggregation

There is a large body of literature on data aggregation in

wireless sensor networks [1]–[3], [11], [16]–[19]. Most of

the work target at minimum aggregation latency, without

much consideration of the energy consumption. The current

best upper bound on aggregation latency is O(∆+R), which

is based on the protocol interference model [1], [2], [16]–

[18], where R is the network radius in hops and ∆ is the

maximal node degree.

The paper [1] is the first work that achieves the O(∆+R)
aggregation latency upper bound. In [2], the minimum-

latency data aggregation problem in a multihop wireless

sensor network with the assumption that each node has

a unit transmission range and an interference range of

ρ ≥ 1 is studied. Xu et al. [17] propose an aggregation

schedule based on a distributed algorithm, which achieves a

guaranteed maximum aggregation latency of 16R+∆−14;

they also prove a lower bound of max{R, log2 n} on the

aggregation latency for any interference model, where n
is the network size. Different from the above work where

connected dominating sets or maximal independent sets

are employed, a novel approach of distributed aggregation

with latency bound in O(∆ + R′) is introduced in [16] by

clustering. Here, R′ is the inferior network radius satisfying

that R′ ≤ R ≤ D ≤ 2R′ with D as the network diameter in

hop-count. The MLAS problem is extended to the case with

multiple sinks in [19] with latency bound of O(∆ + kR),
where k is the number of sinks.
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To the best of our knowledge, only two papers, [3] and

[11], assume the physical interference model. A distributed

aggregation scheduling algorithm with constant power as-

signment is proposed in [3], which achieves a latency upper

bound of O(∆ + R). Li et al. [11] present a distributed

algorithm with a latency bound of O(K), where K is the

logarithm of the ratio between the length of the longest link

and that of the shortest link, and a centralized solution with

an aggregation latency of O(log3 n) which is the current

best result among all proposed aggregation algorithms under

the physical interference model. However, no limit on the

power is assumed in [11].

2.2 Latency-Energy Tradeoffs in Data Aggregation

The existence of a tradeoff between energy consumption and

aggregation latency in wireless sensor networks is widely

recognized. There were some attempts targeting at efficient

data aggregation algorithms with both low aggregation la-

tency and low energy usage [4]–[7], [20], but all are based

on the protocol interference model expect [20] which only

considers primary interference without mutual interference

from other concurrent transmissions.

Yu et al. [4] explore the latency-energy tradeoff using

techniques such as modulation scaling; algorithms are pro-

posed to minimize the total energy consumption subject

to a specified latency constraint. Arumugam et al. [5]

propose a TDMA-based algorithm to effectively aggregate

data in an energy-efficient way. In [6], the source node can

specify its interest in minimizing energy consumption and/or

source-to-sink delay, as input to the aggregation algorithm.

The theoretical analysis in [7] demonstrates that there ex-

ists a latency-energy tradeoff in sensor data aggregation;

an aggregation algorithm is designed, which achieves the

asymptotical optimum for the tradeoff under the protocol

interference model. To address the latency-energy tradeoff

for in-network computation, of which data aggregation is a

special case, an algorithm with order-optimal energy usage

under given latency constraint is proposed in [20]. However,

its order-optimality is derived over a network of uniformly

random node distribution with simplified interference model

as discussed previously, while not guaranteed over arbitrary

network topologies.

To the best of our knowledge, there has been no work ad-

dressing the tradeoff under the physical interference model,

not to mention the case with arbitrary network topologies

and/or SIC technique, which is targeted in this paper.

2.3 Successive Interference Cancellation

The techniques of successive interference cancellation have

been exploited in recent years. Weber et al. [15] have ana-

lyzed the transmission capacity of wireless ad-hoc networks

using SIC, with both upper bound and lower bound in closed

form. Simeone et al. [21] analyze the capacity of linear

two-hop mesh networks with SIC; a decode-and-forward

relaying mechanism is proposed by exploiting the possible

relevant inter-cell channel gains and rate splitting with SIC.

Wang et al. [22] present a polynomial-time heuristic algo-

rithm to approximate the optimal network throughput in ad

hoc networks with joint routing and scheduling using SIC.

Lv et al. [23] propose simultaneity graph to characterize the

effect of SIC on link dependence due to interference, and

present an independent set based greedy scheme to construct

a maximal feasible schedule. Jiang et al. [24] advocate the

use of joint SIC and interference avoidance and introduce a

cross-layer optimization framework for the joint scheme. In

[25], a SIC-based scheduling algorithm, with polynomial-

time complexity, is proposed to find short schedules for

networks with arbitrary distribution in the Euclidean plane.

However, none of the above considers the decoding delay

with SIC. Our paper addresses this issue.

3 THE PROBLEM MODEL

We consider a multi-hop wireless sensor network with n
arbitrarily distributed sensor nodes v0, v1, . . . , vn−1 and a

sink node vn. The directed graph G = (V,E) denotes

the tree constructed for data aggregation from the sensor

nodes to the sink, where V = {v0, v1, . . . , vn} is the set

of all nodes, and E = {e0, e1, . . . , en−1} is the set of

transmission links in the tree with ei representing the link

from sensor node vi to its parent. Without loss of generality,

we assume that the minimum Euclidean distance between

each pair of nodes is 1.

We consider a time-slotted system. The transmission

delay of one packet and the decoding delay to cancel one

more signal with SIC are normalized to 1 time unit and τ
time unit, respectively. The actual length of any time slot t
is (1 + χt · τ ) time units, with χt as the maximum number

of canceled signals at any scheduled receiver in this slot

depending on whether the SIC technique is applied: χt = 0
if there is no SIC application, while χt > 0 otherwise.

3.1 The Data Aggregation Problem

The data aggregation problem is to use the links in E to con-

struct a suitable tree and to design a correct and collision-

free aggregation schedule S = {S0, S1, . . . , ST−1}, where

T is the total time slots for the schedule and St denotes

the subset of links in E scheduled to transmit in time slot

t, t = 0, . . . , T − 1. A correct aggregation schedule must

satisfy the following conditions. First, any link should be

scheduled exactly once, i.e.,
⋃T−1

t=0 St = E and Si∩Sj = ∅
where i 6= j. Second, primary interference (that due to a

node acting as a transmitter and a receiver in the same

time slot) should be avoided; that is, T (St) ∩ R(St) =
∅, ∀t = 0, . . . , T − 1, where T (St) and R(St) denote

the transmitter set and receiver set for the links in St,

respectively. Third, a non-leaf node vi transmits to its parent

only after all the links in the subtree rooted at vi have

been scheduled, i.e., T (Si) ∩ R(Sj) = ∅ where i < j;

in this way, vi can conduct local process to aggregate all

data from its subtree (e.g. local maximum temperature of

its subtree) and transmits the aggregated data only once

to save energy. An aggregation schedule is collision-free

if each scheduled transmission in time slot t, i.e., ∀ei ∈ St,

can be correctly received by its receiver according to the

interference model in Sec. 3.3, ∀t = 0, . . . , T − 1. Our

objective is to minimize the aggregation latency, i.e., the

overall time units of all slots, as well as the latency-energy

tradeoff. Note that the aggregation latency already includes
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α Path loss ratio, Sec. 1 D Network diameter in terms of hop count, Sec. 1

β SINR threshold, Sec. 1 nmis Size of maximum independent set, Sec. 1

N0 Ambient noise power, Sec. 1 X Max. cancelable signals at one receiver, Sec. 1

PM Max. transmission power, Sec. 1 χt Max. canceled signals at each receiver, slot t, Sec. 3

dM Max. transmission range with PM , Sec. 1 τ Decoding delay to cancel one more signal, Sec. 3

∆ Max. node degree, Sec. 1 h Side length of hexagons, Sec. 5

n Number of sensor nodes in network, Sec. 1 ncds Size of connected dominating set, Appendix I

TABLE 1: Notation table.

the end-to-end transmission delay, decoding delay with SIC

and the cumulative queueing delay, since it is defined as the

time-span between the time-point of first transmission and

that when the sink collects all data.

