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Abstract—By sharing resources among different cloud
providers, the paradigm of federated clouds exploits temporal
availability of resources and geographical diversity of operational
costs for efficient job service. While interoperability issues across
different cloud platforms in a cloud federation have been exten-
sively studied, fundamental questions on cloud economics remain:
When and how should a cloud trade resources (e.g., virtual
machines) with others, such that its net profit is maximized over
the long run, while a close-to-optimal social welfare in the entire
federation can also be guaranteed? To answer this question,
a number of important, inter-related decisions, including job
scheduling, server provisioning and resource pricing, should
be dynamically and jointly made, while the long-term profit
optimality is pursued. In this work, we design efficient algorithms
for inter-cloud virtual machine (VM) trading and scheduling
in a cloud federation. For VM transactions among clouds, we
design a double-auction based mechanism that is strategy-proof,
individual rational, ex-post budget balanced, and efficient to
execute over time. Closely combined with the auction mechanism
is a dynamic VM trading and scheduling algorithm, which
carefully decides the true valuations of VMs in the auction,
optimally schedules stochastic job arrivals with different service
level agreements (SLAs) onto the VMs, and judiciously turns on
and off servers based on the current electricity prices. Through
rigorous analysis, we show that each individual cloud, by carrying
out the dynamic algorithm in the online double auction, can
achieve a time-averaged profit arbitrarily close to the offline
optimum. Asymptotic optimality in social welfare is also achieved
under homogeneous cloud settings. We carry out simulations
to verify the effectiveness of our algorithms, and examine the
achievable social welfare under heterogeneous cloud settings, as
driven by the real-world Google cluster usage traces.

Index Terms—Federated cloud, Virtual machine trading, In-
dividual profit, Social welfare, Stochastic optimization, Double
auction

I. INTRODUCTION

The emerging federated cloud paradigm advocates sharing

of disparate cloud services (in separate data centers) from

different cloud providers, and interconnects them based on

common standards and policies to provide a universal environ-

ment for cloud computing. Such a cloud federation exploits

temporal and spatial availability of resources (e.g., virtual

machines) and diversity of operational costs (e.g., electricity

prices): when a cloud experiences a burst of incoming jobs, it

may resort to VMs from other clouds with idle resources; when

the electricity price for running servers and VMs is high at one

cloud data center, the cloud can schedule jobs onto other cloud

data centers with lower electricity charge at the moment. In

this way, the aggregate job processing capacity of the cloud

federation can be potentially higher than the aggregation of

capacities of separate clouds operating alone, and the overall

profit can be larger.

To implement the federated cloud paradigm, significant

interest has arisen on developing interfaces and standards

to enable cloud interoperability and job portability across

different cloud platforms ( [1] [2]). However, fundamental

problems on cloud economics remain to be investigated. A

cloud in the real world is selfish, and aims to maximize its

own profit, i.e., its income from handling jobs and leasing VMs

to other clouds subtracting its operational costs and expenses

in VM rental from other clouds. Only if its profit can be

maximized and in any case not lower than when operating

alone, can a cloud be incentivized to join a federation. This

calls for an efficient mechanism to carry out resource trading

and scheduling among federated clouds, to achieve profit

maximization for individual clouds, as well as to perform well

in social welfare. A number of inter-related, practical decisions

are involved: (1) VM pricing: what mechanism should be

advocated for VM sale and purchase among the clouds, and

at what prices? (2) Job scheduling: with time-varying job

arrivals at each cloud, targeting different resources and SLA

requirements, should a cloud serve the jobs right away or later,

to exploit time-varying electricity prices? And should a cloud

serve a job using its own resources or others’ resources? (3)

Server provisioning: is it more beneficial for a cloud to keep

many of its servers running to serve jobs of its own and from

others, or to turn some of them down to save electricity? These

decisions should be efficiently and optimally made in an online

fashion, while guaranteeing long-term optimality of individual

cloud’s profits, as well as the social welfare.

In this paper, we design efficient algorithms for inter-cloud

resource trading and scheduling, in a federation consisting of

disparate cloud data centers. A double-auction based mecha-

nism is proposed for the sell and purchase of available VMs

across cloud boundaries over time. The auction is strategy-

proof, individual rational, ex-post budget balanced, and com-

putationally efficient (polynomial time complexity). Closely

combined with the auction mechanism is an efficient, dynamic

VM trading and scheduling algorithm, which carefully decides

the true valuations of VMs to participate in the auction,

optimally schedules randomly-arriving jobs with different re-

source requirements (e.g., number of VMs) and SLAs (e.g.,

maximum job scheduling delay) onto different data centers,
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and judiciously turns on and off servers in the clouds based

on the current electricity prices. The dynamic algorithm serves

as an efficient strategy for each cloud to employ in the online

double auction, and is proven to maximize individual profit for

each cloud, over the long run of the system. The contributions

of this work are summarized below.

First, among the first in the literature, we address selfishness

of individual clouds in a cloud federation, and design efficient

mechanisms to maximize the net profit of each cloud. This

profit is not only guaranteed to be no less than that when the

cloud operates alone, but also maximized over the long run to

the theoretical optimum under any truthful, individual-rational

and ex-post budget-balanced double auction, in the presence

of time-varying job arrivals and electricity prices at the cloud.

Second, we novelly combine a truthful double auction

mechanism with stochastic Lyapunov optimization techniques,

and design an online VM trading and scheduling algorithm, for

a cloud to optimally price the VMs and to judiciously schedule

the VM and server usages. Each cloud values different VMs

based on the back pressure in job queue scheduling, and bids

them in the auction for effective VM acquisition.

Third, we demonstrate that by applying the dynamic algo-

rithm in the online double auction, each cloud can achieve

a time-averaged profit arbitrarily close to its offline optimum

(obtained if the cloud knows complete information on incom-

ing jobs and electricity prices in the entire time span) under

any truthful, individual-rational and ex-post budget-balanced

double auction. We also prove that the social welfare, i.e., the

time-averaged overall profit in the federation, can be asymp-

totically maximized when the number of clouds grows, under

homogenous cloud settings. Trace-driven simulations examine

the achievable social welfare with our dynamic algorithm

under heterogenous settings.

In the rest of the paper, we discuss related literature in

Sec. II, present the system model in Sec. III, and introduce

the detailed resource trading and scheduling mechanisms in

Sec. IV. A double auction mechanism is proposed in Sec. V,

and a benchmark social-welfare maximization algorithm is

discussed in Sec. VI. Theoretical analysis and simulation

studies are presented in Sec. VII and Sec. VIII, respectively.

Sec. IX concludes the paper.

II. RELATED WORK

A. Optimal Scheduling in Cloud Systems

Most existing literature ([3]–[8] and references therein) on

resource scheduling in cloud systems focus on a single cloud

that operates alone. A common theme is to minimize the

operational costs (mainly consisting of electricity bills) in one

or multiple data centers of the cloud, while providing certain

performance guarantee of job scheduling, e.g., in terms of

average job completion times [3]–[6].

Urgaonkar et al. [5] propose an algorithm with joint job

admission control, routing and resource allocation for power

consumption reduction in a virtualized data center. Rao et

al. [3] advocate minimization of electricity expenses by ex-

ploiting the temporal and spatial diversities of electricity

prices. Yao et al. [6] minimize the power cost with a two-time

scale algorithm for delay tolerant workloads. Ren et al. [4] also

aim to minimize the energy cost while addressing the fairness

in resource allocation. All the above works provide average

delay guarantees for job services.
Ghodsi et al. [7], [8] study the fair resource allocation

for multiple resource types, based on the dominant resource

fairness, without optimizing the profit of clouds.
Different from these studies on a stand-alone cloud with

centralized control, this work investigates profit maximization

for individual selfish clouds in a federation, where each par-

ticipant makes its own decisions. Besides, bounded scheduling

delay for each job is guaranteed even in worst cases, contrast-

ing the existing solutions that ensure average delays.

B. Resource Trading Mechanisms

A rich body of literature is devoted to resource trading in

grid computing [9] and wireless spectrum leasing [10] [11].

Various mechanisms have been studied, e.g., bargaining [9],

fixed or dynamic pricing based on a contract or the supply-

demand ratio [12], and auctions [10] [11].
A bargaining mechanism [9] typically has an unacceptable

complexity by negotiating between each pair of traders. Fixed

pricing, e.g., Amazon EC2 on-demand instances, has been

shown to be inefficient in social welfare maximization in

cases of system dynamics [13]. Dynamic pricing, such as

Amazon EC2 spot instances, could be inefficient too, where

the participants can quote the resources untruthfully [14].
Auction stands out as a promising mechanism, on which

there have been abundant solutions ([10], [11] and references

therein) with truthful design and polynomial complexity. Al-

though some recent works [13]–[15] aim to design an auction

mechanism with individual rationality (non-negative profit

gain) for trading in federated clouds, they do not explicitly

address individual profit maximization over the long run,

nor other desirable properties such as truthfulness, ex-post

budget balance, and social welfare maximization. Moreover,

little literature on auctions provides methods to quantitatively

calculate the true valuations in each bid, which are simply

assumed as known. Our design addresses these issues.

