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Abstract—In cognitive radio networks, the occupation pat- data injection rates for lower layers to handle; at the ngtwo
terns of the primary users can be very dynamic, which makes |ayer, a relay node strategically decides the next-hoyy riela
optimization (e.g., utility maximizatio) of data dissemination o5-h data session to be forwarded to: at the MAC layer, the
among secondary users difficult. Even under the assumption . . ' . ’
that all secondary users are fully collaborative, the optimization avallablle §pectrum IS carefully and dynamically allocafed
requires cross-layer decision making which is challenging. The transmission between pairs of nodes. All of these have tptada
challenge escalates if users are socially selfish, who prefer toto volatile channel occupancy patterns of the primary users
relay data only to those other users with whom there are while trying to maximize the end-to-end throughput utility
social ties. Suchsocial selfishnesf users translates into new among all data sessions.

constraints on network protocol design. There has been no styd
so far on the impact of social selfishness on data dissemination To further add to the challenge, we can drop the usual

in cognitive radio networks. In this paper, we consider social assumption of fully collaborative data relay among the sec-
selfishness of secondary users, and propose the design of @ndary users who in fact can behave selfishly during data
joint end-to-end rate control, routing, and channel allocation relay. In real-world networkss.g, civilian networks [8], [15],
protocol which can maximize the overall throughput ufility of ,5ar5 havesocial tiesat various strength levels. Naturally, a
multi-session unicast in cognitive radio networks. We give a . . . ’
distributed implementation of the protocol. Based on a Lyapunov use_r W(?UId prefer helping others W'Fh whom ther_e |s_a strong
optimization framework, we address social preferences of users Social tie, and less so for nodes with weak social ties. Such
using differentiated buffer sizes and relay rates for different daa  social selfishness of users complicates the design of efficie
sessions, and apply back-pressure based transmission schedulingjata dissemination protocols, especially when makingimgut

to achieve guaranteed utility optimality. A unique contribution decisions and link capacity allocation [13]. For example, a

of our Lyapunov optimization is that only a finite-sized buffer . . . . .
is required at each user node, which sets our design apart from node with high link capacity and low hop count to the desti-

other designs in existing literature where they assume infinite Nation, which although appears favorable, may not cortstitu
buffers. We investigate the optimality of our protocol and the a good relay option if the node is not willing to assist in the
impact of user social selfishness using both theoretical analysisdata session. Therefore, traditional routing protodas,those
and extensive simulations. based on link capacity or hop count, are no longer suitable in
a socially selfish network.

In this paper, we consider social selfishness of secondary

Since its inception, cognitive radio network has been pausers in cognitive radio networks, based on which we design
ceived as the next generation wireless network [1] to funda-joint end-to-end rate control, routing, and channel aliion
mentally enhance the spectrum efficiency of situations @hegrotocol that can maximize the overall throughput utility o
the unlicensed spectrum is highly congested while the iedn multiple unicast sessions. Our design is rooted in Lyapunov
spectrum is under-utilized [5]; such situations are alyeagty optimization theory [16], where utility maximization aneéta
common today. In a cognitive radio network, unlicensed siserork stability are achieved by back-pressure scheduling of
(or “secondary users”) are allowed to utilize the licensemlansmissions among packet queues at the network nodes. We
spectrum for data transmission when the licensed user (ocorporate social selfishness of users in their transomssi
“primary user”) is not using it; this is done via dynamicscheduling of packets belonging to different by-passintg da
spectrum access technologies for cognitive radios [2], [7] sessions, according to the social ties between the userthand

When multiple data dissemination sessions (among seource/destination of each session. In particular, spcefer-
ondary users) co-exist, a fundamental challenge in cagnitience of a user is novelly addressed by allocating diffeatedi
radio networks is to judiciously allocate the spectrum arulffer sizes and relay rates to different data sessions.
schedule the transmissions such that the available spectru A salient contribution of our Lyapunov optimization is that
is fully exploited to achieve the maximum network-widdinite buffer sizes are employed at each node with no-buffer-
throughput utility. This requires a cross-layer designt faverflow guarantee. A number of back-pressure scheduling
optimal transport, network and MAC layer decisions to bprotocols [3], [4], [6], [20], [21], [23] have been proposed
made. At the transport layer, source nodes properly adjust achieve throughput maximization while adapting to the
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dynamics of wireless networks. However, most are basdidferential queue backlog, have been widely applied fdityt

on infinite node buffers, which is obviously an idealizeagnaximization in multi-hop wireless networks [3], [4], [6],
and impractical assumption. Let al. [11] have investigated [21], [23]. It has been shown that optimal throughput can be
optimal control of a wireless network with a finite buffer forachieved, however without any finite buffer guarantee.

each by-passing session per relay node, but an infiniterldaffe  Venkataramanaat al. [21] suggested a way to minimize the
still necessary at each source node in the worst cases. Nelynulative buffer utilization along the path of a unicasifleo

[17] recently proposed an opportunistic scheduling prottocas to reduce the end-to-end delay of the flow. However, tisere i
with bounded buffer size at each node for each data sessina finite size guarantee for each buffer at the relay nodes. Th
which would simply drop the packets should a buffer beconuhallenge of using finite buffer in a back-pressure paradigm
full. In contrast, we demonstrate with rigorous proof that was not addressed until recently by keal. [11] and Neely
finite buffer size without the possibility of buffer overflow[17] as we have mentioned in the introduction. In [11], the
suffices at each node using our protocol which can achiey@rrent queue size at each source node needs to be broadcast

global throughput utility maximization. to all relay nodes, which can result in high communication
The contributions of this paper can be summarized aserhead. Our protocol eliminates such broadcast overhead
follows: In [17], the throughput utility is only compared with that af