3.2 Decoding delay with SIC
With the SIC technique for ZigBee standard in [13], one

packet typically has a length of 128 bytes, which are

modulated into 4096 physical-layer symbols. Symbols of

each signal are decoded and canceled sequentially, with the

requisite that three consecutive symbols should be buffered

for each canceled symbol. The decoding delay for each

canceled signal is the time span for 3 symbols, which is

τ = 3
4096 of the transmission delay. If we have χt signals

to cancel out, the total decoding delay is 3χt

4096 time units

while the saved transmission delay is χt time units, i.e.,

one time unit for each canceled signal. Thus, SIC has great

potential in reducing the aggregation latency in wireless

sensor networks. The above setting for decoding delay is

also applied in our simulation study in Sec. 7.

3.3 Interference and Energy Models
We adopt the physical interference model with the appli-

cation of successive interference cancellation. With SIC,

a receiver can recover multiple signals from simultaneous

transmitters from the mixed signal received, as long as an

interference cancellation sequence of the signals can be

determined. The sequence is such that the ith signal remains

strong enough, as judged by condition (2), after the previous

i− 1 signals have been removed (canceled) from the mixed

signal. If SIC is not applied at a receiver, the receiver can

recover at most one signal (from one sender) in each time

slot, subject to condition (1).

In our study, we use the energy model that the power

attenuation along each transmission link of length r is

proportional to rα, α ≥ 2, i.e., the received power is P/rα

if the sender uses transmission power P .

Let Pi denote the transmission power used by node

vi, i = 0, . . . , n− 1, and the maximum transmission power

at any sensor node be PM .1 We assume no isolated node,

i.e. each node can transmit to at least one other node in

the network if the power level of PM is used. Let D be the

network diameter, which is in hops instead of the geometric

distance, and is defined as the maximum of the minimum

number of hops between any pair of nodes when the nodes

are transmitting using maximum power PM ; and dM be the

maximum transmission range of a node when using PM

with zero interference.

Important notations used in the paper are summarized in

table 1 with descriptions and places of first appearances.

1. We consider homogeneous networks with identical maximum trans-
mission power on each node.

4 THEORETICAL LOWER BOUNDS

We first investigate the theoretical lower bounds on the ag-

gregation latency, the energy consumption and the latency-

energy tradeoff for the data aggregation problem, respec-

tively.

4.1 Energy Consumption Bound

We prove in Theorem 1 a lower bound, applicable to

both the case with and that without SIC, on the overall

energy consumption for data aggregation under the physical

interference model.

Definition 1. (Maximum Independent Set with PM ) An

independent set with PM in a wireless sensor network G is

a subset of nodes in the network graph, such that no node

in the set can successfully transmit to another node in the

set using the maximum power PM with zero interference,

and a maximum independent set with PM is the largest

such independent set in the graph, i.e., it has the maximum

number of nodes.

Theorem 1. (Energy Consumption Lower Bound) Sup-

pose the size of the maximum independent set with PM

containing the sink in a wireless sensor network is nmis+1.

The overall energy consumption for data aggregation in

the network under the physical interference model, with or

without SIC, is lower-bounded by N0β
(nmisdM )α

nα−1 .

We prove Theorem 1 by analyzing the energy consump-

tion when links are scheduled in a “TDMA” fashion, i.e.,

only one link is scheduled to transmit in each time slot, and

the data aggregation tree is a minimum spanning tree of the

network, of which the weight of link ei is dαii, where dii is

the Euclidean length of link ei. More details can be found

in Appendix A.

4.2 Aggregation Latency Bound

In their recent work, Xu et al. [17] give a latency lower

bound of Ω(D + ∆) on sensor data aggregation under the

protocol interference model, and a latency lower bound of

Ω(max{R, log2 n}) under any interference model. We next

prove an aggregation latency lower bound under the physical

interference model with SIC.

Theorem 2. (Aggregation Latency Lower Bound) The la-

tency of data aggregation in a wireless sensor network under

the physical interference model with SIC, is lower-bounded

by Ω(max{D, logX+1 n}), where X = ⌊log1+β
PM

N0β
+ 1⌋.

We first demonstrate that X is the maximum cancelable

signals at one receiver, and then prove Theorem 2 by show-

ing that the aggregation latency lower bound is achieved

using maximum transmission power with D, n and X as

dominant factors. Detailed proof is in Appendix B.



5

4.3 Latency-Energy Tradeoff

The lower bounds on aggregation latency and overall energy

consumption, as just derived, may not be achievable con-

currently: the lower bound on energy consumption given

in Theorem 1 is achieved only when the aggregation tree

is a minimum spanning tree of the network and exactly

one transmission along the tree is scheduled in each time

slot. In this case, the aggregation latency is n. On the other

hand, to achieve the lower bound on aggregation latency

of Ω(max{D, logX+1 n}) as given in Theorem 2, larger

powers up to PM at the transmitters may need to be used.

Consequently, the tradeoff between aggregation latency and

energy consumption needs to be addressed in the design of

any data aggregation algorithm, which is the main objective

of this paper.

Theorem 3 presents a theoretical lower bound on the

combined performance of aggregation latency and energy

consumption. The theorem is not to establish a definition for

the latency-energy tradeoff, which may vary with different

application concerns. However, the result in Theorem 3 can

serve as a metric to examine whether an algorithm has

achieved the best it can do in terms of both aggregation

latency and energy consumption, with a tradeoff in between.

A similar metric can be found in [7] under the protocol

interference model.

Theorem 3. (Latency-Energy Tradeoff Lower Bound)

Let ρL and ρE denote the approximation ratios of the

aggregation latency and energy consumption with regard to

the lower bounds in Theorems 1 and 2, respectively, with any

given data aggregation algorithm. The product of the energy

consumption approximation ratio, i.e., ρE , and the (α−1)th

power of the aggregation latency approximation ratio, i.e.,

ρα−1
L , is lowered-bounded by Ω(∆α−1) in wireless networks

under the physical interference model with SIC.

To prove the theorem, we show that there exists a sample

network of n+1 nodes with maximum node degree ∆ such

that ρα−1
L ρE is lowered-bounded by Ω(∆α−1) under the

physical interference model with SIC. See more details in

Appendix C.

We will show in Sec. 6 that, our algorithm, to be proposed

in Sec. 5, is asymptotically optimal in both aggregation

latency and latency-energy tradeoff, with respect to the

lower bounds in Theorems 1, 2 and 3.

5 EMA-SIC: ENERGY-EFFICIENT MINIMUM-
LATENCY DATA AGGREGATION ALGORITHM

WITH SUCCESSIVE INTERFERENCE CANCEL-
LATION

We now design our EMA-SIC algorithm, which can outper-

form any other existing algorithm by its reduced maximum

aggregation latency and asymptotically optimal latency-

energy tradeoff. It uses the successive interference cancella-

tion technique, and consists of two parts: tree construction

(T) and link scheduling (S).

5.1 Tree Construction with SIC

The aggregation tree construction in EMA-SIC comprises

three steps, executed in a distributed fashion.

T1) Breadth-first search is launched by the sink vn to

find a spanning tree of the network rooted at it, based on

maximum transmission ranges of the nodes. Each node is

assigned a level, indicating its hop-count to the sink. The

sink node is initialized with level 0.

T2) A connected dominating set (CDS) of the network

(see Definition 2) is identified in the breath-first spanning

(BFS) tree, by treating the sink as the first dominator and

then finding other dominators using the most widely adopted

algorithm, which is distributed, in [26]. This algorithm is

executed in two phases to find the connected dominating set.

In the first phase, a maximum independent set is constructed

such that the distance between any pair of its complementary

subsets is exactly two hops. Based on the constructed MIS,

the second phase generates a connected dominating set by

strategically selecting nodes to be added to or removed from

the MIS. A tree rooted at the sink and connecting all other

nodes in the connected dominating set can be built, such

that each node in level l ≥ 1 connects to its parent node in

level l − 1 of the BFS tree.

Definition 2. (Connected Dominating Set with PM ) A

dominating set with PM in a wireless sensor network G
is a subset of nodes in the graph, such that every node

outside the set can successfully transmit to at least one node

in the set using the maximum power PM . The nodes in a

dominating set are referred to as dominators, and those not

in the set are dominatees. A connected dominating set with

PM is a dominating set within which any node can transmit

to at least another node using PM .

(a) Concurrent transmissions to the 

head dominatee.

