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Abstract—In cognitive radio networks, the occupation pat-
terns of the primary users can be very dynamic, which makes
optimization (e.g., utility maximization) of data dissemination
among secondary users difficult. Even under the assumption
that all secondary users are fully collaborative, the optimization
requires cross-layer decision making which is challenging. The
challenge escalates if users are socially selfish, who prefer to
relay data only to those other users with whom there are
social ties. Suchsocial selfishnessof users translates into new
constraints on network protocol design. There has been no study
so far on the impact of social selfishness on data dissemination
in cognitive radio networks. In this paper, we consider social
selfishness of secondary users, and propose the design of a
joint end-to-end rate control, routing, and channel allocation
protocol which can maximize the overall throughput utility of
multi-session unicast in cognitive radio networks. We give a
distributed implementation of the protocol. Based on a Lyapunov
optimization framework, we address social preferences of users
using differentiated buffer sizes and relay rates for different data
sessions, and apply back-pressure based transmission scheduling
to achieve guaranteed utility optimality. A unique contribution
of our Lyapunov optimization is that only a finite-sized buffer
is required at each user node, which sets our design apart from
other designs in existing literature where they assume infinite
buffers. We investigate the optimality of our protocol and the
impact of user social selfishness using both theoretical analysis
and extensive simulations.

I. I NTRODUCTION

Since its inception, cognitive radio network has been per-
ceived as the next generation wireless network [1] to funda-
mentally enhance the spectrum efficiency of situations where
the unlicensed spectrum is highly congested while the licensed
spectrum is under-utilized [5]; such situations are already very
common today. In a cognitive radio network, unlicensed users
(or “secondary users”) are allowed to utilize the licensed
spectrum for data transmission when the licensed user (or
“primary user”) is not using it; this is done via dynamic
spectrum access technologies for cognitive radios [2], [7].

When multiple data dissemination sessions (among sec-
ondary users) co-exist, a fundamental challenge in cognitive
radio networks is to judiciously allocate the spectrum and
schedule the transmissions such that the available spectrum
is fully exploited to achieve the maximum network-wide
throughput utility. This requires a cross-layer design, for
optimal transport, network and MAC layer decisions to be
made. At the transport layer, source nodes properly adjust

data injection rates for lower layers to handle; at the network
layer, a relay node strategically decides the next-hop relay for
each data session to be forwarded to; at the MAC layer, the
available spectrum is carefully and dynamically allocatedfor
transmission between pairs of nodes. All of these have to adapt
to volatile channel occupancy patterns of the primary users
while trying to maximize the end-to-end throughput utility
among all data sessions.

To further add to the challenge, we can drop the usual
assumption of fully collaborative data relay among the sec-
ondary users who in fact can behave selfishly during data
relay. In real-world networks,e.g., civilian networks [8], [15],
users havesocial tiesat various strength levels. Naturally, a
user would prefer helping others with whom there is a strong
social tie, and less so for nodes with weak social ties. Such
social selfishness of users complicates the design of efficient
data dissemination protocols, especially when making routing
decisions and link capacity allocation [13]. For example, a
node with high link capacity and low hop count to the desti-
nation, which although appears favorable, may not constitute
a good relay option if the node is not willing to assist in the
data session. Therefore, traditional routing protocols,i.e., those
based on link capacity or hop count, are no longer suitable in
a socially selfish network.

In this paper, we consider social selfishness of secondary
users in cognitive radio networks, based on which we design
a joint end-to-end rate control, routing, and channel allocation
protocol that can maximize the overall throughput utility of
multiple unicast sessions. Our design is rooted in Lyapunov
optimization theory [16], where utility maximization and net-
work stability are achieved by back-pressure scheduling of
transmissions among packet queues at the network nodes. We
incorporate social selfishness of users in their transmission
scheduling of packets belonging to different by-passing data
sessions, according to the social ties between the users andthe
source/destination of each session. In particular, socialprefer-
ence of a user is novelly addressed by allocating differentiated
buffer sizes and relay rates to different data sessions.

A salient contribution of our Lyapunov optimization is that
finite buffer sizes are employed at each node with no-buffer-
overflow guarantee. A number of back-pressure scheduling
protocols [3], [4], [6], [20], [21], [23] have been proposed
to achieve throughput maximization while adapting to the
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dynamics of wireless networks. However, most are based
on infinite node buffers, which is obviously an idealized
and impractical assumption. Leet al. [11] have investigated
optimal control of a wireless network with a finite buffer for
each by-passing session per relay node, but an infinite buffer is
still necessary at each source node in the worst cases. Neely
[17] recently proposed an opportunistic scheduling protocol
with bounded buffer size at each node for each data session,
which would simply drop the packets should a buffer become
full. In contrast, we demonstrate with rigorous proof that a
finite buffer size without the possibility of buffer overflow
suffices at each node using our protocol which can achieve
global throughput utility maximization.

The contributions of this paper can be summarized as
follows:

⊲ We model social selfishness of users by assigning dif-
ferentiated buffer sizes and relay rates allocated to data
sessions of different source/destination pairs in a Lya-
punov optimization framework for achieving throughput
utility maximization in a cognitive radio network. To the
best of our knowledge, this is the first work investigating
the impact of social selfishness on protocol design in
cognitive ratio networks.

⊲ We propose a back-pressure-style joint end-to-end rate
control, routing, and channel allocation protocol for op-
timal multi-session unicast data dissemination, and give
a distributed implementation for it. First time in the lit-
erature of back-pressure protocols, our protocol requires
only a finite-sized buffer at each source or relay node
with no buffer overflow, and is guaranteed to achieve an
overall throughput utility that can be arbitrarily close to
the ultimate optimum obtained when there is no constraint
on buffer sizes.

⊲ We demonstrate network stability and utility optimality
of our protocol with rigorous theoretical analysis. Impact
of social selfishness on throughput utility and end-to-end
dissemination delay of different data sessions are further
investigated using both case studies and empirical studies.
An interesting discovery is that, contrary to intuition that
larger buffers should be provisioned to preferred data
sessions, allocating smaller buffers to them at nodes along
their paths can actually lead to smaller end-to-end delay,
without sacrificing throughput.

The remainder of the paper is organized as follows. We dis-
cuss related work in Sec. II and present the problem model in
Sec. III. Detailed protocol design and theoretical performance
analysis are presented in Sec. IV and Sec. V, respectively.
The throughput utility of the protocol and the impact of social
selfishness are evaluated with extensive simulations in Sec. VI.
Finally, we conclude the paper in Sec. VII.

II. RELATED WORK

A. Utility Maximization with Back-pressure Protocol
Since the seminal work of Tassiulaset al. [20], back-

pressure protocols for maximum-weight scheduling, which
schedule links with the largest product of link capacity and

differential queue backlog, have been widely applied for utility
maximization in multi-hop wireless networks [3], [4], [6],
[21], [23]. It has been shown that optimal throughput can be
achieved, however without any finite buffer guarantee.