III. SYSTEM MODEL AND AUCTION FRAMEWORK

A. Federation of Clouds

We consider a federation of F clouds, each located at a

different geometric location and operates autonomously to gain

profit by serving its customers’ job requests, managing server

provisioning and trading resources with other clouds.

Service demands: Each individual cloud i ∈ {1, . . . , F} has

a front-end proxy server, which accepts job requests from

its customers. There are S types of jobs serviced at each

cloud, each specified by a three-tuple < ms, gs, ds >. Here,

ms ∈ {1, . . . ,M} specifies the type of the required VM

instances, where M is the maximum number of VM types,

and each type corresponds to a different set of configurations

of CPU, storage and memory1; gs is the number of type-

ms VMs that the job needs simultaneously (See Amazon

1We can also consider other resource configurations, e.g., bandwidth, to
define the VM types. Our general problem model and the proposed solutions
are still applicable to those cases.
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EC2 API [12]); and ds stands for the SLA (Service Level

Agreement) of job type s ∈ {1, . . . , S}, evaluated by the

maximal response delay for scheduling a job, i.e., the time-

span from when the job arrives to when it starts to run on

scheduled VMs. In a cloud in practice, it is common to buy

servers of the same configuration and provision the same type

of VMs on one machine [16]. Therefore, we suppose each

cloud i has Nm
i homogenous servers to provision VMs of type

m ∈ {1, . . . ,M}, each of which can provide a maximum of

Cm
i VMs of this type; the total number of servers in cloud i

is
∑M

m=1 N
m
i .

The system runs in a time-slotted fashion. At the beginning

of each time slot t, rsi (t) ∈ {0, . . . , Rs
i } jobs arrive at cloud i,

for each job type s. Rs
i is an upper-bound on the number of

type-s jobs submitted to cloud i in a time slot. The arrival of

jobs is an ergodic process at each cloud. We suppose the arrival

rate is given, and how a customer decides which cloud to use

is orthogonal to this study. Let psi (t) ∈ [0, p
s(max)
i ] be the

given service charge to the customer by cloud i, for accepting

a job of type s in time slot t, which remains fixed within a

time slot, but may vary across time slots.2 Here, p
s(max)
i is the

max possible price for psi (t). Such a general charging model

subsumes pricing schemes in practice: e.g., time-independent

psi (t) corresponds to the on-demand VM charging scheme,

while time-varying psi (t) can represent the spot instance prices

based on the current demand vs. supply [12].

Job scheduling: Each incoming job to cloud i enters a FIFO

queue of its type — a cloud i maintains a queue to buffer

unscheduled jobs of each type s, with Qs
i (t) as its length in t.

When the required VMs of a job are allocated, the job departs

from its queue and starts to run on the VMs. A cloud may

schedule its jobs on either its own VMs or VMs leased from

other clouds, for the best economic benefits. Let µs
ij(t) be

the number of type-s jobs of cloud i that are scheduled for

processing in cloud j at the beginning of time slot t.3

When a job’s demanded maximum tolerable response time

(the SLA) cannot be met, in cases of system overload, it is

dropped. A penalty is enforced in this case, to compensate for

the customer’s loss. Let

Ds
i (t) ∈ {0, . . . , D

s(max)
i } (1)

be the number of type-s jobs dropped by cloud i in t, where

D
s(max)
i is the maximum value of Ds

i (t). Let ξsi be the

penalty to drop one such job, which is at least the maximum

price charged to customers when accepting the jobs, i.e.,

ξsi ≥ p
s(max)
i .

Hence, the number of unscheduled jobs buffered at each

cloud i ∈ {1, . . . , F} can be updated with the following

queueing law:

Qs
i (t+ 1) =max{Qs

i (t)−
F
∑

j=1

µs
ij(t)−Ds

i (t), 0}

+ rsi (t), ∀s ∈ {1, . . . , S}. (2)

Job scheduling should satisfy the following SLA constraint:

2The optimal pricing mechanism for selling the VMs to customers is an
orthogonal topic and discussed in another paper in [17].

3Once a job is scheduled to run, it will be served and allocated with all
required resources until its completion and will not be migrated to other
clouds.

Each type-s job in cloud i is either scheduled or dropped (subject

to a penalty) before its maximum tolerable response delay ds,

∀s ∈ {1, . . . , S}. (3)

We apply the ǫ−persistence queue technique [18], to create

a virtual queue Zs
i associated with each job queue Qs

i (∀i ∈
{1, . . . , F}):

Zs
i (t+ 1) =max{Zs

i (t) + 1{Qs
i
(t)>0} · [ǫs −

F
∑

j=1

µs
ij(t)]−Ds

i (t)

− 1{Qs
i
(t)=0} ·

F
∑

j=1

Cms

j ·Nms

j

gs
, 0}, ∀s ∈ {1, . . . , S}.

(4)

Here, ǫs > 0 is a constant. 1{Qs
i
(t)>0} and 1{Qs

i
(t)=0} are

indicator functions such that

1{Qs
i
(t)>0} =

{

1 if Qs
i (t) > 0

0 Otherwise
; 1{Qs

i
(t)=0} =

{

1 if Qs
i (t) = 0

0 Otherwise
.

Length of this virtual queue approximately reflects the cumu-

lated response delay of jobs from the respective job queue. The

constant ǫs is added so as to approximately account for the

cumulated delay of unscheduled jobs when the job queue is

not empty, while the approximated cumulated delay is reduced

with
∑F

j=1

C
ms
j

·Nms
j

gs
when all jobs are scheduled, i.e., the job

queue is empty. Our algorithm seeks to bound the lengths of

job queues and virtual queues, with properly set ǫs, and hence

the maximum response delay of jobs can be bounded, i.e.,

constraint (3) is satisfied.

Server provisioning: We consider electricity cost, for running

and cooling the servers [19], as the main component of the

operational cost in a cloud. Other costs, e.g., space rental and

labour, remain relatively fixed for a long time, and are of less

interest. Given that electricity prices vary at different locations

and from time to time [3] [20], we model the operational cost

βi(t) in each cloud i as a general ergodic process over time,

varying across time slots between β
(min)
i and β

(max)
i .

Each cloud strategically decides the number of active

servers at each time, to optimize its profit. Let nm
i (t) be

the number of active servers provisioning type-m VMs at

cloud i in t. The available server capacities at each cloud

i ∈ {1, . . . , F} constrain the feasible job scheduling at time

t:
F
∑

j=1

∑

s:ms=m,s∈{1,...,S}

gsµ
s
ji(t) ≤ Cm

i · nm
i (t), ∀m ∈ {1, . . . ,M},

(5)

nm
i (t) ≤ Nm

i , ∀m ∈ {1, . . . ,M}. (6)

(5) states that the overall demand for type-m VMs in cloud

i from itself and other clouds should be no larger than the

maximum number of available type-m VMs on the active

servers in cloud i. Here gsµ
s
ji(t) is the total number of VMs

needed by type-s jobs scheduled from cloud j to cloud i in

t. Motivated by practical job execution efficiency, we only

consider scheduling a job to VMs from a single cloud, but

not VMs across different clouds. (6) ensures that the number

of active servers is limited by the total number of on-premise

servers of the corresponding VM configuration at each cloud.
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B. Inter-cloud VM Trading with Double Auction

In an inter-cloud resource market, VMs constitute the items

for trading. For each type of VMs, multiple clouds may have

them on sale while multiple other clouds can request them. A

double auction is a natural fit to implement efficient trading in

this case, allowing both selling and buying clouds to actively

participate in pricing, on behalf of their own benefits. In our

dynamic system, a multi-unit double auction is carried out

among the clouds at the beginning of each time slot, deciding

the VM trades within that time slot.

Buyers & Sellers: A cloud can be both a buyer and a seller.

A buy-bid < bmi (t), γm
i (t) > records the unit price and

maximum quantity at which cloud i is willing to buy VMs of

type m, in t. Similarly, a sell-bid < smi (t), ηmi (t) > records the

unit price and maximum quantity at which cloud i is willing

to sell VMs of type m in t.
Let b̃mi (t) and s̃mi (t) be cloud i’s true valuation of buying

and selling a type-m VM respectively (the max/min price it is

willing to pay/accept). Similarly, let γ̃m
i (t) and η̃mi (t) be cloud

i’s true valuation of the quantity to buy and sell VMs of type

m respectively (the maximum volume of VMs it is willing to

purchase/sell). A cloud i may strategically manipulate the bid

prices and volumes, in the hope of maximizing its profit. We

show in Sec. VII that the double auction proposed in Sec. IV

is truthful, such that each bid price reveals the true valuation.