Dominator

Head dominatee

Other Dominatee

(b) MST rooted at the dominator.

Link Constructed

Fig. 2: The third step of tree construction in EMA-SIC: an

example with one dominator.
T3) This step consists of two phases. Consider the

dominators in the connected dominating set derived in

the previous step. In the first phase, i.e., step T3.a, each

dominator finds a disk centered at itself with radius equal

to the maximum transmission range dM , and use equal-

sized hexagons to cover the disk. An example is given

in Fig. 2(a). The side length of the hexagons is h =

min{d1, d2} with d1 =
−1+

√

1+4/3(1+log1+β

√
PM/(N0β)

2

and d2 = 1
2 (

PM

N0β
)

1
2α , which are carefully assigned to ensure

the validness of our algorithm, i.e., K1 > 0 which is a

parameter to be introduced shortly, proven in Appendix D.

In each hexagon, the dominatee which is closest to the

dominator is chosen as the head dominatee. We prove in

Sec. 6 that, with our assignment of the hexagon side length,

all dominatee nodes in a hexagon can concurrently transmit
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to the head dominatee which can successfully recover these

transmissions using successive interference cancellation.

Note that, each dominator only needs the location in-

formation of the dominatees within the disk as in Fig. 2.

Besides, the relative coordinate (x, y) of each dominatee

with its dominator as the origin (0, 0), is adequate to decide

which hexagon it resides in and whether it is the head

dominatee, without the use of absolute coordinates in the

global view. So the step T3.a can be executed in a fully

distributed fashion on each dominator just with relative

locations of its dominatees.

In the next phase, i.e., step T3.b, for the much sparser

topology consisting of only the head dominatees and the

dominators, a local minimum spanning tree (MST) is built to

connect the head dominatees to each dominator, as shown in

Fig. 2(b). In constructing the MST, a link with length r has

weight rα, which reflects the power attenuation along the

link. Using the connected dominating set as the backbone,

a data aggregation tree of the entire network is formed.

In the above procedure, if a dominatee happens to reside

in the overlapping area of hexagons or disks belonging to

different dominators, it chooses to join the tree construction

of the dominator geometrically closest to the sink.

Fig. 12 in Appendix E illustrates the tree construction

procedure with an example.

5.2 Link Scheduling with SIC

The aggregation schedule consists of three steps: (S1)

schedule the transmissions in individual hexagons from the

non-head dominatees to the head dominatee; (S2) schedule

the transmissions from head dominatees to their dominators

along the local minimum spanning trees; (S3) schedule the

aggregation transmissions of the dominators along the tree

connecting them to the sink.

For step S1, within each hexagon, all the non-head

dominatees transmit concurrently to the head dominatee.

In order for the head dominatee to recover all the trans-

missions correctly, the transmission power for the ith link

in the cancellation sequence, which has a link length of

dii, is assigned to be (N0 + I)β(1 + β)X
′−idαii, where

I = PM/(2h)α

β(1+β)X′
−1
−N0 is the upper bound of the cumulative

interference from current transmissions in other hexagons

and X ′ = 3h2 + 3h is the maximum number of non-head

dominatees in any hexagon. The detailed derivation of I ,

X ′ and the power assignment can be found in the proof of

Theorem 4 in Sec. 6 to show the correctness of EMA-SIC.

To alleviate inter-hexagon interferences, a schedule of

hexagons is designed following the rule that the head

dominatees in any two hexagons, of which the transmissions

are scheduled in the same time slot, should be separated

by a distance of greater than K1 + 1 times the maximum

link length 2h in a hexagon, where K1 = (6X ′)
1
α (1 +

( 2√
3
)α 1

α−2 )
1
α ( 1

β(1+β)X′
−1
− N0(2h)

α

PM
)−

1
α .

To achieve collision-free link scheduling in steps S2 and

S3, we apply the following two rules: (i) any two concurrent

transmitters should be separated by a distance of at least

(K2 + 1)dM , with K2 = (6β(1 + ( 2√
3
)α 1

α−2 ) + 1)1/α, in

order to bound the cumulative interference at each receiver;

(ii) the transmission power for a link of length r is set

to N0β(2 − 1/Kα
2 )r

α. This idea of separating concurrent

transmitters by a predefined distance was also employed in

[27] which however did not consider background noise in

the interference model (we do here).

Note that, similar approaches of covering the network

with hexagons are also utilized in aggregation algorithms of

[3] and [11], but with fundamental differences from ours in

following ways: (i) in [3], the network is covered with equal-

sized grids just for link scheduling across different grids

without contribution to tree construction while our applica-

tion of hexagons both constructs the aggregation tree and

schedules link transmissions within the same hexagon; (ii) in

[11], hexagons with differentiated sizes are iteratively used

to construct the tree but with unlimited power assignment

while our paper shows practical concern with maximum

transmission power and applies hexagons with unique sizes

for only part of the tree construction; moreover, absolute

locations of all nodes in the global view are required in [11]

while our paper just needs a weaker condition of relative

position of each dominatee to its dominator.

The EMA-SIC algorithm is summarized in Algorithm 1.

6 ANALYSIS OF EMA-SIC

We next prove the correctness, as well as the latency and

energy efficiencies of our algorithm.

6.1 Correctness

Theorem 4. (Correctness of EMA-SIC) EMA-SIC con-

structs a data aggregation tree and achieves a correct

and collision-free aggregation schedule under the physical

interference model.

Proof Sketch: It is easy to see an aggregation tree rooted

at the sink is correctly constructed from the tree con-

struction algorithm in EMA-SIC. We prove that EMA-SIC

achieves a correct and collision-free aggregation schedule

(see Sec. 3.A) by presenting upper bounds for cumulative

interferences at each receiver in each step of the link

scheduling, and showing that each received signal in step

S1 and in steps S2 and S3 of the link scheduling satisfies

the SINR constraint in Eqn. (2) and (1) even with its

corresponding upper bound of cumulative interferences, re-

spectively. The detailed proofs can be found in Appendices

F and G, respectively. ⊓⊔
6.2 Energy and Latency Efficiencies

We show that EMA-SIC outperforms any other algorithm as

it can reduce the maximum aggregation latency to O(D),
while maintaining an energy consumption approximation

ratio that is the lowest possible—O(∆α−1).

Theorem 5. (Latency Efficiency with EMA-SIC) The

aggregation latency with EMA-SIC in any given network

with network diameter D, is upper-bounded by O(D), and

the aggregation latency approximation ratio (with respect to

the lower bound in Theorem 2) is upper-bounded by O(1).

We prove Theorem 5 by showing that the scheduling

latencies for step S1 and S2 are bounded with constant

values while step S3 has an upper-bounded latency in the

order of O(D). See detailed proof in Appendix H.
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Algorithm 1 EMA-SIC Algorithm

Input: Node set V and the sink node vn.

Output: Aggregation tree E and link schedule S.

1: Initialization: E,S ← ∅.
2: Step T1: Construct a BFS tree on V rooted at vn.

3: Step T2: Construct a CDS on the BFS tree which

includes vn; build a spanning tree of the dominators

rooted at vn; add tree links to E.

4: Step T3.a: Cover the network with hexagons and con-

nect each non-head dominatee to its head dominatee in

the hexagon; add links to E.

5: Step T3.b: For each dominator, construct a local MST

of its head dominatees rooted at it; add tree links to E.

6: d1 :=
−1+

√

1+4/3(1+log1+β

√
PM/(N0β))

2 ; d2 :=
1
2 (

PM

N0β
)

1
2α ; h := min{d1, d2}; X ′ := 3h2 + 3h;

I := PM/(2h)α

β(1+β)X′
−1
−N0;

K1 := (6X ′)
1
α (1 + ( 2√

3
)α 1

α−2 )
1
α ( 1

β(1+β)X′
−1
−

N0(2h)
α

PM
)−

1
α .

7: Step S1: Schedule transmissions in hexagons from non-

head dominatees to their head dominatees, such that

any two concurrent receivers are separated by at least

2(K1+1)h, and the transmission power is (N0+I)β(1+
β)X

′−idαii for the ith link in the receiver’s cancellation

sequence with length dii; add schedule to S.