Venkataramananet al. [21] suggested a way to minimize the
cumulative buffer utilization along the path of a unicast flow so
as to reduce the end-to-end delay of the flow. However, there is
no finite size guarantee for each buffer at the relay nodes. The
challenge of using finite buffer in a back-pressure paradigm
was not addressed until recently by Leet al. [11] and Neely
[17] as we have mentioned in the introduction. In [11], the
current queue size at each source node needs to be broadcast
to all relay nodes, which can result in high communication
overhead. Our protocol eliminates such broadcast overhead.
In [17], the throughput utility is only compared with that ofa
T -slot lookahead policy which is an offline policy with perfect
knowledge up toT slots into the future. Analysis is missing
on how close the throughput utility approaches optimality.

For cognitive radio networks, Dinget al. [3], [4] have
designed back-pressure protocols for routing with collabora-
tive spectrum sensing, but without utility-optimality guarantee.
Feng et al. [6] introduce a back-pressure routing protocol
with primal-dual decomposition. No analysis of buffer sizeis
presented. Xueet al. [23] propose a back-pressure throughput
maximization protocol, under the constraints of bounded col-
lision rates between secondary and primary users. The worst-
case upper bound of buffer size at each node is provided, but
the protocol cannot ensure that there will be no buffer overflow
in situations where the buffer sizes are smaller than the upper
bound. Our protocol provides that guarantee.

B. Social Selfishness in Network Protocol Design

Whereas assuming full collaborations among nodes is one
extreme, the other extreme is assuming each network user is
completely selfish. For the latter assumption, the literature has
focused on incentive design,e.g., [9], [22], [24], which is an
orthogonal topic to our work1. In this paper, we consider a new
assumption of social selfishness, which may better capture user
preferences in a real-world wireless network.

We are aware of only one paper, by Liet al. [13], which has
made the same assumption as ours. They investigate routing
design in socially selfish delay tolerant networks, where the
probabilities that a node may forward traffic received from
other nodes are differentiated. Unlike their work, we studya
joint rate control, routing, and channel allocation schemein a
cognitive radio network, and we address social selfishness of
users by differentiating both buffer sizes and targeted average
relay rates.

III. PROBLEM MODEL

We now present the network model and the layers of the
network stack under investigation using Lyapunov optimiza-
tion, as well as our social selfishness model in the framework.

1In the real world, the social ties tend to be fixed and stable. Thus, we
design our protocol with social selfishness being a user demand, instead of
designing incentive mechanisms to entice the users to collaborate.
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A. Socially Selfish Cognitive Radio Network
We consider a cognitive radio network with a set of primary

usersVP and a set of secondary usersVS . There are|VP |
orthogonal spectrum channelsC = {c1, . . . , c|VP |}, each sub-
scribed by one primary user. The secondary users collectively
constitute a multi-hop ad-hoc network. They distribute data
flows to each other using the available channels that are
not occupied by primary users at the time. There areM
unicast data sessions among secondary users, denoted as set
M. Primary users are not involved in the data dissemination.
Let sm and dm denote the source and destination of session
m ∈M, respectively.

In the multi-hop network of secondary users, a source may
directly transmit to a destination, if the later resides within the
transmission range of the former and a spectrum channel is
available to both nodes. Otherwise, a multi-hop route needsto
be discovered to relay data packets.

Let E be the set of possible transmission links among
secondary users, where linkeij ∈ E if node j is in the
transmission range of nodei. We consider a generic inter-
ference model. LetI denote the set of interference relations
among potential transmissions in the network, which include
two types of pairs: (1)(eij , ekl) ∈ I (with eij , ekl ∈ E)
denotes that transmission along linkeij cannot be scheduled
on the same channel concurrently with that along linkekl;
(2) (vp, eij) ∈ I (with vp ∈ VP and eij ∈ E) means that
when primary uservp is actively using its subscribed channel,
transmissioneij cannot simultaneously happen on the channel
due to interference. We also assume that each secondary user
is equipped with one radio only, such that it may either
transmit or receive data on one channel at each time. Note
that the generic interference modelI subsumes most of the
popular interference models in the literature, including the
node-exclusive model and thek-hop (k ≥ 1) interference
model (used in [18] and the references therein).

Between each pair of secondary usersi and j, a rational
numberρij ∈ [0, 1] is given a priori and characterizes the
strength of the social tie between the two users, whereρij =
1 is strongest andρij = 0 means no tie at all2. In multi-
hop relay of data sessions,social preferenceof eachsocially
selfishintermediate noden depends on its social relationship
with the source and destination nodes of each by-passing data
sessionm, indicated byρ

(m)
n = h(ρn,sm

, ρn,dm
). h(·) is a

non-negative non-decreasing function, and an example form
θρn,sm

+(1−θ)ρn,dm
with θ ∈ [0, 1] is used in our simulation

in Sec. VI.
Table I summarizes the notations, for ease of reference.

B. Problem Model on Three Layers
We model the problems involved in enabling multi-session

unicast at different layers of the network stack.

Transport Layer : End-to-end rate control is considered at
the transport layer, at the source node of each data session.
Suppose the system runs in a time-slotted fashion. In each

2How to derive and maintain the social ties is out of the scope ofthis paper.

VP Set of primary users VS Set of secondary users
C Set, orthogonal channels M Set of unicast sessions
E Set of links I Set, interference relations
M # of data sessions eij Directedi→j link
E(·) The expectation U(·) Utility function
sm Source of sessionm dm Destination of sessionm
ρij Social relation between useri andj

ρ
(m)
n Social relation between usern and data sessionm

Am(t) Data arrival rate of sessionm in time slot t

A
(m)
max Maximum arrival rate of sessionm

rm(t) Admissible data rate of sessionm in time slot t
r̄m Average admissible data rate of sessionm

ηm(t) Auxiliary variable of sessionm in time slot t
η̄m Average of auxiliary variable of sessionm

µ
(m)
ij

(t) Binary var: data sessionm is routed overeij in time slott?

α
(c)
ij

(t) Binary var: channelc is assigned toeij in time slot t?

z
(m)
n Preset average relay rate of sessionm on usern

Q
(m)
n (t) Data queue of sessionm on usern in time slot t

q
(m)
n Buffer size for data queueQ(m)

n of sessionm on usern
Ym(t) Transport virtual queue of sessionm in time slot t

G
(m)
n (t) Network virtual queue of sessionm on usern in time slott

V User-defined constant weight in Lyapunov Optimization
B Quantity defined in Lyapunov Optimization in Sec. IV-C

TABLE I
NOTATION TABLE .

time slot t, the application layer of sourcesm injects data to
the transport layer at rateAm(t) ∈ [0, A

(m)
max] , whereA

(m)
max

denotes the maximum data arrival rate for sessionm. Let
rm(t) ∈ [0, Am(t)] denote the admissible end-to-end data
rate injected to the network layer of sourcesm, such that
congestion will not occur andnetwork stability, to be defined
shortly in Sec. III-D, is achieved. The traffic not admitted to
network layer,i.e., Am(t)−rm(t), is discarded since it exceeds
the network capacity and congestion would occur, if admitted.