Auctioneer: We assume that there is a broker in the cloud

federation, assuming the role of the auctioneer. After collecting

all the buy and sell bids, the auctioneer executes a double

auction to be detailed in Sec. V, to decide the set of successful

buy and sell bids, their clearing prices and the numbers of

VMs to trade in each type. Let b̂mi (t) be the actual charge

price for cloud i to buy one type-m VM, and γ̂m
i (t) be the

actual number of VMs purchased. Similarly, let ŝmi (t) be the

actual income cloud i receives for selling one type-m VM,

and η̂mi (t) be the actual number of VMs sold.

Let αm
ij (t) be the number of type-m VMs that cloud

i ∈ {1, . . . , F} purchases from cloud j ∈ {1, . . . , F} in t,
as decided by the auctioneer:

γ̂m
i (t) =

∑

j∈{1,...,F},j 6=i

αm
ij (t), ∀m ∈ {1, . . . ,M}, (7)

η̂m
i (t) =

∑

j∈{1,...,F},j 6=i

αm
ji(t), ∀m ∈ {1, . . . ,M}. (8)

Since VMs are purchased for serving jobs, the job schedul-

ing decisions µs
ij(t) at each cloud i ∈ {1, . . . , F}, are related

to the number of VMs it purchases:
∑

s:s∈{1,...,S},ms=m

gs·µ
s
ij(t) = αm

ij (t),

∀m ∈ {1, . . . ,M}, ∀i, j ∈ {1, . . . , F}, i 6= j.
(9)

Three economic properties are desirable for designing the

auctioneer’s mechanism. (i) Truthfulness: Bidding true valua-

tions is a dominant strategy, and consequently, both bidder

strategies and auction design are simplified. (ii) Individual

Rationality: Each cloud obtains a non-negative profit by par-

ticipating in the auction. (iii) Ex-post Budget Balance: The

auctioneer has a non-negative surplus, i.e., the total payment

from all winning buy-bids is no less than the total charge for

all winning sell-bids in each time slot.

TABLE I
NOTATION: INPUT QUANTITIES AND INTERMEDIATE VARIABLES

F # of clouds S # of service types
M # of VM types ms VM type of service type s

ds Max. response delay of
service type s

gs # of VMs required by ser-
vice type s

rsi (t) # of type-s jobs arrived at cloud i, slot t
Rs

i Max. # of type-s jobs arrived at cloud i per slot
psi (t) Service price for each job of type s at cloud i, slot t

p
s(max)
i Max. service price for each type-s job at cloud i per slot

βi(t) Cost for operating an active server at cloud i, slot t

β
(min)
i Min. cost for operating an active server at cloud i per slot

β
(max)
i Max. cost for operating an active server at cloud i per slot

ξsi Penalty for dropping a type-s job at cloud i

D
s(max)
i Max. # of type-s jobs cloud i drops per slot

Cm
i Max. # of type-m VMs an active server at cloud i provisions

Nm
i Total # of servers provisioning type-m VMs at cloud i

Qs
i (t) Length of queue buffering type-s jobs at cloud i, slot t

Zs
i (t) Length of virtual queue of type-s jobs at cloud i, slot t

ǫs Constant positive parameter for Zs
i (t), ∀i ∈ {1, . . . , F}

Q
s(max)
i Maximum length of queue Qs

i (t)

Z
s(max)
i Maximum length of virtual queue Zs

i (t)
V User-defined constant positive parameter for dynamic algorithm

TABLE II
NOTATION: DECISION VARIABLES AT INDIVIDUAL CLOUDS

µs
ij(t) # of type-s jobs scheduled from cloud i to cloud j, slot t

nm
i (t) # of active servers providing type-m VMs at cloud i, slot t

Ds
i (t) # of dropped type-s jobs at cloud i, slot t

s̃mi (t) True value of selling one type-m VM from cloud i, slot t
η̃mi (t) True value of volume to sell type-m VMs from cloud i, slot t
smi (t) Bid price for selling one type-m VM from cloud i, slot t
ηmi (t) Max. # of type-m VMs cloud i can sell, slot t

b̃mi (t) True value of buying one type-m VM by cloud i, slot t
γ̃m
i (t) True value of volume to buy type-m VMs by cloud i, slot t

bmi (t) Bid price for buying one type-m VM by cloud i, slot t
γm
i (t) Max. # of type-m VMs cloud i can buy, slot t

TABLE III
NOTATION: DECISION VARIABLES AT THE AUCTIONEER

ŝmi (t) Actual price of selling one type-m VM from cloud i, slot t
η̂mi (t) Actual # of type-m VMs sold from cloud i, slot t

b̂mi (t) Actual price of buying one type-m VM by cloud i, slot t
γ̂m
i (t) Actual # of type-m VMs bought by cloud i, slot t

αm
ij (t) Actual # of type-m VMs sold from cloud j to i, slot t

θmj (t) The jth highest buy-bid price for type-m VMs at auctioneer

ϑm
j (t) The jth lowest sell-bid price for type-m VMs at auctioneer

Lm
j (t) Max. # of type-m VMs to sell, in sell-bid with jth lowest price

at auctioneer in t

We will demonstrate in Sec. VII that our proposed double

auction mechanism in Sec. V can achieve the above three

properties.

C. Individual Selfishness

Each cloud in the federation aims to maximize its time-

averaged profit (revenue minus cost) over the long run of

the system, while striking to fulfill the resource and SLA

requirements of each job.

Revenue: A cloud has two sources of revenue: i) job service

charges paid by its customers, and ii) the proceeds from VM

sales. The time-averaged revenue of cloud i ∈ {1, . . . , F} by

undertaking different types of jobs from its customers is

Φi
1 = lim

T→∞

1

T

T−1
∑

t=0

S
∑

s=1

E{psi (t) · r
s
i (t)}. (10)
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We assume the front-end charges, psi (t), from a cloud to its

customers, are given. Hence, this part of the revenue is fixed

in each time slot. The time-averaged income of cloud i ∈
{1, . . . , F} from selling VMs to other clouds is:

Φi
2 = lim

T→∞

1

T

T−1
∑

t=0

M
∑

m=1

E{ŝmi (t) · η̂m
i (t)}. (11)

Cloud i can control this income by adjusting its sell-bids, i.e.,

smi (t) and ηmi (t), ∀m ∈ {1, . . . ,M}, at each time.

Cost: The cost of cloud i consists of three parts: i) operational

costs incurred for running its active servers, ii) the penalties for

dropping jobs, and iii) the expenditure on buying VMs from

other clouds. The time-averaged cost for operating servers at

each cloud i ∈ {1, . . . , F} is decided by the number of active

servers in each time, i.e.,

Ψi
1 = lim

T→∞

1

T

T−1
∑

t=0

E{βi(t) ·
M
∑

m=1

nm
i (t)}. (12)

The time-averaged penalty at each cloud i ∈ {1, . . . , F}
is determined by the number of dropped jobs over time, i.e.,

Ds
i (t), ∀s ∈ {1, . . . , S}, t ∈ [0, T − 1]:

Ψi
2 = lim

T→∞

1

T

T−1
∑

t=0

S
∑

s=1

E{ξsi ·Ds
i (t)}. (13)

The time-averaged expenditure for VM purchases is decided

by the actual VM trading prices and numbers, as decided by

the buy-bids (bmi (t), γm
i (t)) from cloud i ∈ {1, . . . , F}:

Ψi
3 = lim

T→∞

1

T

T−1
∑

t=0

E{
M
∑

m=1

b̂mi (t) · γ̂m
i (t)}. (14)

Profit Maximization: The profit maximization problem at

cloud i ∈ {1, . . . , F} can be formulated as follows:
max Φi

1 +Φi
2 −Ψi

1 −Ψi
2 −Ψi

3 (15)

s.t. Constraints (1)-(9).

D. Social Welfare

Social welfare is the overall profit of the cloud federation:
F
∑

i=1

(Φi
1 +Φi

2 −Ψi
1 −Ψi

2 −Ψi
3).

Since the income and expenditure due to VM trades among

the clouds cancel each other, the formula above equals∑F

i=1(Φ
i
1 − Ψi

1 − Ψi
2). The social welfare maximization

problem is:

max
F
∑

i=1

(Φi
1 −Ψi

1 −Ψi
2) (16)

s.t. Constraints (1)-(6), ∀i ∈ {1, . . . , F}

which globally optimizes server provisioning and job schedul-

ing in the federation and maximally serves all the incoming

jobs at the minimum cost, regardless of the specific inter-cloud

VM trading mechanism.
When a double auction mechanism is truthful, individual ra-

tional and ex-post budget balancing, it is shown that efficiency

in terms of social welfare maximization cannot be achieved

concurrently [21]. We hence make a necessary compromise in

social welfare in our auction design, i.e., the sum of maximal

individual profits derived by (15) will be smaller than the

optimal social welfare from (16). Nevertheless, we will show

in Sec. VII and Sec. VIII that our mechanisms still manage

to achieve a satisfactory social welfare in the long run.

Tables I, II and III summarize important notation in the

paper, for ease of reference.