8: K2 := (6β(1 + ( 2√
3
)α 1

α−2 ) + 1)1/α.

9: Steps S2 & S3: Schedule the link transmissions in the

aggregation tree containing only head dominatees and

dominators, such that any two concurrent transmitters

are separated by at least (K2 + 1)dM and transmission

power is N0β(2− 1/Kα
2 )r

α for a link of length r; add

the schedule to S.

10: return E and S

Theorem 6. (Energy Efficiency with EMA-SIC) The

energy consumption approximation ratio, that is, the upper

bound of the overall energy consumption with using EMA-

SIC to the lower bound in Theorem 1, is upper-bounded

by O(∆α−1), in any given network with a maximum node

degree of ∆.

To prove Theorem 6, the upper bounds of energy con-

sumption for step S1, S2 and S3 are analyzed and charac-

terized with nmis, respectively. Detailed proof can be found

in Appendix I.

The following corollary shows that the energy consump-

tion approximation ratio in Theorem 6 is indeed tight,

for any algorithm achieving the aggregation latency upper

bound in Theorem 5.

Corollary 1. (Asymptotic optimum with EMA-SIC) The

aggregation latency and the latency-energy tradeoff with

EMA-SIC in any given network, are asymptotically optimal,

or equivalently, with O(1) approximation ratios with respect

to the lower bounds in Theorem 1, 2 and 3.

This corollary can be easily proved by checking the

approximation ratios of aggregation latency and energy

consumption of EMA-SIC in Theorem 5 and 6, as well as

the latency-energy tradeoff lower bound in Theorem 3.

Comparing our analytical results in Theorems 5 and 6

with those in [11] and [3], we can see that EMA-SIC reduces

the upper bound of the maximum aggregation latency to

O(D) (which is the current best result in literature), and

at the same time achieves an approximation ratio of energy

consumption that is the lowest possible (Corollary 1).

7 SIMULATION RESULTS

We have presented the asymptotic performance of EMA-

SIC in terms of aggregation latency and energy consumption

together with their tradeoff by analyzing the respective

upper bounds and approximation ratios in the worst cases.

In this section, we further investigate the latency-energy effi-

ciencies of EMA-SIC in average cases by comparison with

two distributed aggregation algorithms under the physical

interference model: Li et al.’s algorithm in [3] and the Cell-

AS algorithm in [11].

We conduct our simulation in the Sinalgo [28] simulation

framework, a packet-level wireless network simulator for

testing and validating network algorithms.

Using the similar setting as that in [11], we consider

wireless sensor networks having 100 to 1000 nodes that

are randomly distributed with Uniform, Poisson or Cluster

distributions2 in a square field with side length from 100

to 200 meters.3 Fig. 14 in Appendix J gives an illustration

of network topologies with 100 nodes under different dis-

tributions. The power of the background noise N0 is set to

a constant 10−6 joule/timeunit. Since the path loss ratio α
has a typical value between 2 and 6 and the SINR threshold

β is generally assumed to be larger than 1 [3], [11], α is

assigned 3, 4 and 5 in the various settings, while β is set

to 2, 4, 6 and 10, 15, 20 for the low SINR and high SINR

scenarios, respectively. The maximum transmission powers

for Li et al.’s algorithm and the EMA-SIC algorithm are

assigned values that would result in a transmission range

of 40 meters and can maintain the network connectivity

with high probability.4 The maximum transmission power

in Cell-AS algorithm is infinite since no power limitation

is assumed [11]. The decoding delay with SIC is calculated

as in Sec. 3.2. Each datum is an average of 100 trials.

Li et al.’s algorithm is only effective with uniform node

distribution, network side length of 180 and 200, and (α, β)

being the pairs (4, 2), (5, 2), (5, 4), and (5, 6), consistent

with the report in [11].

We therefore compare the latency-energy performance

of the three algorithms under those settings in Fig. 3–10.

Complete simulation results with other node distributions,

network side lengths and (α, β) value pairs can be found

our technical report [29], due to space constraint.

7.1 Aggregation latency and energy consumption

Fig. 3 and Fig. 45 show that EMA-SIC outperforms both the

Cell-AS and Li et al.’s algorithms in aggregation latency in

2. Please refer to [11] for detailed explanation of each distribution.

3. With given number of nodes in the network, varying the network scale
will change the node density.

4. Disconnected networks are meaningless in our problem since the sink
cannot receive the data from all sensor nodes.

5. Results with network side length 180 under similar settings of Fig. 3–
7 can be found in Appendix K.
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all cases, while consuming similar levels of energy as Li

et al.’s algorithm (their curves largely overlap in Fig. 4;

they will be compared separately in Fig. 5), which are

far lower than those of the Cell-AS algorithm. The high

energy consumption of Cell-AS algorithm results from its

assumption of unlimited transmission power in [11].
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(a) α = 4, β = 2
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(b) α = 5, β = 2

100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

Number of nodes

A
gg

re
ga

tio
n 

la
te

nc
y

 

 

EMA-SIC
Cell-AS
Li et al.

(c) α = 5, β = 4
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(d) α = 5, β = 6

Fig. 3: Aggregation latency (time units) comparison under

selected network settings in a 200× 200 m2 area.

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2x 10
6

Number of nodes

E
ne

rg
y 

co
ns

um
pt

io
n

 

 

EMA-SIC
Cell-AS
Li et al.

(a) α = 4, β = 2
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(b) α = 5, β = 2
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(c) α = 5, β = 4
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(d) α = 5, β = 6

Fig. 4: Energy consumption (joule) comparison under

selected network settings in a 200× 200 m2 area.
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(b) α = 5, β = 2
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(c) α = 5, β = 4
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(d) α = 5, β = 6

Fig. 5: A separate comparison of energy consumption

(joule) between EMA-SIC and Li et al.’s algorithm under

selected network settings in a 200× 200 m2 area.

Fig. 4 also shows that the energy consumption of Cell-

AS may go down when the number of nodes reaches 700–

1000, which can be explained by the decrease of link lengths

between nodes (thus decreased transmission power per link)

when the node density in the same square area increases.

As stated previously, it is hard to tell the differences

between the energy consumption curves of EMA-SIC and

Li et al.’s algorithm in Fig. 4. Thus, we conduct a separate

comparison of energy usage just between EMA-SIC and Li

et al.’s algorithm, and show that EMA-SIC is superior to

Li et al.’s algorithm in energy consumption in Fig. 5. The

curves of Li et al.’s algorithm are straight lines in Fig. 5 as

a result of its constant power assignment in [3].

Another observation with Fig. 3–5 is that: (1) the aggre-

gation latency of each algorithm is lower in settings of larger

α (which means more path loss of power, and thus lower

interference from other nodes) and smaller β (corresponding

to lower SINR requirement); (2) the energy consumption

of each algorithm increases with the enhanced value of

α (requiring higher transmission power to counteract the

increased power loss and meet the SINR requirement) and

β (higher SINR requirement).

7.2 Latency-energy tradeoff

Next, we adopt the metric for latency-energy tradeoff as

“the product of energy consumption and the (α − 1)th

power of aggregation latency” to examine the performance

of these algorithms in Fig. 6 for selected settings. The metric

proposed in Theorem 3 equals to this revised metric divided

by “the product of the optimal energy consumption and

the (α − 1)th power of the optimal aggregation latency”.

Since the optimums of both aggregation latency and energy

consumption of a given network should be the same for

any aggregation algorithm, while the optimal aggregation

latency of any given network is hard to find under the

physical interference model (NP-hard), we adopt the revised

metric here, which is equivalent to the previous metric

multiplied by a constant factor.
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(a) α = 4, β = 2
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(b) α = 5, β = 2
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(c) α = 5, β = 4
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(d) α = 5, β = 6

Fig. 6: Latency-energy tradeoff comparison under selected

network settings in a 200× 200 m2 area.

It can be observed that, the Cell-AS algorithm has a sig-

nificantly poorer latency-power tradeoff, compared with that

of the other two algorithms. As the performance differences

for Li et al.’s algorithm and the EMA-SIC algorithm are not

distinguishable in Fig. 6, we present a separate comparison

of latency-energy tradeoff between these two algorithms in

Fig. 7. We can have that EMA-SIC algorithm achieves an

evidently better latency-energy tradeoff, further confirming

its superiority to other aggregation algorithms.
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(a) α = 4, β = 2
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(b) α = 5, β = 2
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(c) α = 5, β = 4
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(d) α = 5, β = 6

Fig. 7: A separate comparison of latency-energy between

EMA-SIC and Li et al.’s algorithm under selected network

settings in a 200× 200 m2 area.