Network Layer : Each secondary usern ∈ VS may receive
data from multiple sessions (including the data session origi-
nated at itself), and makes routing decisions to forward them
toward respective destinations. At the network layer of noden,
a queueQ(m)

n is created to buffer data for sessionm, except
at the destination node of sessionm where data is directly
delivered to upper layers without buffering. Letµ

(m)
ij (t) be

the amount of data of sessionm to be forwarded from node
i to nodej (whereeij ∈ E) in time slot t. For every queue
Q

(m)
n at each noden ∈ VS − {dm}, m ∈ M, we have the

following regarding the queue size:

Q
(m)
n (t + 1) =Q

(m)
n (t) −

∑

enj∈E

µ
(m)
nj (t) +

∑

ein∈E

µ
(m)
in (t)

+ 1{n=sm}rm(t),

(1)

where1{n=sm} is an indicator function defined as follows:

1{n=sm} =

{

1 if n = sm,

0 otherwise.
Without loss of generality, we assume that one unit of data

can be transmitted from nodei to nodej in each time slot,i.e.,
the capacity of any linkeij ∈ E is 1 if a transmission along
the link is scheduled in a time slot. A similar assumption can
also be found in [11], [23]. Therefore, we know thatµ

(m)
nj (t)

is either0 or 1. In addition,µ(m)
nj (t) cannot be larger than the

size of queueQ(m)
n at time t. We derive
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µ
(m)
nj (t) ∈ {0, min{Q(m)

n (t), 1}}, ∀n, j ∈ VS , n 6= dm,

m ∈ M.
(2)

Note that we always haveµ(m)
dmj(t) = 0 andµ

(m)
nn (t) = 0.

MAC Layer : Based on the routing decisions from the network
layer, a channel allocation and a link scheduling scheme
is designed for the MAC layer, to schedule transmissions
between nodes on each channel in each time slot.

We use a binary variableα(c)
nj (t) to indicate whether channel

c ∈ C is allocated to transmission along linkenj ∈ E in time
slot t:

α
(c)
nj (t) =

{

1 if enj is scheduled on channelc in time slot t,
0 otherwise.

The following constraints guarantee a feasible channel al-
location and link scheduling scheme:

∑

c∈C

α
(c)
nj (t) =

∑

m∈M

µ
(m)
nj (t), ∀enj ∈ E, (3)

∑

c∈C

[
∑

enj∈E

α
(c)
nj (t) +

∑

ein∈E

α
(c)
in (t)] ≤ 1, ∀n ∈ VS , (4)

α
(c)
nj (t) +

∑

(ekl,enj)∈I

α
(c)
kl (t) ≤ 1, ∀enj ∈ E, c ∈ C, (5)

α
(c)
nj (t) ≤ 1

(c)
nj (t), ∀enj ∈ E, c ∈ C, (6)

α
(c)
nj (t) ∈ {0, 1}, ∀enj ∈ E, c ∈ C, (7)

where1
(c)
nj (t) is an indicator function:

1
(c)
nj (t) =

{

1 if channelc is available toenj in time slot t,
0 otherwise.

Constraint (3) states that the total amount of data transmis-
sion from noden to j on different channels, in one time slot,
should be equal to the overall units of data from all sessions
to be routed fromn to j in that time slot. Inequality (4)
models the primary interference constraint: a node can either
transmit or receive on at most one channel in each time slot.
Constraints (5) and (6) model the interference relations inI:
the former indicates that transmission along linkenj should
not be scheduled concurrently with that along any interfering
link on the same channel; the latter guarantees that each link
transmission can only be scheduled on an available channel.
Channelc is available to linkeij in time slot t if primary
uservp of the channel is not transmitting in the time slot or
no interference exists between the transmissions fromvp and
alongenj , i.e., (vp, enj) 6∈ I.

C. Social Preference in Routing
Socially selfish usersn ∈ VS differentiate their resource

allocation when relaying traffic for by-passing data sessions
m ∈ M, wheren is neither the source (n 6= sm) nor the
destination (n 6= dm).

Buffer space: A secondary usern provides a maximum buffer
size of q(m)

n = f(ρ
(m)
n ) for by-passing data sessionm ∈ M,

where f(·) is a non-negative function that differentiates the
buffer space allocated to sessions with different social relation-
shipsρ

(m)
n with usern. The goal is to provide better end-to-

end throughput and delay performance for data sessions with

stronger social relationships. Interesting enough, we will show
later in Sec. V and Sec. VI that smaller buffer sizes actually
lead to better dissemination performance for a data session, in
terms of lower end-to-end delay.

Note thatq(m)
dm

= 0, as there is no buffering requirement

on the destinationdm of a sessionm. The buffer sizeq(m)
sm at

sourcesm of sessionm is not constrained by the social relation
ρ
(m)
n , as it is natural to favor a session originated from itself.

Average data relay rate: As data transmissions consume
battery power, each secondary usern sets upper bounds for
the average number of data units allowed for relay per time
slot for by-passing data sessionsm ∈ M, n 6= sm, and
n 6= dm.3 Let zn denote the predefined upper bound of the
average number of data units usern may relay for all by-
passing sessions per time slot, which can be set according
to the power consumption per transmission, the total battery
capacity, and the frequency of battery charging at the user.
For each of the sessions, an upper boundz

(m)
n of average

relay rate is set (
∑

m∈M,n 6=sm,n 6=dm
z
(m)
n = zn), according

to an increasing function of the social relationshipρ(m)
n

between usern and sessionm. An example functionz(m)
n =

zn
ρ(m)

n
∑

m′∈M,n 6=s
m′ ,n 6=d

m′
ρ
(m′)
n

is used in our simulations.

We have that the average number of data units noden
forwards for sessionm per time slot should be no larger than
z
(m)
n as follows

lim
t→∞

sup
1

t

t−1
∑

τ=0

E(
∑

enj∈E

µ
(m)
nj (τ)) ≤ z

(m)
n ,

∀n ∈ VS , m ∈ M, n 6= sm, n 6= dm. (8)

D. Network Stability and Capacity Region
Some important definitions and theorems are presented next

from the literature on Lyapunov optimization [16], to be used
in our protocol design and analysis.

Definition 1 (Queue and Network Stability [16]):A queue
Q is strongly stable(or stablefor short) if and only if

lim
t→∞

sup
1

t

t−1
∑

τ=0

E(Q(τ)) < ∞,

whereQ(τ) is the queue size at time slotτ and E(·) is the
expectation. A network isstrongly stable(or stablefor short)
if and only if all queues in the network are strongly stable.