E. Workflow

During each timeslot, the entire VM-trading framework

works as follows,

• Step 1: Each individual cloud evaluates the prices and

volumes to buy and sell VMs, and proposes its buy-bid

and sell-bid to the auctioneer.

• Step 2: The auctioneer executes the double auction and

determines the winner in current round.

• Step 3: The VM pricing for buying and selling VMs is

calculated for each individual cloud by the auctioneer.

VMs are allocated (traded) from one individual cloud to

another.

• Step 4: Based on the auctions results, each individual

cloud determines its job scheduling and server provision-

ing.

IV. DYNAMIC INDIVIDUAL-PROFIT MAXIMIZATION

ALGORITHM

We next present a dynamic algorithm for each cloud to

trade VMs and scheduling jobs/servers, which is in fact

applicable under any truthful, individual-rational and ex-post

budget balanced double auction mechanism. We will also tailor

a double auction mechanism on the auctioneer in the next

section. Fig. 1 illustrates the relation among these algorithm

modules.

Auctioneer

Winner

determination

Resource pricing 

& allocation

VM valuation 

& bid

Job scheduling & 

Server provisioning

Cloud F

VM valuation 

& bid

Job scheduling & 

Server provisioning

Cloud 1

Fig. 1. Key algorithm modules.

The goal of the dynamic algorithm at each cloud i is to max-

imize its time-averaged profit, i.e., to solve optimization (15),

by dynamically making decisions in each time slot. We apply

the drift-plus-penalty framework in Lyapunov optimization

theory [22], and derive a one-shot optimization problem to be

solved by cloud i in each time slot t as follows. We will prove

in Sec. VII that by optimally solving the one-shot optimization

at each cloud during each time slot, the dynamic algorithm can

achieve a time-averaged individual profit arbitrarily close to its

offline optimum (computed with complete knowledge in the

entire time span), for each cloud.

A. The One-shot Optimization Problem

Define the set of queues at cloud i in each time slot t as

Θi(t) = {Qs
i (t), Z

s
i (t)|s ∈ {1, . . . , S}}.
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Since the network stability is achieved only if all queues in

the network are kept stable [22] (We will show the network

stability by our algorithm with Lemma 1 in Sec. VII) and

the job scheduling/dropping decisions determine the update

of job queues and virtual queues simultaneously, we jointly

consider both job queues and virtual queues in the Lyapunov

optimization framework and define the Lyapunov function as

follows:

L(Θi(t)) =
1

2

S
∑

s=1

[(Qs
i (t))

2 + (Zs
i (t))

2].

Then the one-slot conditional Lyapunov drift [22] is

∆(Θi(t)) = L(Θi(t+ 1))− L(Θi(t)).

Squaring the queuing laws (2) and (4), we can derive the

following inequality (details can be found in our technical

report [23]):

∆(Θi(t))− V · [

M
∑

m=1

[ŝmi (t)η̂m
i (t)− b̂mi (t)γ̂m

i (t)− βi(t)n
m
i (t)]

+
S
∑

s=1

[psi (t) · r
s
i (t)−Ds

i (t)ξ
s
i ]]

≤Bi +
S
∑

s=1

[Qs
i (t)r

s
i (t) + Zs

i (t)ǫs − V psi (t) · r
s
i (t)]

− ϕi
1(t)− ϕi

2(t)− ϕi
3(t), (17)

where V > 0 is a user-defined positive parameter for

gauging the optimality of time-averaged profit, Bi =
1
2

∑S

s=1[(
∑F

j=1 C
ms

j Nms

j /gs + D
s(max)
i )2 + (Rs

i )
2 + (ǫs)

2 +

(D
s(max)
i +

∑F

j=1 C
ms

j Nms

j /gs)
2] is a constant, and

ϕi
1(t) = V

M
∑

m=1

[ŝmi (t)η̂m
i (t)− b̂mi (t)γ̂m

i (t)− βi(t)n
m
i (t)],

ϕi
2(t) =

S
∑

s=1

F
∑

j=1

µs
ij(t)[Q

s
i (t) + Zs

i (t)],

ϕi
3(t) =

S
∑

s=1

Ds
i (t)[Q

s
i (t) + Zs

i (t)− V · ξsi ].

Based on the drift-plus-penalty framework [22], a dynamic

algorithm can be derived for each cloud i, which observes the

job and virtual queues (Θi(t)), job arrival rates (rsi (t), ∀s ∈
{1, . . . , S}), the current cost for server operation (βi(t)) in

each time slot, and minimizes the RHS of the inequality (17),

such that a lower bound for time-averaged profit of cloud i
is maximized. Note that Bi +

∑S

s=1[Q
s
i (t)r

s
i (t) + Zs

i (t)ǫs −
V psi (t) · r

s
i (t)] in the RHS of (17) is fixed in time slot t.

Hence, to maximize a lower bound of the time-averaged profit

for cloud i, the dynamic algorithm should solve the one-shot

optimization problem in each time slot t as follows:

max ϕi
1(t) + ϕi

2(t) + ϕi
3(t) (18)

s.t. Constraints (1), (5)-(9).

The maximization problem in (18) can be decoupled into

two independent optimization problems:

max ϕi
1(t) + ϕi

2(t) s.t. Constraints (5)-(9), (19)

which is related to optimal decisions on i) buy/sell bids for

different types of VMs, and ii) scheduling of active servers

and jobs to these servers; and

max ϕi
3(t) s.t. Constraint (1), (20)

which is related to optimal decisions on iii) jobs to drop.

In the following, we design algorithms to derive the optimal

decisions based on problem (19) and problem (20).

It should be noted that, each individual cloud is maximizing

its profit under a truthful double auction framework, with

which the dominant strategy is bidding with true evaluation of

the VMs while without considering the other clouds’ actions.

Once the true value is found and bided with, the individual

cloud has already achieved the best it could obtain for problem

(19). The solution to job scheduling and server provisioning

is just a follow-up action once it gets the auction results. The

optimal decisions to all variables in problem (19), i.e., a) at

which price/volume the VMs should be bided, and b) how the

job scheduling and server provisioning are conducted with the

auctions results, are in fact jointly determined during the VM

evaluation process.

B. VM Valuation and Bid

Optimization problem (19) is related to the actual charges

that cloud i pays for each type of VMs purchased, b̂mi (t) and

ŝmi (t) (∀m ∈ {1, . . . ,M}), and the actual numbers of traded

VMs, γ̂m
i (t) and η̂mi (t) (∀m ∈ {1, . . . ,M}), from the double

auction. These values are determined by the auctioneer accord-

ing to buy-bids (bmi (t), γm
i (t)) and sell-bids (smi (t), ηmi (t))

submitted by all clouds, and its double auction mechanism.

That is, each cloud i first proposes its buy-bids and sell-bids

to the auctioneer, and then receives the auction results, based

on which the job scheduling and server provisioning decisions

are made. We first investigate how each cloud proposes its buy-

bids and sell-bids, and then decide optimal job scheduling and

server provisioning in Sec. IV-C.

A truthful double auction (to be introduced in Sec. V) is

employed at the auctioneer, where sellers and buyers bid their

true values of the prices and quantities, in order to maximize

their individual utilities. (19) is the utility maximization prob-

lem for each cloud. If we can find true values of each cloud

i, b̃mi (t), γ̃m
i (t), s̃mi (t) and η̃mi (t), and let the cloud bid using

these values, the achieved utility in (19) is guaranteed to be

the largest, as compared to bidding any other values.4

We decide the true values of the bids for each cloud i,
according to their definitions in double auctions [10] [11].

The true value of the price to buy (sell) a type-m VM, b̃mi (t)
(s̃mi (t)), is such a value that, if a VM is purchased (sold) at a

price (i) equal to this value, then cloud i’s profit remains the

same, compared to not obtaining the VM; (ii) higher than this

value, a profit loss (gain) at cloud i occurs; and (iii) lower than

this value, a profit gain (loss) results. In a multi-unit double

auction, the true value of the maximum number of type-m
VMs cloud i can buy (sell), γ̃m

i (t) (η̃mi (t)), is the maximum

number of type-m VMs the cloud is willing to buy (sell) at

the true value of the price, i.e., b̃mi (t) (s̃mi (t)).
Using the above rationale and based on problem (19), the

true values of the buy/sell prices for cloud i can be derived as

(detailed derivation steps are given in [23])

4In a truthful auction, the best strategy for each bidder is to bid with its
true value in order to maximize its utility, since each winning buyer (seller)
is charged (paid) at a price no higher (lower) than its true value of buy-bid
(sell-bid).



7

b̃mi (t) =
Q

s∗m
i (t) + Z

s∗m
i (t)

V · gs∗m
, (21)

and

s̃mi (t) = max{
Q

s∗m
i (t) + Z

s∗m
i (t)

V · gs∗m
, βi(t)/C

m
i }, (22)

respectively, where

s∗m = arg max
s′∈{1,...,S},m

s′=m
{W s′

i (t)}, (23)

and W s′

i (t) =
Qs′

i (t) + Zs′

i (t)

gs′
. (24)

Here, W s′

i (t) denotes the weight for scheduling one type-s′

job (to run on type-ms′ VM(s)) by cloud i in t, and s∗m
specifies the job type with the largest weight (ties broken

arbitrarily), among all types of jobs requiring type-m VMs.