7.3 Impact of network scale

We also examine the impact of network scale on the

latency-energy efficiency of the three algorithms in various

network settings. Note that, since the network topologies are

generated randomly, it is not straightforward to adjust the

network diameter or node degree for performance compar-

ison. Thus, we indirectly change the network diameter and

node degree by varying the network scale. With the same

number of nodes in the network, increasing the network

scale will result in enhanced average network diameter while

decreased average node degree.

We present results under selective settings, where Li et

al.’s algorithm exerts its effectiveness, in Fig. 8–10 with

uniformly distributed 1000 nodes. Detailed comparisons

under other settings are included in technical report [29].
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(a) α = 4, β = 2
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(b) α = 5, β = 2
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(c) α = 5, β = 4
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(d) α = 5, β = 6

Fig. 8: Impact of network scale on the aggregation latency

(time units) under selected network settings with uniform

distribution and 1000 nodes.
With Fig. 8, we see that: i) Li et al.’s algorithm becomes

effective when network scale reaches 180 × 180 square

meters (detailed explanation in [11]); ii) Cell-AS algorithm

has a relatively stable latency performance when network

scale varies, which is due to its assumption of unlimited

transmission power such that the network diameter and

maximum node degree are fixed as 1 and n, respectively;

and iii) the latency with EMA-SIC keeps decreasing when

the size of network scales up (larger network diameter

and smaller node degree), which can be understood that
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(a) α = 4, β = 2, 3 algorithms
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(b) α = 5, β = 2, 3 algorithms
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(c) α = 4, β = 2, 2 algorithms

100 120 140 160 180 200
0

1

2

3x 10
6

Network scale

E
ne

rg
y 

co
ns

um
pt

io
n

 

 

EMA-SIC
Li et al.

(d) α = 5, β = 2, 2 algorithms

Fig. 9: Impact of network scale on the energy

consumption (joule) under selected network settings with

uniform distribution and 1000 nodes.
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(a) α = 4, β = 2, 3 algorithms
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(b) α = 5, β = 2, 3 algorithms
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(c) α = 4, β = 2, 2 algorithms
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(d) α = 5, β = 2, 2 algorithms

Fig. 10: Impact of network scale on the latency-energy

tradeoff under selected network settings with uniform

distribution and 1000 nodes.

larger network scale leads to smaller node density and thus

lower mutual interference among node pairs while more

collision-free scheduling opportunities. Network diameter is

the dominant factor for worst-case study to find theoretical

bounds for aggregation latency as in Sec. 4 and 6. But, the

impact of node degree overwhelms the network diameter on

the average latency performance in random cases.

Although Cell-AS performs better, in aggregation latency,

than EMA-SIC does when the network scale is smaller than

160 × 160 square meters, we argue that the impractical

assumption of unlimited power by Cell-AS algorithm will

render it unapplicable in power-constraint cases (wireless

sensor networks typically belong to these cases). In contrast,

EMA-SIC fits well in all network settings, with any given

maximum transmission power. Besides, EMA-SIC strictly

outperforms Cell-AS in energy consumption and latency-

energy tradeoff as shown in Fig. 9 and 10.

In Fig. 9 and 10, we present the simulation results

for (α, β) ∈ {(4, 2), (5, 2)} while that for (α, β) ∈
{(5, 4), (5, 6)} have similar conclusions and are included

in Appendix K due to space constraint. With Fig. 9.a and

9.b, we have that the Cell-AS algorithm consumes much

higher energy, proportional to the network scale, than the

others, as a consequence of its unlimited power assumption.

In Fig. 9.c and 9.d, we conduct a separate comparison
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on energy consumption between EMA-SIC and Li et al.’s

algorithm. We can see that: i) Li et al.’s algorithm has

the same energy consumption in various network scales as

a result of its constant power assignment; and ii) EMA-

SIC consumes significantly lower energy, also proportional

to the network scale (which is a natural result because of

the increased distances among node pairs in networks with

larger scale). Fig. 10.a and 10.b present the latency-energy

tradeoff by the three algorithms. Cell-AS algorithm has

the poorest tradeoff performance, which scales up with the

network side length, while Fig. 10.c and 10.d demonstrate

that EMA-SIC algorithm also remarkably outperforms Li et

al.’s algorithm in latency-energy tradeoff.

8 CONCLUDING REMARKS

This paper investigates the latency-energy tradeoff of data

aggregation in wireless sensor networks under the phys-

ical interference model and using the successive inter-

ference cancellation (SIC) technique. We derive the the-

oretical lower bounds on both aggregation latency and

energy consumption as well as their tradeoff, and give

an energy-efficient minimum-latency data aggregation al-

gorithm (EMA-SIC) which can achieve the asymptotically

optimal aggregation latency and latency-energy tradeoff.

We show that the EMA-SIC algorithm has a constant

approximation ratio of aggregation latency (with respect to

the theoretical lower bound) while consuming the lowest

possible amount of energy. We conduct simulation studies

to further validate the superiority of EMA-SIC in terms

of latency-energy performance over other work under the

physical interference model. As our ongoing work, we plan

to evaluate the latency-energy tradeoff in wireless sensor

networks with dynamics, e.g. stochastic node sleep and

wake up events, and heterogenous node capabilities, e.g.

differentiated battery power.
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APPENDIX A
PROOF TO THEOREM 1

We prove the theorem based on a lemma.

Lemma 1. Consider the n positive real numbers,

x1, . . . , xn, we have that,
n
∑

i=1

xα
i ≥ (

∑n
i=1 xi)

α

nα−1
, ∀α ≥ 1.

Proof: Consider the generalized mean of n positive

real numbers, x1, . . . , xn, with exponent p (where p
is a non-zero real number): Mp(x1, . . . , xn) = ( 1n ·∑n

i=1 x
p
i )

1/p. We use the generalized mean inequality [30],

Mp(x1, . . . , xn) ≤Mq(x1, . . . , xn) if p < q, where the two

means are equal if and only if x1 = x2 = · · · = xn. Since

α ≥ 1, we have

M1(x1, . . . , xn) ≤ Mα(x1, . . . , xn)

⇒
∑n

i=1 xi

n
≤ (

1

n

n
∑

i=1

xα
i )

1/α

⇒
n
∑

i=1

xα
i ≥ (

∑n
i=1 xi)

α

nα−1
. ⊓⊔

Proof of Theorem 1: The minimum overall energy con-

sumption for data aggregation is achieved when links are

scheduled in a “TDMA” fashion, i.e., only one link is

scheduled to transmit in each time slot (and there is no

interference from concurrent transmissions) and the data

aggregation tree is a minimum spanning tree of the network,

of which the weight of link ei is dαii, where dii is the

Euclidean length of link ei. Note that, even if the application

of SIC is an option, the optimal choice for minimum overall

energy consumption is not to use SIC while scheduling the

links as above. The rationale is that, extra energy is required

to recover the signal that is not the first canceled one, in

order to compensate for the cumulative interference from

those links canceled before it.

Thus, the transmission power Pi, which is also the energy

consumption since the transmission delay is normalized

to 1 time unit as in Sec. 3, to guarantee the success of

transmission ei is such that

Pi/d
α
ii

N0
≥ β ⇒ Pi ≥ N0βd

α
ii.

The minimum distance between any two nodes in the

maximum independent set with PM should be larger than

dM , the maximum transmission range between any two

nodes. The overall length of edges in any tree connecting all

the nodes in the maximum independent set with PM , Lmis,

should be larger than nmisdM . The overall link length in

the minimum spanning tree in the network is no smaller

than Lmis, i.e.,
∑n−1

i=0 dii ≥ Lmis > nmisdM . By Lemma

1, the overall energy consumption is lower-bounded by
n−1
∑

i=0

Pi ≥ N0β

n−1
∑

i=0

dαii ≥ N0β
(
∑n−1

i=0 dii)
α

nα−1
> N0β

(nmisdM )α

nα−1
.⊓⊔

APPENDIX B
PROOF TO THEOREM 2

We prove the theorem based on Lemma 2.