Theorem 1 (Necessity and Sufficiency for Queue Stability [16]):
For any queueQ with the following queuing law,

Q(t + 1) = Q(t) − b(t) + a(t),

wherea(t) andb(t) are the queue incoming rate and outgoing
rate in time slott, respectively, the following results hold:
Necessity: If queue Q is strongly stable, then its average
incoming ratēa = limt→∞

1
t

∑t−1
τ=0 E(a(τ)) is no larger than

the average outgoing ratēb = limt→∞
1
t

∑t−1
τ=0 E(b(τ)).

Sufficiency: If the average incoming ratēa is strictly smaller
than the average outgoing rateb̄, i.e., ā + ǫ ≤ b̄ with ǫ > 0,
then queueQ is strongly stable.

3We assume no such rate limit is imposed on sourcesm of a data session
m for sending out its own data,i.e., enough power is provided at a source
node for transmitting its own data.
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IV. DYNAMIC UTILITY MAXIMIZATION ALGORITHM

In this section, we first describe the utility maximization
problem and then give a cross-layer back-pressure protocol
based on Lyapunov optimization [16].

A. Utility Maximization
Let r̄m denote the average end-to-end admissible data rate

of unicast sessionm (i.e., throughput of sessionm), such that
r̄m = limt→∞

1
t

∑t−1
τ=0 E(rm(τ)). Let the vector of average

end-to-end admissible rates of all sessions,r̄ = (r̄m,m ∈M),
denote the throughput of the network.Λ is the capacity
region of the network, defined as the set of all vectors of
admissible data rates̄r, for each of which there exists a routing
and channel allocation algorithm to stabilize the network
(Definition 1).

Let U(·) be a concave, differentiable, and non-decreasing
utility function on throughput̄rm of each data sessionm ∈M.
Our objective is to maximize the overall utility with guarantee
of network stability and in the presence of social preference
of the users.

max
∑

m∈M

U(r̄m) (9)

s.t. r̄ ∈ Λ, (10)

0 ≤ rm(t) ≤ Am(t), ∀m ∈ M, t = 1, 2, . . . (11)

Constraint (10) guarantees that the derived average admissi-
ble data rates in̄r can achieve network stability,i.e., there ex-
ists a routing and channel allocation protocol that decidesa set
of feasible admissible data ratesrm(t),∀m ∈M, in each time
slot t (i.e., those satisfying constraints (2)(3)(4)(5)(6)(7)(8)),
such that all queues are strongly stable in the network and
each queue buffer is finite without overflow. Constraint (11)
ensures that the admissible data rate of each sessionm in each
time slot is non-negative and upper-bounded by the respective
rateAm(t) at which data arrives at each source.

B. Introducing Virtual Queues
To derive a dynamic algorithm to solve the utility maximiza-

tion problem, we apply Lyapunov optimization techniques.
There are two issues that need to be resolved.

Issue 1: Since rm(t) is constrained by an arbitrary rate
Am(t), it is hard to derive the expectationE(rm(t)), and
thus the time averaged admissible rate of each session,r̄m =
limt→∞

1
t

∑t−1
τ=0 E(rm(τ)),∀m ∈M.

Issue 2: Constraint (8), which formulates social selfishness of
users in relay rate allocation, is defined on time averaged re-
lay rateslimt→∞ sup 1

t

∑t−1
τ=0 E(

∑

enj∈E µ
(m)
nj (τ)). How can

we ensure the inequality by controlling the relaying rates
µ

(m)
nj (t),∀m ∈M, per time slot?

Solution to issue 1: We derive a lower bound for̄rm,∀m ∈
M, by introducing a virtual queueYm at the transport layer
of source nodesm of sessionm, as follows

Ym(t + 1) = max{Ym(t) − rm(t) + ηm(t), 0}, (12)

under the constraints
0 ≤ rm(t) ≤ Am(t), 0 ≤ ηm(t) ≤ A

(m)
max,

whereηm(t) is an auxiliary variable independent ofAm(t),
whose value in each time slot will be decided in our dynamic
algorithm to be introduced shortly.

The rationale is that, if the stability of each virtual queue
Ym is guaranteed, we know from the necessity condition in
Theorem 1 that̄ηm ≤ r̄m; therefore, by calculating expectation
E(ηm(t)) (which is calculable as long asηm(t) is independent
of Am(t) and not arbitrarily assigned in[0, A(m)

max]), and then
the time averagēηm = limt→∞

1
t

∑t−1
τ=0 E(ηm(τ)), we are

able to derive a lower bound̄ηm for r̄m.

Solution to issue 2: To fulfill users’ social selfishness in relay
rate allocation (constraint (8)), another virtual queueG

(m)
n is

introduced at the network layer of noden for each data session
m it relays (n 6= sm and n 6= dm). This queue records the
relaying history for each data session at the node:

G
(m)
n (t + 1) = max{G(m)

n (t) +
∑

enj∈E

µ
(m)
nj (t) − z

(m)
n , 0}. (13)

According to the necessity condition in Theorem 1, if each
virtual queueG

(m)
n is stable, then the time averaged number

of data units noden relays for sessionm per time slot, would
not exceed the predefined upper boundz

(m)
n , i.e., constraint

(8) is satisfied. Therefore, we can adjust relay ratesµ
(m)
nj (t) in

each time slott to guarantee that the virtual queue is always
stable, in order to satisfy constraint (8).

C. Dynamic Algorithm
To conclude, in our dynamic algorithm that solves the

utilization maximization problem, three types of queues are
needed,i.e., Q

(m)
n (∀n 6= dm, m ∈ M), Ym (∀m ∈ M) and

G
(m)
n (∀n 6= sm, n 6= dm, m ∈ M). Let Θ(t) = [Q,Y,G]

be the vector of all queues in the system. Define our novel
Lyapunov function as

L(Θ(t)) =
1

2

∑

m∈M

∑

n6=dm

q
(m)
sm (Q

(m)
n (t))2

q
(m)
n

+
1

2

∑

m∈M

(Ym(t))2

+
1

2

∑

m∈M

∑

n6=sm,n6=dm

(G(m)
n (t))2. (14)

The one-slot conditional Lyapunov drift is

∆(Θ(t)) = L(Θ(t + 1)) − L(Θ(t)). (15)

According to thedrift-plus-penaltyframework in Lyapunov
optimization [16], an upper bound for the following expression
should be minimized in each time slot, with the observation
of the queue statesΘ(t), data arrival ratesAm(t), ∀m ∈M,
and channel availability1(c)

nj (t), ∀enj ∈ E, c ∈ C, such that
a lower bound for

∑

m∈M U(η̄m) as well as
∑

m∈M U(r̄m)
is maximized (see Chapter 5 of [16]):

∆(Θ(t)) − V
∑

m∈M

U(ηm(t)).