W s′

i (t) is determined by the following factors: (i) the sum

of queue backlogs, Qs′

i (t) + Zs′

i (t), representing the level

of urgency for scheduling type-s′ jobs in t, since Qs′

i (t) is

the number of unscheduled type-s′ jobs and Zs′

i (t) reflects

the cumulated response delay; (ii) the number of concurrent

VMs each type-s′ job requires, gs′ , which decides the job-

scheduling difficulty.

The intuition behind (21) and (22) includes: (i) the true

value of the price to buy a type-m VM depends on the

combined effect of urgency and difficulty for scheduling jobs

requiring this type of VMs, and is computed based on the

maximum weight that any type of jobs requiring type-m VMs

may achieve; (ii) the true value of the price to sell one type-m
VM from cloud i is the same as that of the price to buy, if

the latter exceeds the current cost of operating a type-m VM

in the cloud; otherwise, it is set to the operational cost.

The true values of the number of type-m VMs to buy and

to sell at cloud i are

γ̃m
i (t) =

F
∑

j=1

Cm
j ·Nm

j , (25)

and η̃m
i (t) = Cm

i ·Nm
i , (26)

respectively. They state that the maximum number of type-

m VMs cloud i is willing to buy (sell) at the price in (21)

(in (22)), is the number of all potential type-m VMs in the

federation. The rationale is as follows: The clearing price for

transactions of type-m VMs in the double auction is at most

the buyer’s true value in (21) and at least the seller’s true value

in (22), if the corresponding buy/sell bids are successful. By

definition of the true value, if the actual charge per VM is

lower (higher) than the true value, a profit gain happens at the

buyer (seller), and the more VMs purchased (sold), the larger

the profit gain. Therefore, a cloud is willing to buy or sell at

the largest quantity possible, for profit maximization.5

The buy-bid price for type-m VMs calculated in Eqn. (21)

is proportional to the sum of the lengths of queues with

5It may appear counter-intuitive that a cloud is willing to buy all type-
m VMs in the federation, regardless of its number of unscheduled jobs
requiring type-m VMs, i.e.,

∑
s∈{1,...,S},ms=m Qs

i (t). Interestingly, our

proof in Sec. VII shows that bidding so in each time slot can achieve a
time-averaged profit over the long run that approximates the offline optimum,
and our simulation in Sec. VIII shows that it performs better as compared
to a bidding strategy that asks for the exact number of VMs to serve the
unscheduled jobs.

the maximum scheduling weight, i.e., Q
s∗m
i (t) + Z

s∗m
i (t), out

of all queues of job types asking for type-m VMs, while

inversely proportional to V ·gs∗m . According to our analysis in

Sec. VII.D, we typically use large V , in order for the system to

approach individual profit and social welfare optimality over

the long run. Since V is large and the sum of queue lengths

should overwhelm V · gs∗m , if the cloud wins in the auction,

there must be many jobs in its queue, such that all the VMs

bought will be used (i.e., no leftover capacity). On the other

hand, if there are not enough jobs in the queue of type s∗m,

the buy-bid price would be low and the buyer would not win

in the auction.

To conclude, in each time slot t, cloud i submits its bids as

bmi (t) = b̃mi (t), smi (t) = s̃mi (t), γm
i (t) = γ̃m

i (t) and ηmi (t) =
η̃mi (t), for each type of VMs m ∈ {1, . . . ,M}.

C. Server Provisioning, Job scheduling and Dropping

After receiving results of the double auction (actual charges

b̂mi (t), ŝmi (t), ∀m ∈ {1, . . . ,M}, and the actual numbers of

traded VMs γ̂m
i (t), η̂mi (t), ∀m ∈ {1, . . . ,M}, αms

ji (t), ∀s ∈
{1, . . . , S}, ∀j ∈ {1, . . . , F}), cloud i schedules its jobs on

its local servers and (potentially) purchased VMs from other

clouds, decides job drops and the number of active servers to

provision, by solving optimization problems (19) and (20).

1) Server provisioning: We start with deriving nm
i (t),

∀m ∈ {1, . . . ,M}, by assuming known values of ŝmi (t),
η̂mi (t), b̂mi (t), γ̂m

i (t), αm
ij (t) and µs

ij(t) (we will present the

value of nm
i (t) in terms of these variables). In this case,

problem (19) is equivalent to the following minimization

problem:

min V βi(t)
M
∑

m=1

nm
i (t)

s.t. Constraints (5), (6) and (9).

Since V βi(t) ≥ 0, the best strategy is to assign the minimal

feasible value to nm
i (t), ∀m ∈ {1, . . . ,M}, that satisfies

constraints (5) and (9), which can be combined into
∑

s∈{1,...,S},ms=m

µs
ii(t) · gs +

∑

j 6=i

αm
ji(t) ≤ Cm

i nm
i (t).

Hence, the optimal number of activated servers at cloud i to

provision type-m VM can be calculated as

nm
i (t) = (

∑

s∈{1,...,S},ms=m

µs
ii(t) · gs +

∑

j 6=i

αm
ji(t))/C

m
i . (27)

These many servers can provide enough type-m VMs for

serving local jobs and selling to other clouds.

2) Job scheduling: We now derive µs
ij(t), ∀j ∈ {1, . . . , F},

s ∈ {1, . . . , S}, by assuming known values of ŝmi (t), η̂mi (t),
b̂mi (t), γ̂m

i (t) and αm
ij (t), with nm

i (t) given in Eqn. (27).

Problem (19) is equivalent to the following maximization

problem:

max
S
∑

s=1

F
∑

j=1

µs
ij(t)[Q

s
i (t) + Zs

i (t)]

− V βi

∑

s∈{1,...,S},ms=m

µs
ii(t) ·

gs
Cm

i

s.t. Constraints (5), (6) and (9).

This is a maximum-weight scheduling problem, with

Qs
i (t)+Zs

i (t) as the per-job scheduling weight for each µs
ij(t)
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(j 6= i) and Qs
i (t)+Zs

i (t)−
V βi(t)gs

Cm
i

as the per-job scheduling

weight for each µs
ii(t). There are two cases:

⊲ j = i: In this case, by combining constraints (5), (6) and

(9), we have
∑

s:ms=m,s∈{1,...,S}

gsµ
s
ii(t) ≤ Cm

i Nm
i −

∑

j 6=i

αm
ji(t).

Based on the above maximum-weight problem, we know

that the best strategy is to assign all the remaining type-ms

VMs in cloud i, Cms

i nms

i (t) −
∑

j 6=i α
ms

ji (t) (the maximum

number of on-premise type-ms VMs minus those sold to other

clouds), to serve its own jobs of service type s∗ms
with the

largest per-VM scheduling weight
Qs

i (t)+Zs
i (t)

gs
− V βi(t)

C
ms
i

if it is

positive (equivalently, the largest
Qs

i (t)+Zs
i (t)

gs
if

Qs
i (t)+Zs

i (t)
gs

>
V βi(t)
C

ms
i

), among all job types requiring type-ms VMs. Other-

wise, cloud i does not serve any jobs using its own servers

in t. Hence, we derive the optimal number of cloud i’s type-s
jobs scheduled to run on the cloud’s local servers as

µs
ii(t) =











C
ms
i

·N
ms
i

−
∑

j 6=i α
ms
ji

(t)

gs
if

Qs
i (t)+Zs

i (t)

·gs
> V βi(t)

C
ms
i

and s = s∗ms

0 Otherwise

.

(28)

⊲ j 6= i: µs
ij(t) can be directly derived by αms

ij (t), which is

the number of type-ms VMs cloud i purchased from cloud j
(constraint (5) is satisfied by our server provisioning decision

in Eqn. (27), and constraint (6) is met by Eqn. (28) and

(27)), based on constraint (9). Similar to the previous case, we

know that the best strategy is to assign all the type-ms VMs

purchased, αms

ij (t), to serve jobs of service type s∗ms
with the

largest per-VM scheduling weight
Qs

i (t)+Zs
i (t)

gs
, as defined in

Eqn. (23) and (24). Hence, we derive the optimal solution to

the number of type-s jobs to run at cloud j( 6= i) as

µs
ij(t) =

{

αms

ij (t)/gs if s = s∗ms

0 Otherwise
. (29)

3) Job dropping: Problem (20) is a maximum-weight prob-

lem with weight Qs
i (t) + Zs

i (t) − V · ξsi for job-dropping

decision variable Ds
i (t), ∀s ∈ {1, . . . , S}, in the objective

function. If the weight Qs
i (t) + Zs

i (t) − V · ξsi > 0 (i.e., if

the level of urgency for scheduling type-s jobs Qs
i (t)+Zs

i (t)
exceeds the weighted job-drop penalty V · ξsi ), type-s jobs

in queue Qs
i should be dropped at the maximum rate, i.e.,

Ds
i (t) = D

s(max)
i , in order to maximize the objective function

value; otherwise, there is no drop, i.e., Ds
i (t) = 0. Therefore,

the optimal number of type-s jobs dropped by cloud i in t is

Ds
i (t) =

{

D
s(max)
i if Qs

i (t) + Zs
i (t) > V · ξsi

0 Otherwise
. (30)

In the above results, we note that the derived job scheduling

and drop numbers do not need to be bounded by the number

of unscheduled jobs in the corresponding job queue, i.e.,

µs
ij(t) and Ds

i (t) are not required to be bounded by Qs
i (t)

according to Eqn. (2). Nevertheless, the actual number of

jobs to schedule/drop when running the algorithm, is upper

bounded by the minimum between the length of the job queue

and the maximum drop rate D
s(max)
i .