Lemma 2. Suppose a receiver can recover X simultaneous

signals in one time slot using SIC. The transmission power

used at the transmitter of the ith signal in the interference

cancellation sequence is at least N0β(1+ β)X−idαii, where

dii is the link length of the ith signal.

Proof: We prove this lemma by induction.

The base case: Consider the last signal to recover in the

interference cancellation sequence, i.e., i = X . The signal

is affected by background noise, but not any interference

from concurrent transmissions. Its SINR value satisfies

PX/dαXX

N0
≥ β ⇒ PX ≥ N0βd

α
XX = N0β(1 + β)X−XdαXX .

Therefore, the lower bound holds for the base case.

Inductive step: Suppose the transmission power of the jth

signal, Pj , j = i+1, . . . , X , is at least N0β(1+β)X−jdαjj .

Then the transmission power of the ith signal, Pi, satisfies

Pi/d
α
ii

N0 +
∑X

j=i+1 Pj/dαjj
≥ β

⇒Pi ≥ (N0 +

X
∑

j=i+1

Pj

dαjj
)βdαii

⇒Pi ≥ (N0 +

X
∑

j=i+1

N0β(1 + β)X−j)βdαii

⇒Pi ≥ N0β(1 + β
1− (1 + β)X−i

1− (1 + β)
)dαii

= N0β(1 + β)X−idαii.

The lemma is proved. ⊓⊔
Proof of Theorem 2: In a multi-hop wireless sensor network

with diameter D, the maximum number of hops for the

data from a sensor node to reach the sink is D, when all

intermediate nodes transmit using PM . Therefore, at least

D time slots are needed. Let T be the minimum number of

time slots needed for data aggregation. We have T ≥ D.

Suppose at most X simultaneous transmissions can be

successfully recovered at a receiver under the physical in-

terference model with SIC, when the maximum transmission

power of each sender is PM . Consider the first signal in the

interference cancellation sequence. Based on Lemma 2 and

recall that the minimum distance between two nodes is 1 in

our network model, we have

PM ≥ N0β(1 + β)X−11α ⇒ X = ⌊log1+β

PM

N0β
+ 1⌋.

Therefore, at most X transmissions can be concurrently

scheduled among every group of X+1 nodes. In a network

with n nodes, each of which needs to transmit exactly once,

at most n X
X+1 nodes can be scheduled to transmit in the first

time slot, while n
X+1 nodes remain. Therefore, in time slot

t (1 ≤ t ≤ T − 1), at most n( 1
X+1 )

t−1 X
X+1 nodes can be

scheduled for transmission while n( 1
X+1 )

t nodes remain.

Finally at time slot T , only the sink node remains. We thus

have n( 1
X+1 )

T ≤ 1, which gives T ≥ logX+1 n.

Since the length of each time slot t is 1 + χtτ ≥ 1
time units, combining the two cases above, the aggregation

latency is lower-bounded by Ω(max{D, logX+1 n}) time

units. ⊓⊔
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APPENDIX C
PROOF TO THEOREM 3
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(a) Network topology.

n n-1 0m

(b) Minimum spanning tree.

n n-1 0m

(c) Any aggregation tree.

Fig. 11: A chain network with n+ 1 nodes evenly

distributed along a line.

Proof: To prove the theorem, we only need to show that

there exists some network of n + 1 nodes with maximum

node degree ∆ such that ρα−1
L ρE is lowered-bounded by

Ω(∆α−1) under the physical interference model with SIC.

We consider the chain network in Fig. 11(a), where n + 1
nodes are evenly distributed along a line segment [0, 2ndM

∆ ],
i.e., node vi is at position 2dM

∆ · (n − i), 0 ≤ i ≤ n. So,

the network diameter D is 2n
∆ (the hop-count from v0 to

vn), and the maximum node degree is exactly ∆, e.g., the

node degree of some intermediate node vm. We further let

∆ ≤ 2n/ log2 n in this network such that 2n
∆ ≥ log2 n ≥

logX+1 n, where X = ⌊log1+β
PM

N0β
+ 1⌋ ≥ 1 as defined

in Theorem 2. Consequently, the aggregation latency lower

bound is D = 2n
∆ time units for this network. It is easy to see

that the minimum energy data aggregation tree is simply the

path v0v1 . . . vn as in Fig. 11(b), with the minimum energy

consumption being nN0β(
2dM

∆ )α.

For the general case where the data aggregation topology

is a tree T as in Fig. 11(c) with any given aggregation

algorithm, we assume there are k edges along the unique

path from v0 to vn in the tree. Then the data aggregation

along tree T takes at least k time slots or equivalently∑k
t=1(1+χtτ) ≥ k time units. Denote the Euclidean lengths

of the k edges in T by ri, i = 1, . . . , k. Clearly,
∑k

i=1 ri ≥
2ndM

∆ . Then the energy consumption along this path is

at least
∑k

i=1 N0βr
α
i ≥ N0β

(
∑k

i=1
ri)

α

kα−1 ≥ N0β
(2ndM )α

kα−1∆α ,

where the first inequality is based on Lemma 1. Then, for

any given aggregation algorithm, we have that

ρα−1
L ρE ≥ (

k

2n/∆
)α−1N0β(2ndM )α/(kα−1∆α)

nN0β(2dM/∆)α

= (∆/2)α−1. ⊓⊔

APPENDIX D
THE VALIDITY OF HEXAGON SIDE LENGTH

With Eqn. (3) in Appendix B, we can have that K1 must

be larger than zero. Otherwise, we will have the problem

of “division by zero” in Eqn. (3) if K1 = 0, or negative

value for cumulative interference I , which is unreasonable,

if K1 < 0 and α is an odd number. We next prove that,

with our hexagon side length h, K1 is always larger than

zero.

According to the definition of h, we have that

h = min{d1, d2} ≤
{

d1,

d2.

Then we have the following result
{

(1 + β)3h
2+3h−1 < (1 + β)3d

2
1+3d1−1 =

√

PM/(N0β),

(2h)α < (2d2)
α =

√

PM/(N0β).

It is clear that

N0β(1 + β)3h
2+3h−1(2h)α < N0β(

√

PM/(N0β))
2 < PM .

So we have

1

β(1 + β)3h2+3h−1
− N0(2h)

α

PM
> 0 ⇒ K1 > 0.

In conclusion, the value of h validate the assignment of

K1.

APPENDIX E
AN EXAMPLE OF AGGREGATION TREE CON-
STRUCTION

Fig. 12 illustrates the tree construction procedure with an

example.

APPENDIX F
CORRECTNESS OF LINK SCHEDULING IN

STEP S1

We make use of the following theorem from [31] and

Lemma 6 to complete our proof.

Theorem 7. (Groemer Inequality [31]) Suppose that C is

a compact convex set and U is a set of points with mutual

distances at least one. Then

|U ∩ C| ≤ area(C)√
3/2

+
peri(C)

2
+ 1,

where area(C) and peri(C) are the area and the perimeter

of C, respectively.

Lemma 6. In a hexagon of side length d, there are at most

3d2 + 3d + 1 nodes if the minimum distance between any

two nodes is 1.

Proof: Since hexagon is a compact convex set, on the basis

of Theorem 9, we can have the maximum number of nodes

in the hexagon as follows,

|U ∩ C| ≤ 6 · 1/2 ·
√
3/2 · d2√

3/2
+

6 · d
2

+ 1 = 3d2 + 3d+ 1.⊓⊔

We have that each pair of concurrent receivers in step

S1 are separated by 2(K1 + 1)h and K1 = (6X ′)
1
α (1 +

( 2√
3
)α 1

α−2 )
1
α ( 1

β(1+β)3h2+3h−1
− N0(2h)

α

PM
)−

1
α with X ′ =

3h2 + 3h.

Since the maximum number of signals that can be can-

celed at one receiver at a time is the maximum number

of nodes in one hexagon minus 1, we know, according to

Lemma 6, that at most 3h2 + 3h = X ′ signals can be

canceled. Using the same approach with [27], i.e., assuming

maximum power assignment at all concurrent transmitters

when each pair of concurrent receivers are separated by a

constant distance, the cumulative interference at any receiver

with successive interference cancellation can be upper-

bounded as,
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(a) Network topology with the dark node as
the sink and the dashed circle as its maximum
transmission range.