Here,V is a user-defined constant that can be understood as
the weight of utility in the expression.

By squaring the queuing laws (1), (12) and (13), we can
derive the following inequality (the detailed steps can be found
in our technical report [12]):

∆(Θ(t)) − V
∑

m∈M

U(ηm(t)) ≤ B − Ψ1(t) − Ψ2(t) − Ψ3(t).

(16)
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Here, B = 1
2
[
∑

m∈M

∑

n6=dm

q
(m)
sm

q
(m)
n

· ((1{n=sm}A
(m)
max + 1)2 +

1) + 2
∑

m∈M
(A

(m)
max)2 +

∑

m∈M

∑

n6=sm,n6=dm
((z

(m)
n )2 + 1)] is

a constant value.
Ψ1(t), Ψ2(t), andΨ3(t) are:
• Terms related to auxiliary variablesηm(t):

Ψ1(t) = V
∑

m∈M

U(ηm(t)) −
∑

m∈M

ηm(t) · Ym(t);

• Terms related to end-to-end rate control variablesrm(t):

Ψ2(t) =
∑

m∈M

rm(t) · [Ym(t) − Q
(m)
sm

(t)];

• Terms related to routing decision variablesµ
(m)
nj (t):

Ψ3(t) =
∑

m∈M

∑

n6=dm

[
q
(m)
sm

q
(m)
n

Q
(m)
n (t) · [

∑

enj∈E

µ
(m)
nj (t) −

∑

ein∈E

µ
(m)
in (t)]]

+
∑

m∈M

∑

n6=sm,n6=dm

G
(m)
n (t) · [z(m)

n −
∑

enj∈E

µ
(m)
nj (t)].

We then derive the following dynamic algorithm that ob-
serves queues at every time slott and makes control decisions
that maximizeΨ1(t), Ψ2(t), and Ψ3(t) at different layers
of the network stack (thus minimizing the right-hand-side
of the drift-plus-penalty bound in (16)), for maximization
of joint utility

∑

m∈M U(ηm(t)) (and thus lower bound for
∑

m∈M U(η̄m) and
∑

m∈M U(r̄m)).

End-to-end Rate Control on Transport Layer: At the source
nodesm of each sessionm ∈ M, the admissible end-to-end
data raterm(t) is chosen by solving the following optimization
problem:

max
rm(t)

rm(t) · [Ym(t) − Q
(m)
sm

(t)]

s.t. 0 ≤ rm(t) ≤ Am(t).
(17)

Auxiliary variableηm(t) can be decided by solving:
max
ηm(t)

V · U(ηm(t)) − Ym(t) · ηm(t)

s.t. 0 ≤ ηm(t) ≤ A
(m)
max.

(18)

(17) is a linear optimization problem; (18) is a concave
maximization problem with a linear constraint, since utility
function U(·) is concave and differentiable. The maximum
of the latter is achieved when the first order derivative of its
objective function overηm(t) is zero. The optimal solutions
can be derived as follows:

rm(t) =

{

Am(t) if Ym(t) > Q
(m)
sm (t)

0 otherwise
; (19)

ηm(t) = max{min{U ′−1(
Ym(t)

V
), A(m)

max}, 0}, (20)

where U ′−1(·) is the inverse function ofU ′(·), the first
order derivative ofU(·). Note that the above solutions are
only related to local information at nodesm, i.e., Am(t),
A

(m)
max, Ym(t) andQ

(m)
sm (t), and can thus be derived in a fully

distributed fashion.

Joint Routing and Channel Allocation on Network and
MAC Layers : We can reformulateΨ3(t) into

Ψ3(t) =
∑

m∈M

∑

n6=dm

∑

enj∈E

µ
(m)
nj (t) · [

q
(m)
sm

q
(m)
n

Q
(m)
n (t) −

q
(m)
sm

q
(m)
j

Q
(m)
j (t)

− 1{n6=sm}G
(m)
n (t)] +

∑

m∈M

∑

n6=sm,n6=dm

G
(m)
n (t)z(m)

n ,

with the indicator function

1{n6=sm} =

{

1 if n 6= sm,
0 otherwise.

At each usern ∈ VS , routing decisionsµ(m)
nj (t) for each

sessionm ∈M (wheren 6= dm) can be made based on joint
routing and channel allocation by solving the following:

max
µ
(m)
nj

(t),α
(c)
nj

(t),∀enj∈E,∀m∈M,∀c∈C

Ψ3(t)

s.t. Constraints (2),(3),(4),(5),(6),(7).

(21)

Note here we do not include the social selfishness constraint
(8) in the above optimization, since it can be implicitly
satisfied by the optimal solution of the above problem. The
reason is that the solution guarantees stability of each virtual
queueG

(m)
n (∀n 6= sm, n 6= dm,m ∈M), which is proved in

Theorem 2 in Sec. V.
Problem (21) can be simplified into a pure channel alloca-

tion problem related only to variablesα(c)
nj ,∀enj ∈ E,∀c ∈ C,

as follows. Define

w
(m)
nj (t) =

q
(m)
sm

q
(m)
n

Q
(m)
n (t) −

q
(m)
sm

q
(m)
j

Q
(m)
j (t) − 1{n6=sm}G

(m)
n (t),

(22)
representing the weight ofµ(m)

nj (t) in Ψ3(t). Constraint (4)
implies that in each time slot, each noden can transmit at
most one data session on at most one channel to anther node
j where linkenj ∈ E; therefore, we know

∑

m∈M µ
(m)
nj (t) =

∑

c∈C α
(c)
nj (t) ≤ 1, based on constraint (3). To maximize the

objective functionΨ3(t), on each linkenj , only sessionm̂nj

associated with the largest weightw
(m)
nj (t) should be scheduled

where
m̂nj = argmax

m
{w

(m)
nj (t)}, (23)

while all other sessions are not,i.e., µ
(m̂nj)
nj (t) =

∑

c∈C α
(c)
nj (t) ≤ 1, andµ

(m)
nj (t) = 0,∀m 6= m̂nj . Therefore,

constraint (2) can be automatically satisfied sinceµ
(m̂nj)
nj (t)

must be a binary value, andµ(m̂nj)
nj = 0 whenQ

(m̂nj)
n (t) = 0

and thenw(m̂nj)
nj ≤ 0.

Further eliminating
∑

m∈M

∑

n6=sm,n 6=dm
G

(m)
n (t)z

(m)
n

that is not related toµ(m)
nj ’s, we can modify the objective

function Ψ3(t) into:

Ψ4(t) =
∑

enj∈E,n6=dm̂nj

µ
(m̂nj)

nj (t) · w
(m̂nj)

nj (t)

=
∑

enj∈E,n6=dm̂nj

∑

c∈C

α
(c)
nj (t) · w

(m̂nj)

nj (t).