D. The Dynamic Algorithm

Alg. 1 summarizes the dynamic algorithm for each cloud

to carry out in each time slot, in order to maximize its time-

averaged profit over the long run.

Algorithm 1 Dynamic Profit Maximization Algorithm at cloud

i in Time Slot t
Input: rsi (t), Q

s
i (t), Z

s
i (t), gs, ms, ξsi , Cm

i , Nm
i and βi(t), ∀s ∈

{1, . . . , S}.
Output: bmi (t), smi (t), γm

i (t), ηm
i (t), Ds

i (t), µs
ij(t) and nm

i (t),
∀m ∈ {1, . . . ,M}, s ∈ {1, . . . , S}, j ∈ {1, . . . , F}.

1: VM valuation and bid: Decide bmi (t), smi (t), γm
i (t) and ηm

i (t)
with Eqn. (21)-(26);

2: Server provisioning, job scheduling and dropping: Decide
µs
ij(t), D

s
i (t) and nm

i (t) with Eqn. (29), (28), (30) and (27);
3: Update Qs

i (t) and Zs
i (t) with Eqn. (2) and (4).

We analyze the computation and communication complex-

ities of Alg. 1 as follows.

Computation complexity: We study the computation com-

plexity for each algorithm module respectively.

⊲ VM valuation and bid: The algorithm should first calculate

the value of s∗m for each VM type m ∈ {1, . . . ,M} with

Eqn. (23) by comparing the weights W s′

i (t) among different

types of jobs. In fact, the weight for each job type s ∈
{1, . . . , S} is only evaluated once since it is only involved in

the calculation of s∗m where m = ms. Hence, the computation

overhead to find s∗m, ∀m ∈ {1, . . . ,M}, is O(S). Based

on the value of s∗m, the buy/sell bids of type-m VMs can

be decided by Eqn. (21)-(26) in constant time. For all M
VM types, the computation overhead is O(M). Hence, the

overall computation complexity for this algorithm module is

O(S +M).

⊲ Server provisioning, job scheduling and dropping: With

s∗m, ∀m ∈ {1, . . . ,M}, calculated in the above algorithm

module, we can directly know the value of s∗ms
, ∀s ∈

{1, . . . , S}. Then, the job scheduling decision µs
ij(t) for job

type s can be made in constant time based on Eqn. (29) and

(28). For all S job types, the computation overhead is O(S).
The server provisioning decisions can be found in constant

time based on the job scheduling decisions and the auction

results, according to Eqn. (27) for type-m VMs. For all M
VM types, the computation overhead is O(M).

Job dropping is also decided in constant time for type-s
jobs based on Eqn. (30). For all S job types, the computation

complexity is O(S).

⊲ Queue update: For each job type s, the job queue Qs
i (t) and

virtual queue Zs
i (t) can be updated in constant time based on

Eqn. (2) and (4). Hence, for all S job types, the computation

overhead is O(S).

In summary, the computation complexity of Alg. 1 is O(S+
M).

Communication complexity: The input to Alg. 1 is mostly

derived from local information. There is no direct information

exchange among individual clouds. The only communication

overhead is incurred when a cloud sends its VM bids to the

auctioneer and receives the auction results for each VM type.

Since there are M VM types, the communication complexity

is O(M) for each cloud.
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V. DOUBLE AUCTION MECHANISM

We next design a double auction mechanism for inter-cloud

VM trading, which not only is truthful, individual rational and

ex-post budget balanced, but also can enable satisfactory social

welfare (Theorems 2-4 and 8, Sec. VII).

The true values of buy and sell bids at each participating

cloud (Eqn. (21)-(26)) are not related to the detailed auction

mechanism. The true values of the maximum numbers of VMs

a cloud is willing to trade (γ̂m
i (t) and η̂mi (t) in (25) and

(26)) are time-independent constants determined by system

parameters Cm
i and Nm

i . These parameters, and thus γ̂m
i (t)

and η̂mi (t), are easily known to other clouds, and hence it

is not meaningful for a buyer/seller to bid otherwise. We

correspondingly design a double auction where γm
i (t) in each

buy-bid is fixed to the value in (25) and ηmi (t) in each sell-bid

is always the value in (26), while the buy/sell prices, bmi (t)’s
and smi (t)’s, can be decided by the respective buyers/sellers.

The following mechanism is carried out by the auctioneer at

the beginning of each time slot t, to decide the actual trading

price and number for each type of VMs m ∈ {1, . . . ,M}.

1. Winner Determination: The auctioneer sorts all received

buy-bids for type-m VMs in descending order in the buy

prices. Let θmj (t) be the jth highest. Two buy-bids with the

largest and second largest prices, θm1 (t), θm2 (t), are identified

(ties broken arbitrarily). The sell-bids for type-m VMs are

sorted in ascending order in the sell prices. Let ϑm
j (t) be the

jth lowest, with Lm
j (t) as the corresponding maximum num-

ber of VMs to sell6, such that ϑm
1 (t) ≤ ϑm

2 (t) ≤ . . . ≤ ϑm
N (t).

Let j′ be the critical index in the sorted sequence of sell-bids,

such that ϑm
j′ (t) is the largest sell price not exceeding θm2 (t),

i.e.,

ϑm
j′ (t) ≤ θm2 (t), and ϑm

j′+1(t) > θm2 (t). (31)

If there are at least two sell-bids ϑm
1 (t) and ϑm

2 (t) no higher

than the second largest buy price θm2 (t), the highest buy-bid

θm1 (t) wins, and the sell-bids with the lowest to the (j′ − 1)
th

lowest sell prices (ϑm
j (t) ≤ ϑm

j′ (t), not including j′) win.

Otherwise, no buy/sell bid wins.

2. Pricing and Allocation: It is a NP-hard problem to clear

the double auction market with discriminatory prices [24]. We

apply a uniform clearing price to winning buy/sell bids of

type-m VMs, as follows.

⊲ The price charged to each buyer cloud i of type-m VMs is

b̂mi (t) =

{

θm2 (t) if bid bmi (t) wins,

0 otherwise.
(32)

⊲ The price paid to each seller cloud i of type-m VMs is

ŝmi (t) =

{

ϑm
j′ (t) if bid smi (t) wins,

0 otherwise.
(33)

⊲ The number of type-m VMs bought by cloud i is

γ̂m
i (t) =

{

∑j′−1
j=1 Lm

j (t) if bid bmi (t) wins,

0 otherwise.
(34)

⊲ The number of type-m VMs sold by cloud i is

η̂m
i (t) =

{

ηm
i (t) if bid smi (t) wins,

0 otherwise.
(35)

6For example, if the jth lowest bid comes from cloud i, we have that
Lm
j (t) = ηmi (t) while ηmi (t) = η̃mi (t) = Cm

i ·Nm
i (See Eqn. (26)).

⊲ The number of type-m VMs sold from cloud j to cloud i is

αm
ij (t) =

{

ηm
j (t) if bids bmi (t) and smj (t) win,

0 otherwise.
(36)

For example, consider a federation of 4 clouds with buy

and sell prices bid in Table IV, each seeking to buy/sell one

VM. Clouds 2 and 3 bid the two largest buy prices $20 and

$15, which are higher than sell prices from clouds 1 and 4.

Hence the buyer cloud 2 and the seller cloud 4 win, while the

clearing buy and sell prices are $15 and $13, respectively.

TABLE IV
DOUBLE AUCTION BIDS: AN ILLUSTRATIVE EXAMPLE

Cloud 1 Cloud 2 Cloud 3 Cloud 4
Buy-bid $10 $20 $15 $8
Sell-bid $13 $22 $16 $9

VI. DYNAMIC SOCIAL-WELFARE MAXIMIZATION

ALGORITHM: A BENCHMARK

We also present a dynamic algorithm that maximizes the

time-averaged social welfare in the federation (optimization

problem (16)) based on the Lyapunov optimization framework.

This algorithm is used as a benchmark to examine the effi-

ciency of Alg. 1 in social welfare.