(b) BFS tree after step T1. (c) CDS after step T2 with all dark nodes as the
dominators.

(d) Step T3.a with dark nodes as dominators,
grey nodes as head dominatees and white nodes
as non-head dominatees.

(e) Step T3.b with dark nodes as dominators,
grey nodes as head dominatees and white nodes
as non-head dominatees.

(f) Aggregation tree after step T3.

Fig. 12: An example of aggregation tree construction.

X ′(6(
1

K1
)α +

∞
∑

j=2

6j(
2√
3jK1

)α)PM/(2h)α

= 6X ′(
1

K1
)α(1 +

∞
∑

j=2

(
2√
3j

)α)PM/(2h)α

= 6X ′(
1

K1
)α(1 + (

2√
3
)α

∞
∑

j=2

1

jα−1
)PM/(2h)α

= 6X ′(
1

K1
)α(1 + (

2√
3
)α

1

α− 2
)PM/(2h)α

=
PM/(2h)α

β(1 + β)X′−1
−N0 = I.

(3)

The power assignment is Pi = (N0 + I)β(1 + β)X
′−idαii

for the ith canceled link with length dii. Then we prove

that the link can be correctly scheduled with successive

interference cancellation with a valid SINR value,

Pi/d
α
ii

N0 + I +
∑X′

j=i+1

(N0+I)β(1+β)X
′
−jdα

ji

dα
ji

=
(N0 + I)β(1 + β)X

′−i

N0 + I + (N0+I)β((1+β)X
′
−i−1)

β

= β.

We can conclude that each link transmission in step S1

is successful under the physical interference model with

successive interference cancellation.

APPENDIX G
CORRECTNESS OF LINK SCHEDULING IN

STEPS S2 AND S3

We know that, in steps S2 and S3 of link scheduling, any two

concurrent transmitters are separated by at least (K2+1)dM ,

where K2 = (6β(1+( 2√
3
)α 1

α−2 )+1)1/α. For any scheduled

link with length r, we have the power assignment P =

N0β(2 − 1/Kα
2 )r

α. According to the conclusion in [27],

the cumulative interference I ′ at any receiver is

I ′ ≤ 6(
1

K2
)α(1 + (

2√
3
)α

1

α− 2
)
PM

dαM

= 6N0β(
1

K2
)α(1 + (

2√
3
)α

1

α− 2
)

= N0(1− 1/Kα
2 ).

So the SINR value for any scheduled link with length of

r should be

P/rα

N0 + I ′
≥ N0β(2− 1/Kα

2 )

N0 +N0(1− 1/Kα
2 )

= β.

We can conclude that each link transmission in steps S2

and S3 is successful under the physical interference model.

APPENDIX H
PROOF TO THEOREM 5

The proof of Theorem 5 is based on the following lemma.

Lemma 3. A disk with radius d can be covered by at most
2(d+h)(2d−h)

3h2 + 1 hexagons with side length h.

Proof: As illustrated by Fig. 13, we can divide the disk into

6 equal-sized non-overlapping cones, labeled A to F . It is

obvious that the maximum number of hexagons to cover the

disk is at most 6 times the number to cover each cone.

In each cone, there are at most 1
6 of a hexagon in the

range of 1
2h to the center of the disk, 1

6 + 1 hexagons in

the range of 2h, 1
6 + 1 + 2 hexagons in the range of 7

2h,

and so on. We can prove by induction that there are at most

1/6+
∑j

i=0 i hexagons in the range of 1+3j
2 h in each cone.

Therefore, in a range of d, corresponding to j = ⌊ 2d−h
3h ⌋,

there are at most 1/6+
2d−h
3h

( 2d−h
3h

+1)

2 hexagons in one cone.

We can then derive that there are at most
2(d+h)(2d−h)

3h2 + 1
hexagons in the entire disk with radius d. ⊓⊔
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Fig. 13: An illustration of the proof of lemma 3.

Proof of Theorem 5: In step S1 of the link scheduling, each

pair of concurrent receivers (head dominatees) are separated

by at least a distance of 2(K1 + 1)h. So at least one head

dominatee, in a disk of radius 2(K1+1)h, can successfully

receive all the transmissions from the other dominatees in

its hexagon in each time slot. In addition, there are at

most 16
3 K2

1 + 12K1 + 7 head dominatees in a disk of

radius 2(K1 + 1)h according to Lemma 3. Therefore, the

aggregation latency in this step is at most 16
3 K2

1 +12K1+7
time slots with at most (1 +Xτ)( 163 K2

1 + 12K1 + 7) time

units, which is a constant value.

When the first step finishes, there are at most
2(dM+h)(2dM−h)

3h2 + 1 remaining nodes in a disk of radius

dM , which have not transmitted.

In step S2 of the link scheduling in EMA-SIC, trans-

missions from head dominatees to their dominators along

the respective minimum spanning trees are scheduled. Since

each pair of concurrent transmitters are separated by a

distance of at least (K2+1)dM , one head dominatee can be

scheduled for transmission in a disk of radius (K2 + 1)dM
in each time slot. As at most

2(dM+h)(2dM−h)
3h2 + 1 head

dominatees reside in a disk of radius dM , there are at

most (K2 + 1)2( 2(dM+h)(2dM−h)
3h2 + 1) head dominatees to

be scheduled in a disk of radius (K2 + 1)dM . Therefore,

the aggregation latency in this step is at most (K2 +

1)2( 2(dM+h)(2dM−h)
3h2 + 1) time units (SIC is not applied

in Step S2), which is also a constant.

In step S3 of the link scheduling, transmissions from the

dominators are scheduled along the tree connecting them

to the sink. Since each dominator has a bounded degree

in the connected dominant set [26], which is denoted by

c here, and at least one dominator can transmit in a disk

of radius (K2 + 1)dM in one time slot, each dominator

needs to wait at most (K2 + 1)2c time slots before it can

transmit. In addition, the depth of the tree rooted at the

sink spanning the connected dominating set is O(D) [26].

Therefore, the aggregation latency in this step is at most

O((K2+1)2cD) = O(D) time units (SIC is not utilized in

Step S3).

In summary, the overall aggregation latency of EMA-

SIC is upper-bounded by O(D) time units. The aggregation

latency approximation ratio, i.e., the ratio of this upper

bound to the lower bound in Theorem 2, is upper-bounded

by O(D/max{D, logX+1 n}) = O(1). ⊓⊔

APPENDIX I
PROOF TO THEOREM 6

We first present two lemmas and then the proof of Theorem

6.

Lemma 4. Let Vi be the set of nodes in the disk of radius

dM centered at a dominator vi, including the dominator. Let

e1, e2, . . . , e|Vi|−1 be the links in the minimum spanning tree

of Vi rooted at the dominator, derived using link weights

proportional to rα (α ≥ 2) for a link with length r. Then

|Vi|−1
∑

k=1

|ek|α ≤ 6dαM .

Proof: Theorem 3 in [32] gives the following bound for the

sum of squares of the link lengths in the minimum spanning

tree which is constructed among the nodes in a unit disk

centered at a dominator:

|Vi|−1
∑

k=1

|ek|2 ≤ 6.

If we normalize the length of each link, |ek|, to become
|ek|
dM

, our case will be equivalent to the case in [32].

Therefore, we have

|Vi|−1
∑

k=1

(
|ek|
dM

)2 ≤ 6.

As α ≥ 2 and |ek| ≤ dM , we derive

|Vi|−1
∑

k=1

(
|ek|
dM

)α ≤
|Vi|−1
∑

k=1

(
|ek|
dM

)2 ≤ 6 ⇒
|Vi|−1
∑

k=1

|ek|α ≤ 6dαM .⊓⊔

Lemma 5. Suppose the minimum node degree of the nodes

in the connected dominating set is δ and the sizes of the

connected dominating set and maximum independent set

with PM are ncds and nmis, respectively. We have

ncds ≤ (1 +
1

δ − 1
)nmis.