To conclude, the joint routing and channel allocation prob-
lem (21) can be reduced to the following:

max
α

(c)
nj

(t),∀enj∈E,∀c∈C

Ψ4(t)

s.t. Constraints (4),(5),(6),(7).
(24)

After solving the above channel allocation problem, the
routing decision can be made as follows:

µ
(m)
nj =

{

∑

c∈C
α

(c)
nj if m = m̂nj

0 otherwise
, ∀enj ∈ E, ∀m ∈ M.

The channel allocation problem (24) is a 0-1 integer pro-
gram. A centralized solution with1 − δ approximation ratio
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Algorithm 1 Dynamic Utility Maximization Algorithm in
Time Slot t

Input : Q
(m)
n (t), Ym(t), G

(m)
n (t), Am(t), A

(m)
max, V , q

(m)
n (∀n ∈

VS ,∀m ∈M).
Output : rm(t), ηm(t), α

(c)
nj (t), µ

(m)
nj (t) (∀n ∈ VS ,∀m ∈

M,∀c ∈ C,∀enj ∈ E).

1: End-to-End Rate Control: For each data sessionm ∈
M, the end-to-end raterm(t) and auxiliary variableηm(t)
are decided at sourcesm as

rm(t) =

{

Am(t) if Ym(t) > Q
(m)
sm (t)

0 otherwise
,

ηm(t) = max{min{U ′−1(
Ym(t)

V
), A(m)

max}, 0}.

2: Joint Routing and Channel Allocation: From each link
eni ∈ E, calculate

w
(m)
nj (t) =

q
(m)
sm

q
(m)
n

Q
(m)
n (t) −

q
(m)
sm

q
(m)
j

Q
(m)
j (t) − 1{n6=sm}G

(m)
n (t),

∀m ∈ M,

m̂nj = argmax
m

{w
(m)
nj (t)}.

Derive channel allocation variableα(c)
nj ,∀eni ∈ E, c ∈

C, by solving problem (24) with the branch-and-bound
algorithm [10] or our distributed algorithm in Alg. 2.

Routing decisions are made as follows

µ
(m)
nj =

{

∑

c∈C
α

(c)
nj if m = m̂nj

0 otherwise
, ∀eni ∈ E, m ∈ M.

3: Update queuesQ(m)
n (t + 1), Ym(t + 1), andG

(m)
n (t + 1)

based on queuing law (1), (12), and (13), respectively.

can be obtained using the branch-and-bound method [10],
where δ ∈ (0, 1) is the solution accuracy defined by users.
In the following, we design a distributed algorithm to solve
this problem.

In summary, the sketch of our dynamic joint end-to-end rate
control, routing, and channel allocation algorithm is given in
Algorithm 1.

Remarks: Algorithm 1 is a back-pressure style protocol since
the joint routing and channel allocation always prefer schedul-
ing transmissions along links with the largest differential
queue backlogw(m̂nj)

nj (t). In the differential queue backlog

w
(m)
nj (t) in Eqn. (22),Q(m)

n (t)/q
(m)
n and Q

(m)
j (t)/q

(m)
j are

the occupancy ratio of data buffers of sessionm at noden

and j in time slot t, andG
(m)
n (t), the cumulative number of

transmitted data units for sessionm that exceeds the number
allowed by relay ratezm

n , can be understood as the deficit
of relay capacity for sessionm at noden. The implication
of the joint routing and channel allocation in Algorithm 1 is
to prioritize transmissions from a relatively more congested
node (with high buffer occupancy ratioQ(m)

n (t)/q
(m)
n ) with

low relay-capacity deficit to a less congested node (with low
buffer occupancy ratioQ(m)

j (t)/q
(m)
j ).

Algorithm 2 Distributed Channel Allocation Protocol at Node
n in Time Slot t

Input : Q
(m)
n (t), G

(m)
n (t), q

(m)
sm , andq

(m)
n (∀m ∈M)

Output : α
(c)
nj (t) (∀enj ∈ E, c ∈ C)

1: Initialization
- Initialize channel allocation variableαc

nj(t)← 0,∀enj ∈
E, c ∈ C, and a candidate set of links to scheduleLn ← ∅;
- Sense the spectrum and get the available channel setCn;
- Exchange queue sizesQm

n (t), ∀m ∈ M, and available
channel setCn with neighbors;
- Calculate and propagate weightw

m̂nj

nj based on Eqn. (22)
and (23), and commonly available channel setCn

⋂

Cj for
each linkenj ∈ E;

2: Channel allocation
- For each linkenj ∈ E andCn

⋂

Cj 6= ∅, do:
if w

m̂nj

nj ≥ max
eik∈E,(eik,enj)∈I,Ci

⋂

Ck 6=∅{w
m̂ik

ik }

update candidate link setL(t)← L(t)
⋃

{enj};
- If L(t) 6= ∅ andenj = argmaxeni∈Ln

{wm̂ni

ni }, randomly
select an available channelc ∈ Cn

⋂

Cj and allocate it to
enj by settingα(c)

nj = 1; inform each neighbor and senders
of interfering links about this channel allocation, and end
the algorithm here and that at nodej.

3: Information update : Upon receiving a channel allocation,
update available channel set for each local link and inform
the updates to sender of each interfering link.

4: The algorithm ends if either the available channel set is
empty for each local link or noden is scheduled as a
receiver by some other node; Otherwise, go to step 2.

D. Distributed Channel Allocation Algorithm
We next propose a distributed protocol to solve the channel

allocation problem in (24)—Algorithm 2. Here we refer to
node j with enj ∈ E as a “neighbor” of noden, and each
link enj ∈ E as a “local link” of usern. Similar to the
existing literature [3], [4], all the control messages can be
passed over a Common Control Channel (CCC) defined on an
unlicensed band available to all secondary users. Note that,
unlike broadcasting the current queue size at each source,i.e.
Q

(m)
sm (t),∀m ∈ M, to all relay nodes in [11], our algorithm

only needs the buffer size at each source, which is constant
and can be disseminated to each relay node once for all.

The distributed protocol executed at each node greedily
allocates available channels to its local links, each with a
weightw(m̂nj)

nj (t) that is largest among weights of all its inter-
fering links. Each noden senses the spectrum and maintains
a set of available channels over time. To carry out channel
allocation to its local links, it calculates link weightwm̂nj

nj

based on Eqn. (22) and (23) for each local linkenj , and derives
commonly available channels with destination node of each
local link, using necessary information from neighbors.

A link enj satisfying the following three conditions will
be chosen, and a randomly selected available channel from
the commonly available channel set of noden and nodej
will be assigned for the transmission: (1) there is at least one
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commonly available channel at noden and nodej; (2) w
m̂nj

nj

is the largest among weightswm̂ik

ik on all its interfering links
eik, where(eik, enj) ∈ I; (3) w

m̂nj

nj is also the largest among
weights on all those local links at noden, which have the
largest weights among their respective interfering links as well.