Similar to the derivation of Alg. 1, we first derive a one-

shot optimization problem for the federation to solve based on

the drift-plus-penalty framework of Lyapunov optimization,

and then derive the dynamic benchmark algorithm to solve

it optimally in each time slot. Detailed derivation of the

benchmark algorithm is included in [23].

1) Server provisioning: The optimal number of activated

servers at cloud i to provision type-m VM is

nm
i (t) = [

F
∑

j=1

∑

s∈{1,...,S},ms=m

µs
ji(t) · gs]/C

m
i . (37)

2) Job scheduling: The optimal solution to the number of

type-s jobs of cloud i to run at cloud j is

µs
ij(t) =











Cms

j ·Nms

j /gs if
Qs

i (t)+Zs
i (t)

gs
> V βi(t)

C
ms
i

and < i, s >=< ím, śm >,

0 Otherwise,

(38)

where

< ím, śm >= arg max
i∈{1,...,F},s∈{1,...,S},ms=m

{W s
i (t)}, (39)

and W s
i (t) is the weight defined in Eqn. (24).

3) Job dropping: The optimal number of type-s jobs

dropped by cloud i in t is

Ds
i (t) =

{

D
(max)
s if Qs

i (t) + Zs
i (t) > V · ξsi

0 Otherwise.
(40)

Alg. 2 summarizes the dynamic algorithm for the federation

to carry out (e.g., on a centralized controller) in each time slot,

in order to maximize its time-averaged social welfare over the

long run.
Algorithm 2 Dynamic Social Welfare Maximization Algo-

rithm in Time Slot t
Input: rsi (t), Q

s
i (t), Z

s
i (t), gs, ms, ξsi , Cm

i , Nm
i and βi(t), ∀i ∈

{1, . . . , F}, s ∈ {1, . . . , S}.
Output: Ds

i (t), µs
ij(t) and nm

i (t), ∀i ∈ {1, . . . , F},m ∈
{1, . . . ,M}, s ∈ {1, . . . , S}.

1: Job scheduling and server provisioning: Decide µs
ij(t) and

nm
i (t) with Eqn. (38) and (37);

2: Job dropping: Decide Ds
i (t) with Eqn. (40);

3: Update Qs
i (t) and Zs

i (t) with Eqn. (2) and (4).
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VII. PERFORMANCE ANALYSIS

We next analyze the performance guarantee provided by

our dynamic individual-profit maximization algorithm and the

double auction mechanism.

A. Properties of the Double Auction Mechanism

Theorem 1 (True Valuation): The VM valuations on buy-

bids, i.e., Eqn. (21) and (25), and sell-bids, i.e., Eqn. (22) and

(26), are true values.

This theorem is proved based on the definition of the true

values and the optimization problem (18) solved in each time

slot by each cloud in [23].

Theorem 2 (Truthfulness): Bidding truthfully is the domi-

nant strategy of each cloud in the double auction in Sec. V,

i.e., no cloud can achieve a higher profit in (18) by bidding

with values other than its true values of the buy and sell bids,

in Eqn. (21)(25)(22)(26).

We prove this theorem by contradiction and show that, in

all cases, no cloud can do better with problem (18) by bidding

untruthfully. Details are in [23]. The truthfulness can simplify

the bidders’ strategies when proposing their bids and make the

auction mechanism strategy-proof.

Theorem 3 (Individual Rationality): No winning buyer pays

more than its buy-bid price, and no winning seller is paid

less than its sell-bid price, i.e., b̂mi (t) ≤ bmi (t) and ŝmi (t) ≥
smi (t), ∀i ∈ {1, . . . , F},m ∈ {1, . . . ,M}.

This theorem can be proved based on the winner determi-

nation and pricing schemes in our auction mechanism, with

details in [23]. Given that the buy-bid (sell-bid) price is the

true value of the buyer (seller), this theorem implies that a

cloud can receive a non-negative profit gain, if it successfully

sells or buys VMs. The rationale is as follows.

The true value at the buyer (seller) equals the respective

cloud’s evaluation of the VMs in order to maximize its long-

term profit when the cloud’s VMs are only utilized to process

its own jobs (i.e., operating alone). If the cloud participates

in the VM trading and is charged at its true value, the cloud

receives zero gain from VM-trading (or equivalently, achieves

the same utility as if it operates alone). Hence, we conclude

that a cloud’s profit obtained in a federation with potential

VM trades with others, is always no lower than that obtained

when operating alone, since the VMs in our framework will be

bought (sold) at prices no higher (lower) than their true values.

The individual rationality provides incentives for individual

clouds to participate in the auction for inter-cloud VM-trading.

Theorem 4 (Ex-post Budget Balance): At the auctioneer, the

total payment collected from the buyers is no smaller than the

overall price paid to the sellers, i.e.,

F
∑

i=1

[b̂mi (t) · γ̂m
i (t)− ŝmi (t) · η̂m

i (t)] ≥ 0, ∀m ∈ {1, . . . ,M}.

This theorem is proved based on Eqn. (31) - (33), with

details in [23]. The ex-post budget balance property guarantees

the willingness of the auctioneer to hold the auction since it

has no need to make any payment for the trading and can

make a non-negative gain.

B. SLA Guarantee

Lemma 1: Let Q
s(max)
i = V ξsi + Rs

i and Z
s(max)
i =

V ξsi + ǫs. If D
s(max)
i ≥ max{Rs

i , ǫs}, each job queue

Qs
i (t) and each virtual queue Zs

i (t) are upper-bounded by

Q
s(max)
i and Z

s(max)
i , respectively, in t ∈ {0, . . . , T − 1},

∀i ∈ {1, . . . , F}, s ∈ {1, . . . , S}.

This lemma can be proved by analyzing the job drop

decision in (30) and the queue updates in (2)(4). The condition

D
s(max)
i ≥ max{Rs

i , ǫs} ensures that, when the queue lengths

grow to satisfy the job drop condition, any further increase

on the queues, e.g., Rs
i and ǫs, can be balanced by dropping

enough number of jobs at the rate of D
s(max)
i . Detailed proof

is included in [23]. Since each queue can be strictly upper-

bounded in each time slot, our algorithm can guarantee the

queue stabilities and the network stability [22].

Theorem 5 (SLA Guarantee): Each job of type s ∈
{1, . . . , S} is either scheduled or dropped with Alg. 1 be-

fore its maximum response delay ds, if we have ǫs =
Q

s(max)
i

+Z
s(max)
i

ds
by adjusting the value of V .

This theorem can be proved based on Lemma 1 and the

ǫ-persistence queue techniques [18]. The condition on ǫs is

to ensure that the queue lengths can grow to satisfy the job

drop condition, i.e., Qs
i + Zs

i (t) > V ξsi , if some jobs remain

unscheduled in the last ds slots. Note that a cloud only drops

jobs strategically, to balance the loss due to the job drop

penalties and the gain in saving VMs for other jobs. For more

details, please refer to [23].

C. Optimality of Individual Profit and Social Welfare

Theorem 6 (Individual Profit Optimality): Let Ω∗
i be the of-

fline optimum of time-averaged profit of cloud i ∈ {1, . . . , F},

obtained in a truthful, individual-rational, ex-post budget-

balanced double auction, with complete information on its own

job arrivals and prices in the entire time span [0, T − 1]. The

dynamic Algorithm 1 can achieve a time-averaged profit Ωi

for cloud i within a constant gap Bi/V to Ω∗
i , i.e.,

Ωi ≥ Ω∗
i −Bi/V,

where V > 0 and Bi = 1
2

∑S

s=1[[
∑F

j=1 C
ms

j Nms

j /gs +

D
s(max)
i ]2 + [Rs

i ]
2 + [ǫs]

2 + [D
s(max)
i +

∑F

j=1 C
ms

j Nms

j /gs]
2] is

a constant.

The proof to this theorem is rooted in the Lyapunov opti-

mization theory [22]. Detailed proof is included in [23]. The

gap Bi/V can be close to zero by fixing ǫs and increasing V
if the users can tolerate a longer maximum possible delay (To

be discussed in Sec. VII.D).

Theorem 7 (Social Welfare Optimality of Alg. 2): Let Π∗

be the offline optimum of the time-averaged social welfare in

(16), obtained with full information of the federation over the

entire time span [0, T − 1]. The time-averaged social welfare

achieved by all clouds by running Alg. 2, approaches the

offline-optimal social welfare Π∗, by a constant gap B/V ,

i.e.,

Π ≥ Π∗ −B/V,
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where V > 0 and B =
∑F

i=1 Bi. Bi is defined in Theorem

6, ∀i ∈ {1, . . . , F}.

The proof to this theorem is also based on the Lyapunov

optimization theory [22]. Detailed proof is included in [23].

Similar with Theorem 6, the gap B/V can be close to zero by

fixing ǫs and increasing V if the users can tolerate a longer

maximum possible delay (To be discussed in Sec. VII.D).