Proof: According to the connected dominating set con-

struction algorithm in [26], the dominators can be divided

into two disjoint sets: VI and VC , where VI is a set of

independent nodes including the sink, VC is the set of nodes

that are parents of the nodes in VI (expect the sink) in the

breadth-first spanning tree, and |VC | ≤ |VI | − 1 [26]. We

call the nodes in VI independent nodes and those in VC

connector nodes. We next give a tighter relation between

|VC | and |VI |, which leads to this lemma.

Since the minimum node degree is δ in the connected

dominating set, we know that one connector node at level

l + 1 can be the parent node of at least δ − 1 independent

nodes in level l+ 2 and the child node of one independent

node in level l. Suppose the number of the independent

nodes in level l + 2 is |VI(l + 2)|, then the number of the

connector nodes in level l+ 1 is |VC(l+ 1)| ≤ 1
δ−1 |VI(l+

2)|. Suppose the total number of levels in the connected

dominating set is L. For completeness, we have |VI(0)| = 1
and |VI(1)| = |VC(0)| = |VC(L − 1)| = 0, since the sink,

which is in VI , is the only node at level 0 and there is no

independent node in level 1 or connector node in level 0 or

L− 1. Then, we derive
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(a) Uniform (b) Poisson (c) Cluster

Fig. 14: Sample topologies of 100 nodes with different distributions.

|VC | = |
L−1
⋃

l=0

VC(l)| =
L−2
∑

l=1

|VC(l)| ≤
1

δ − 1

L−1
∑

l=2

|VI(l + 1)|

=
1

δ − 1
(

L−1
∑

l=0

|VI(l)| − 1)

=
1

δ − 1
(|VI | − 1).

Since ncds ≤ |VI |+ |VC | and |VI | ≤ nmis, we have

ncds ≤ |VI |+ |VC | ≤ (1 +
1

δ − 1
)|VI | ≤ (1 +

1

δ − 1
)nmis.⊓⊔

Proof of Theorem 6: In step S1 of the link scheduling with

EMA-SIC, the length of the ith link in the interference

cancellation sequence at each receiver (head dominator)

satisfies dii ≤ 2h, and the transmission power assigned to

the ith link to cancel satisfies (N0 + I)β(1 + β)X
′−idαii ≤

(N0+I)β(1+β)X
′−i(2h)α ≤ PM . The overall energy con-

sumption to schedule the concurrent transmissions within

one hexagon is

X′

∑

i=1

(N0 + I)β(1 + β)X
′−idαii

≤(N0 + I)β(2h)α
X′

∑

i=1

(1 + β)X
′−i

=
1 + β

β
(N0 + I)β(1 + β)X

′−1(2h)α − (N0 + I)(2h)α

<
1 + β

β
PM .

Therefore, the overall energy consumption to aggregate

data within one hexagon, from all the non-head dominatees

to the head dominatees, is upper-bounded by 1+β
β PM .

Consider a maximum independent set with PM of the

given network with size nmis. Since a maximum inde-

pendent set with PM is also a dominating set of the

network, the disks with radius dM centered at each node

in the maximum independent set with PM can cover the

network. From Lemma 3, we know that there are at most

C = 2(dM+h)(2dM−h)
3h2 + 1 hexagons of side length h in

each disk with radius dM . Therefore, there are at most

Cnmis hexagons in the entire network. The overall energy

consumption for transmissions in all the hexagons in step

S1 is then at most Cnmis
1+β
β PM .

We next analyze the energy consumption in step S2 and

step S3 of the link scheduling in EMA-SIC.

Suppose the size of the maximum independent set with

PM in the network is nmis and the size of the constructed

connected dominating set is ncds. Let Vi be the set of

head dominatee nodes of any given dominator vi, and

e1, e2, . . . , e|Vi| be the links in the minimum spanning tree

connecting Vi to vi. Since the energy consumption on each

link ek is N0β(2−1/Kα
2 )|ek|α, we derive the upper bound

on overall energy consumption to transmit data from all the

head dominatees to the dominator as follows (the inequality

is based on Lemma 4)
|Vi|
∑

k=1

N0β(2− 1/Kα
2 )|ek|α = N0β(2− 1/Kα

2 )

|Vi|
∑

k=1

|ek|α

≤ 6N0β(2− 1/Kα
2 )d

α
M .

Lemma 5 shows that there are at most (1 + 1
δ−1 )nmis

dominators in the connected dominating set. So energy con-

sumption of at most (1+ 1
δ−1 )nmis×6N0β(2−1/Kα

2 )d
α
M is

needed to aggregate data from all dominatees in the network

to the connected dominating set, and energy consumption

of at most (1 + 1
δ−1 )nmis ×N0β(2− 1/Kα

2 )d
α
M is needed

to aggregate data from all the dominators to the sink.

Therefore, the overall energy consumption with EMA-SIC

in steps S2 and S3 of the link scheduling is at most

7N0β(1 +
1

δ−1 )nmis(2− 1/Kα
2 )d

α
M .

Dividing the sum of the upper bounds on energy con-

sumption in all three steps by the lower bound in Theorem

1, we have an energy consumption approximation ratio of

at most

Cnmis
1+β
β

PM + 7N0β(1 +
1

δ−1
)nmis(2− 1/Kα

2 )d
α
M

N0β
(nmisdM )α

nα−1

=

(

C(1 + β)

β
+ 7(1 +

1

δ − 1
)(2− 1/Kα

2 )

)

(
n

nmis
)α−1,

where N0βd
α
M = PM is used.

Since ∆ ≥ n/nmis while C, β, δ, K2 and α are

constants, we further derive that the energy consumption

approximation ratio is upper-bounded by
(

C(1 + β)

β
+ 7(1 +

1

δ − 1
)(2− 1/Kα

2 )

)

∆α−1 = O(∆α−1).⊓⊔

APPENDIX J

Fig. 14 in Appendix J gives an illustration of network

topologies with 100 nodes under different distributions.

APPENDIX K
ADDITIONAL SIMULATION RESULTS

This section includes additional simulation results, under

cases where Li et al.’s algorithm exerts its effectiveness.
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Complete simulation results, with various distribution pat-

terns, network scales, node numbers and (α, β) combina-

tions, have 1080 figures and are online available in our

technical report [29].
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(a) α = 4, β = 2
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(b) α = 5, β = 2
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(c) α = 5, β = 4
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(d) α = 5, β = 6

Fig. 15: Aggregation latency (time units) comparison

under selected network settings in a 180× 180 m2 area.
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(a) α = 4, β = 2
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(b) α = 5, β = 2
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(c) α = 5, β = 4
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(d) α = 5, β = 6

Fig. 16: Energy consumption (joule) comparison under

selected network settings in a 180× 180 m2 area.
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(a) α = 4, β = 2
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(b) α = 5, β = 2
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(c) α = 5, β = 4
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(d) α = 5, β = 6

Fig. 17: A separate comparison of energy consumption

(joule) between EMA-SIC and Li et al.’s algorithm under

selected network settings in a 180× 180 m2 area.
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(a) α = 4, β = 2
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(b) α = 5, β = 2
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(c) α = 5, β = 4
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(d) α = 5, β = 6

Fig. 18: Latency-energy tradeoff comparison under

selected network settings in a 180× 180 m2 area.
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(a) α = 4, β = 2
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(b) α = 5, β = 2
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(c) α = 5, β = 4
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(d) α = 5, β = 6

Fig. 19: A separate comparison of latency-energy between

EMA-SIC and Li et al.’s algorithm under selected network

settings in a 180× 180 m2 area.
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(a) α = 5, β = 4, 3 algorithms
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(b) α = 5, β = 6, 3 algorithms
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(c) α = 5, β = 4, 2 algorithms
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(d) α = 5, β = 6, 2 algorithms

Fig. 20: Impact of network scale on the energy

consumption (joule) under selected network settings with

uniform distribution and 1000 nodes.
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(a) α = 5, β = 4, 3 algorithms
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(b) α = 5, β = 6, 3 algorithms
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(c) α = 5, β = 4, 2 algorithms
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(d) α = 5, β = 6, 2 algorithms

Fig. 21: Impact of network scale on the latency-energy

tradeoff under selected network settings with uniform

distribution and 1000 nodes.