After channelc is allocated to linkenj , each neighbor of
user n and the sender of each interfering link toenj are
informed, which will exclude the channel from their available
sets and further propagate the information. The algorithm ends
here at nodesn and j for the current time slot, while each
non-scheduled node will continue with the above until they
are either scheduled or the available channel set for each local
link becomes empty.

We will show in Sec. VI that the performance of the
distributed protocol is in general close to that achieved by
the centralized branch-and-bound channel allocation method.

V. PERFORMANCEANALYSIS

We analyze the performance guarantee provided by our
dynamic algorithm (Algorithm 1) with respect to utility op-
timality, network stability, finite buffer sizes, as well asper-
formance differentiation among sessions as a result of users’
social selfishness.

Lemma 1 (Finite buffer without overflow):For each data
sessionm ∈M, define

Y
(m)

max , V U
′(0) + A

(m)
max, q

(m)
sm

, V U
′(0) + 2A

(m)
max + 1.

Queue sizesYm(t), Q
(m)
sm (t), andQ

(m)
n (t) (for all n 6= sm

andn 6= dm) are upper-bounded by buffer sizesY
(m)
max, q

(m)
sm ,

and any given non-negativeq(m)
n = f(ρ

(m)
n ) (wheref(·) is a

non-negative function), respectively, without buffer overflow,
i.e., Ym(t) ≤ Y

(m)
max, Q

(m)
sm (t) ≤ q

(m)
sm , andQ

(m)
n (t) ≤ q

(m)
n in

each time slott.

The lemma can be proven by induction. The induction basis
(t = 0) is trivial since all queues are empty at time slot0. The
induction steps forYm(t) andQ

(m)
sm (t) can be derived based on

the end-to-end rate control policy in Algorithm 1 and queueing
laws (1) and (12), while the induction step forQ

(m)
n (t) can be

derived using the joint routing and channel allocation policy
in Algorithm 1 and queueing law (1). The detailed proof can
be found in our technical report [12], due to space limit.

Definition 2 (ǫ-optimum): The ǫ-optimal solution r̄ǫ =
(r̄ǫ

m,m ∈M) is the optimal solution to the utility maximiza-
tion problem modified from that in (9), without finite buffer
requirement and replacing constraint (10) byr̄+~ǫ ∈ Λ where
~ǫ = (ǫ, . . . , ǫ) and ǫ > 0.

Theorem 2 (Utility optimality):Given buffer sizeq
(m)
sm =

V U ′(0) + 2A
(m)
max + 1 at sourcesm of sessionm, and non-

negative buffer sizeq(m)
n = f(ρ

(m)
n ) (where f(·) is a non-

negative function) at each relay noden (n 6= sm, n 6= dm) of
sessionm, ∀m ∈ M, the overall utility achieved is within a
constant gapB

V
from the ǫ-optimum, with Algorithm 1,i.e.,

∑

m∈M

U( lim
t→∞

inf
1

t

t−1
∑

τ=0

E(rm(τ))) ≥
∑

m∈M

U(r̄ǫ
m) −

B

V
,

Fig. 1. A toy network with two data sessions and one relay node.and all queues in the network are stable,i.e.,

lim
t→∞

sup
1

t

t−1
∑

τ=0

∑

m∈M

∑

n6=sm,n6=dm

E(G(m)
n (τ))

≤
B + V

∑

m∈M
(U(A

(m)
max) − U(r̄ǫ

m))

ǫC2(1 − δ)
,

lim
t→∞

sup
1

t

t−1
∑

τ=0

E(Q(m)
n (τ)) ≤ q

(m)
n , ∀n 6= dm, m ∈ M,

lim
t→∞

sup
1

t

t−1
∑

τ=0

E(Ym(τ)) ≤ V U
′(0) + A

(m)
max, ∀m ∈ M,

whereC2 ∈ (0, 1) andδ ∈ (0, 1) are constants, andB, V are
defined in Sec. IV-C.

The theorem is proved using Lyapunov optimization tech-
niques. The complete proof can be found in our technical
report [12], due to space limit.

Corollary 1: If buffer sizeq
(m)
n at relay noden of session

m (∀m ∈ M,∀n 6= sm, n 6= dm) is further proportional to
buffer sizeq

(m)
sm = V U ′(0) + 2A

(m)
max + 1 at the sourcesm

(i.e., q
(m)
n = C

(m)
n · q

(m)
sm with constantC(m)

n ≥ 0), thenB is
a constant independent ofV , and the overall utility achieved
with our Algorithm 1 can be arbitrarily close to the maxi-
mum utility

∑

m∈M U(r̄∗m) achieved without finite buffer re-
quirement,i.e.,

∑

m∈M U(limt→∞ inf 1
t

∑t−1
τ=0 E(rm(τ)))→

∑

m∈M U(r̄∗m), whenǫ→ 0 andV →∞.

We next give two propositions on the impact of users’ social
selfishness on utility and end-to-end delay experienced by
different sessions.

Proposition 1: If each relay noden differentiates the upper
bound of average relay rate (z

(m)
n ) set for different by-passing

sessionsm (∀m ∈ M,∀n 6= sm, n 6= qm) as an increasing
function of the social tie strength betweenn andm, sessions
with stronger social ties with intermediate relays can achieve
higher utility, when all the other parameters are the same.

Proposition 2: If each relay noden differentiates the buffer
space (q(m)

n ) allocated to different by-passing sessionsm
(∀m ∈M,∀n 6= sm, n 6= qm) as a decreasing function of the
social tie strength betweenn and m, sessions with stronger
social ties with intermediate relays can achieve lower end-to-
end delay while maintaining similar utility with other sessions,
when all the other parameters are the same.

We briefly illustrate the propositions using a case study of
the simple network in Fig. 1, and more detailed analysis can
be found in our technical report [12]. There are one available
channel, five secondary users, and two sessions fromS1 to
D1, and fromS2 to D2, respectively. Suppose relay nodeR

has stronger social tie with session2, i.e., ρ
(1)
R < ρ

(2)
R ; all

other parameters with the two sessions are the same.
To illustrate proposition 1, supposeR only differentiates

preset relay rate upper bounds but not buffer sizes for both
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sessions, bya(1)
R < a

(2)
R and a

(1)
R + a

(2)
R = 1

2 . Based on
Algorithm 1, the achieved average end-to-end data ratesr̄1

and r̄2 are exactlya
(1)
R and a

(2)
R , respectively. This shows

that session2 with stronger social tie with relayR is able
to achieve higher throughput utility.