Theorem 8 (Asymptotic Optimality in Social Welfare of

Alg. 1): Let Π∗ be the offline optimum of the time-averaged

social welfare in (16), obtained with full information of the

federation over the entire time span [0, T − 1]. Suppose all

clouds are homogenous, i.e., with the same number of servers

(Nm
i ) and the same maximum per-server VM provisioning

(Cm
i ) for each VM type m, with i.i.d. service prices, job

arrivals and operational costs. When the number of clouds,

F , grows, the sum of time-averaged profits achieved by all

clouds by running Alg. 1 under the double auction mechanism

in Sec. V, approaches the offline-optimal social welfare Π∗,

by a constant gap B/V , i.e.,

Π ≥ Π∗ −B/V,

where V > 0 and B =
∑F

i=1 Bi. Bi is defined in Theorem

6, ∀i ∈ {1, . . . , F}.

To prove the theorem, we demonstrate that, when the

number of clouds goes to infinity, the one-shot social welfare

obtained with Alg. 1 is the same as that achieved by the

dynamic benchmark Alg. 2 in the same time slot. Details are

in [23].

D. Tradeoff between Optimality and Maximum Tolerable De-

lay

With Theorems 6, 7 and 8, we can derive that the gap,

Bi/V (B/V ), between the achievable individual profit (social

welfare) with our algorithm and its offline optimum can be

made close to zero, when the value of V increases (recall

that Bi and B are constants). However, the prerequisite for

increasing the value of V is that the users can tolerate a longer

maximum possible delay, due to Lemma 1 and Theorem 5 as

follows. In order to meet the SLA requirements, Theorem 5

states that the constant ǫs should be equal to
Q

s(max)
i

+Z
s(max)
i

ds
.

With Lemma 1, we know that the maximum queue lengths,

Q
s(max)
i , Y

s(max)
i and Z

s(max)
i , are proportional to V . Hence,

if we need a larger V , the users should be able to accept a

longer maximum tolerable delay, i.e., ds, in order to meet

the condition in Theorem 5. In summary, there is a tradeoff

between the achievable optimality and the maximum tolerable

delay.

VIII. PERFORMANCE EVALUATION

A. Simulation Setup

We carry out trace-driven simulation studies based on

Google cluster-usage data [25] [26], which record jobs submit-

ted to the Google cluster, with information on their resource

demands (CPU, RAM, etc.) and relative charges. We translate

the data into concrete job arrival rates, resource types and

prices, to drive our simulations as follows.

We consider 24 types of jobs (< ms, gs, ds >), 6 VM types

(ms) combined from {small, median, large} CPU and {small,

large} Memory, and two SLA levels (ds), corresponding to

a larger maximum tolerable response delay and a smaller

maximum tolerable response delay at half of the former. Each

job requires either 1 VM or 2 VMs concurrently (gs).

There are 10 clouds in the federation. One time slot is

1 hour. The number of servers in each cloud that provision

VMs of each type ranges within [800, 1000]. Each server can

provide 30 small-memory VMs or 10 large-memory VMs. The

VM charge to the customer is decided by multiplying gs by the

relative VM price in the Google data, and then by the unit VM

price in the range of [0.05, 0.08] $/h. The penalty for dropping

a job is set to the maximum per-job VM charge in the system.

Operational costs are set according to the electricity prices at

10 different geographic locations provided in [20], which vary

on a hourly basis. Each server consumes power at 1 KW/h.

The number of job arrivals in each hour to the federation

is set according to the cumulated job requests of each type

submitted to the Google cluster during that hour, in the rough

range of [40000, 90000] requests per hour. We randomly assign

each arrived job to one of the 10 clouds, following a heavy-

tailed distribution. In operating the virtual queues, we set ǫs =
1000 for jobs requiring low response delay, and ǫs = 500 for

those of long delays. The maximum number of job drops per

hour is 1000 for all job types.

For comparison purposes, we also implement a simpler

heuristic algorithm for each cloud to bid in the double auction

and to schedules its jobs/servers: The cloud decides a value

for each unscheduled job in a queue as the penalty to drop

it if the next time slot is the deadline for scheduling, or the

charged price upon its arrival otherwise. The true values of

buy/sell prices for a type-m VM at this cloud are set to the

same, as the largest average value of jobs in a queue, among

all job queues requiring type-m VM(s). The quantity of VMs

in a buy-bid is set to the number of unscheduled jobs in the

queue with the largest average value as computed above. The

quantity of VMs in a sell-bid is the overall number of VMs

of the type that the cloud can provide. All VMs purchased

via the auction are used to serve jobs from the queue with

the maximum average value. A cloud maintains the minimum

number of servers to support those jobs, and only drops a job

when its maximum tolerable response delay is reached.

B. Individual Profit and Social Welfare

We compare the time-averaged profit achieved at each cloud

with our dynamic algorithm in Alg. 1 and with the heuristic

algorithm, after the system has been running for 2000 hours.

Fig. 2 shows that our algorithm can achieve a higher profit

than the heuristic, at each of the 10 clouds, when the value of

V is no less than 4× 106. The observation from Fig. 3 is that

when V is larger, the individual profit with our algorithm is

even better, since it is closer to the offline optimum.
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(c) V = 6× 106
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Fig. 2. Comparisons of individual profit with different values of V .
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We next compare the social welfare achieved with Alg. 1,

the heuristic, and the dynamic benchmark Alg. 2. Fig. 4 shows

that social welfare achieved with Alg. 1 is mostly within

7.7% of that by the benchmark algorithm, even under our

heterogenous settings. It outperforms the heuristic by 19.2%.

The social welfare is larger at larger V ’s in cases of both

Alg. 1 and the benchmark algorithm, verifying Theorems 6

and 8 in that they approach the respective offline optimum

when V grows.
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Fig. 4. Comparisons of social welfare.

C. Response Delay and Job Drop

We next investigate the scheduling delays experienced by

jobs. In our system, a maximum tolerable response delay is set

as the SLA objective for each type of jobs. Here, we study the

average response delay actually experienced by the jobs, when

the longer maximum tolerable response delay is set to different

values. Fig. 6(a) shows that both Alg. 1 and the benchmark

algorithm incur a low average response delay (well ahead of

scheduling deadlines), as compared to that of the heuristic. The

reasons are: i) the heuristic algorithm always greedily keeps

jobs in queues for future scheduling until near the deadline;

and ii) both Alg. 1 and the benchmark algorithm evaluate the

scheduling urgency better than the heuristic does, such that

jobs are tended to be served well before the deadlines.
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Fig. 5. Comparisons of average job scheduling delay and drop percentage.

We also study the percentage of admitted jobs in the

entire federation that are eventually dropped with the three

algorithms. Fig. 6(b) reveals that the drop rate decreases

quickly with the increase of the allowed maximum tolerable

response delay, and Alg. 1 and the benchmark algorithm again

outperform the heuristic, due to their well-designed scheduling

strategies.
We next examine the average response delay and job-

drop percentage for different job types with Alg. 1. The

maximum response delay is set as 300 hours. Here, for ease of

presentation, we only consider the jobs requiring small CPU

resource. Hence, the memory demand is the bottleneck and

will determine the volume of VMs each server can provide.

Table V summarizes the examined job types. From Fig. 6,

we see the trend that jobs with shorter maximum tolerable

delay and/or lower resource demand, i.e., smaller gs and/or

lower memory requirement, have shorter average response

delays but higher drop percentages. It can be explained as

follows: i) a shorter maximum tolerable delay makes the jobs

more urgent for scheduling (thus a shorter average response

delay), but also more likely to hit their deadlines (thus a higher

drop percentage); and ii) a lower resource demand renders the

jobs easier to serve (thus a shorter average response delay),

however, also decreases the drop penalty for these jobs (thus

a higher drop percentage).
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Job type 1 2 3 4 5 6 7 8
CPU S S S S S S S S

Memory S S S S L L L L
gs 1 1 2 2 1 1 2 2
ds 150 300 150 300 150 300 150 300

TABLE V
JOB TYPES EXAMINED IN FIG. 6.

IX. CONCLUSION

This paper investigates both individual-profit maximizing

and social-welfare efficient strategies at individual selfish

clouds in a cloud federation, in VM trades across cloud

boundaries. We tailor a truthful, individual-rational, ex-post

budget-balanced double auction as the inter-cloud trading

mechanism, and design a dynamic algorithm for each cloud

to decide the best VM valuation and bidding strategies, and

to schedule job service/drop and server provisioning in the

most economic fashion, under time-varying job arrivals and

operational costs. The proposed algorithm can obtain a time-

averaged profit for each cloud within a constant gap to its

offline maximum, as well as a close-to-optimum social welfare

in the entire federation, based on both solid theoretical analysis

and trace-driven simulation studies under realistic setting. As

future work, we are interested in broadening our investigations

to front-end job pricing and competition for customers among

the clouds, and the connection between front-end charging

strategies and inter-cloud trading strategies in a cloud federa-

tion. In this work we assume that all jobs are served within

one time slot after being scheduled. We will extend the study

to more realistic scenarios where the time needed to complete

a job can span multiple time slots.
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