To illustrate proposition 2, suppose nodeR differentiates
buffer sizes byq(1)

R > q
(2)
R , but sets the same relay rate bounds

a
(1)
R = a

(2)
R = 1

4 . Based on the back-pressure joint routing
and channel allocation in Algorithm 1, the achieved average
end-to-end rates are identical for both sessions. The average
end-to-end delays are different, which are equivalent to the
queueing delays in the respective buffers atR if we ignore
transmission delays on the links. Since session2 has smaller
average queue length (analysis in [12]) but identical queue
outgoing rate with session1, its average queueing delay is
smaller. We will further validate the performance impact of
social selfishness under realistic network settings in Sec.VI.

VI. EMPIRICAL STUDY

We evaluate the throughput utility of our protocol and the
impact of social relationships with discrete-event simulations
under realistic settings. A cognitive radio network is simu-
lated with several typical settings of the number of primary
users (channels), the number of secondary users, and average
number of neighbors per secondary user in its transmission
range:3, 10, 5; 5, 20, 5; 7, 50, 8; and10, 100, 8. A primary
user is active in a time slot following a Poisson distribution,
with an average probability of0.2. Sources and destinations of
sessions are randomly chosen in the network. Data are injected
at the sources following Poisson arrivals with average arrival
ratesAm(t). The average relay rate for sessionm on usern is

decided byz(m)
n = zn

ρ(m)
n

∑

m′∈M,n 6=s′m,n 6=d′
m

,ρ
(m′)
n

with zn = 0.5

and ρ
(m)
n = θρn,sm

+ (1 − θ)ρn,dm
, θ = 0.5. In our default

settings, the utility function isU(r̄m) = r̄m, V = 2000.
We set the social relationships among secondary users as

follows: We first construct a social graph following a power
law distribution of node degree with scaling exponentk =
1.76 [14], which is derived from the Bluetooth contact traces
provided in [19]. Then we assign weightρij to the links in
the social graph in three ways:

1) Homogenous Social Relationship (HSR): The social
relationship strengths are all the same,i.e., ρij = 1 for each
pair of nodes with direct link in the social graph.

2) Random Social Relationship (RSR): The social rela-
tionship ρij on the links are uniformly randomly assigned
values between(0, 1].

3) Social Relationship derived from the Traces (TSR):
We calculate contact frequencies between devices from the
traces in [19], normalize them to values within(0, 1], and set
social relationshipρij between two nodes in our social graph
following the distribution of normalized contact frequencies.

Note that in all three cases, usersi and j without a direct
link in the social graph is assigned a social relationship
ρij = 0. We compare the impact of the three social relationship
patterns in the following experiments.

A. Utility with Centralized and Distributed Implementation
We compare the total throughput utility achieved on time

averaged end-to-end rate (i.e.,
∑

m∈M U(r̄m)), in cases where
the centralized and distributed channel allocation algorithms
stated in Algorithm 1 and 2 are used, respectively. We in-
vestigate a network with10 secondary users,5 sessions, and
3 channels as shown in Fig. 2(a), and a network with20
secondary users,10 sessions, and5 channels as in Fig. 2(b),
respectively. The average end-to-end rate is calculated after
t = 10, 000 rounds of algorithm execution. The buffer sizes
are set followingq

(m)
n ∝ (1/ρ

(m)
n ), with an average size of

10 data units. The average data arrival rates are calculated as
1
t

∑t
τ=1 Am(τ). We can observe that the total utility achieved

with the distributed algorithm is close to that achieved by the
centralized one, under each social relationship distribution.
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(a) 10-node case.
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(b) 20-node case.

Fig. 2. Centralized vs. Distributed Algorithm on Utility.

B. Impact of Social Relationship between Sessions and Relays
We compare utility and end-to-end delay experienced by

sessions with different levels of social ties with relays, in a
network with50 secondary users,20 sessions, and7 channels,
and a network with100 secondary users,40 sessions, and10
channels, respectively. The average data arrival rate of each
session is1.5 units of data per time slot. The buffer sizes are
set following q

(m)
n ∝ (1/ρ

(m)
n ), with an average size of10

data units. The end-to-end delay experienced by each session
is calculated as the average number of time slots taken for a
unit of data to travel from the source to the destination. We
use social relationships from the traces in these experiments.
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Fig. 3. Performance of sessions with different social tie strengths with relays.

We calculate the average social tie strength for each session
between itself and relay nodes, group sessions based on their
average social tie strength, and compare the average utility
and end-to-end delay per session among different groups in
Fig. 3. We observe that sessions of stronger social relations
achieve higher throughput utility and lower end-to-end delay.
This verifies the effectiveness of our buffer size and relay rate
differentiation methods, as stated in propositions 1 and 2 in
Sec. V.
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C. Impact of Buffer Size Differentiation Methods
We explore the utility and end-to-end delay experienced

by different sessions when the following two buffer size
differentiation methods are applied: (1) buffer size at each
node is proportional to its strength of social relationshipwith
a by-passing sessionm, i.e., q

(m)
n ∝ ρ

(m)
n , with an average

size of 10 data units; (2) buffer size is inverse proportional
to its strength of social relationship with a session,i.e.,
q
(m)
n ∝ (1/ρ

(m)
n ), with an average size of10 data units. In this

set of experiments, there are100 secondary users,40 sessions,
and10 channels in the network. The average data arrival rate
of each session is1.5 units of data per time slot.
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Fig. 4. Performance with different buffer size differentiation methods.

In Fig. 4, we observe that with both ways of differentiating
buffer sizes, the average utility per session achieved is similar,
and increases with the increase of the sessions’ social tie
strength. On the other hand, if the buffer sizes are smaller
when the social ties are stronger (q

(m)
n ∝ (1/ρ

(m)
n )), lower

end-to-end delay is experienced by sessions with stronger
social ties with relays; if the buffer sizes are proportional to
the social tie strengths (q

(m)
n ∝ ρ

(m)
n ), delay experienced by

sessions with stronger social ties is not apparently smaller.
Therefore, setting smaller buffer sizes for sessions with better
social tie strengths is a more suitable way to reflect users’
social preference, validating our analysis in Sec. V.

VII. C ONCLUDING REMARKS

This paper addresses throughput utility maximization
among multiple unicast sessions in a cognitive radio network
under the constraint of social selfishness of the participants. A
joint end-to-end rate control, routing, and channel allocation
protocol as well as its distributed implementation are proposed
that can achieve utility optimality with network stabilityguar-
antee using Lyapunov optimization techniques. We novelly
model social selfishness of users via differentiated buffersizes
and relay rates allocated at each relay node for data sessions.
The differentiation is based on the different social relationships
the relay has with the sources and destinations of those
data sessions. Another unique contribution of our Lyapunov
optimization is that only finite buffer is needed at each node
with no-buffer-overflow guarantee, which is in sharp contrast
to the common assumption of infinite buffers in the literature.
The utility optimality and the impact of social selfishness are
studied with both rigorous theoretical analysis and extensive
simulations. It will be our future work to investigate the impact
of social selfishness on data dissemination in other types of
wireless networks.
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