> We model social selfishness of users by assigning dif-slot lookahead policy which is an offline policy with perfec
ferentiated buffer sizes and relay rates allocated to d&taowledge up tdl” slots into the future. Analysis is missing
sessions of different source/destination pairs in a Ly&n how close the throughput utility approaches optimality.
punov optimization framework for achieving throughput For cognitive radio networks, Dingt al. [3], [4] have
utility maximization in a cognitive radio network. To thedesigned back-pressure protocols for routing with coltabo
best of our knowledge, this is the first work investigatingive spectrum sensing, but without utility-optimality gaatee.
the impact of social selfishness on protocol design freng et al. [6] introduce a back-pressure routing protocol
cognitive ratio networks. with primal-dual decomposition. No analysis of buffer size

> We propose a back-pressure-style joint end-to-end ratgesented. Xuet al. [23] propose a back-pressure throughput
control, routing, and channel allocation protocol for opmaximization protocol, under the constraints of boundeld co
timal multi-session unicast data dissemination, and giligion rates between secondary and primary users. The worst
a distributed implementation for it. First time in the lit-case upper bound of buffer size at each node is provided, but
erature of back-pressure protocols, our protocol requirte protocol cannot ensure that there will be no buffer ovarfl
only a finite-sized buffer at each source or relay nod8 situations where the buffer sizes are smaller than theupp
with no buffer overflow, and is guaranteed to achieve dound. Our protocol provides that guarantee.
overall throughput utility that can be arbitrarily close t . , . .
the ultimate gptliomum ogtained when there is n?)/ constraint Social Selfishness in Network Protocol Design
on buffer sizes. Whereas assuming full collaborations among nodes is one

> We demonstrate network stability and utility optimalityeXtreme, the other extreme is assuming _each ne_twork user is
of our protocol with rigorous theoretical analysis. Impactompletely selfish. For the latter assumption, the litemhas
of social selfishness on throughput utility and end-to-erf@cused on incentive desige,g, [9], [22], [24], which is an
dissemination delay of different data sessions are furth@ithogonal topic to our work In this paper, we consider a new
investigated using both case studies and empirical studi@§Sumption of social selfishness, which may better capsge u
An interesting discovery is that, contrary to intuition thaPreferences in a real-world wireless network.
larger buffers should be provisioned to preferred data \We are aware of only one paper, bydtial. [13], which has
sessions, allocating smaller buffers to them at nodes alomgde the same assumption as ours. They investigate routing

their paths can actually lead to smaller end-to-end del&}gsign in socially selfish delay tolerant networks, wher th
without sacrificing throughput. probabilities that a node may forward traffic received from

The remainder of the paper is organized as follows. We dgt__her nodes are d|fferent|ated. Unlike their wprk, we _stwdy
nt rate control, routing, and channel allocation schema

cuss related work in Sec. Il and present the problem modelfiMt e : . :
Sec. lll. Detailed protocol design and theoretical perfance cognitive r§d|o ne_tvvprk, and we address social selfishness o
analysis are presented in Sec. IV and Sec. V, respectivély®'s by differentiating both buffer sizes and targetedage
The throughput utility of the protocol and the impact of sbci " lay rates.

selfishness are evaluated with extensive simulations in\Bec I1l. PROBLEM MODEL

Finally, we conclude the paper in Sec. VII.
inaty, W ! paper We now present the network model and the layers of the

Il. RELATED WORK network stack under investigation using Lyapunov optimiza
A. Utility Maximization with Back-pressure Protocol tion, as well as our social selfishness model in the framework
Since the seminal work of Tassiulat al. [20], back- | — ,
In the real world, the social ties tend to be fixed and stableusT we

pressure protocols for maximum-weight scheduling, WhiGsign our protocol with social selfishness being a user demiastead of
schedule links with the largest product of link capacity andksigning incentive mechanisms to entice the users to codto



. . . . Vp Set of primary users Vs Set of secondary users
A. Socially Selfish Cognitive Radio Network C Set, orthogonal channels|| M | Set of unicast sessions
We consider a cognitive radio network with a set of primarvAE4 zetf%f ';nks _ ! g_eﬁ 'tr‘tgffef‘?'?_ci relations
of data sessions € irectedi— Iin
usersVp and a set of secondary use¥s. There are|Vp| E() | The expeciation U Uity funciion
orthogonal spectrum channels= {cy,...,cjy,|}, each sub- - Source of sessiom dm Destination of sessiom

scribed by one primary user. The secondary users colléctive pi; Social relation between useérand j

constitute a multi-hop ad-hoc network. They distributeadat o5 Social relation between user and data sessiom

flows to each other using the available channels that arém(t) | Data arrval rate of sessiom in time slot?

not occupied by primary users at the time. There afe %g‘:ﬂ'g‘;g}f&g‘g'r;if;f;:ssssimn e siot

unicast data sessions among seco_ndary users, _denot_ed a Average admissible data rate of sessian

M. Primary users are not involved in the data disseminatigny,, () Auxiliary variable of sessiom in time slott

Let s,, andd,, denote the source and destination of session Average of auxiliary variable of session

m € M, respectively. ug;.")(t) Binary var: data sessiom is routed over,; in time slott?

In the multi-hop network of secondary users, a source mayzﬁ-? (t)

directly transmit to a destination, if the later resideshivitthe | =™

95" (1)
m)

Binary var: channet is assigned te;; in time slott?

Preset average relay rate of sessiaron usern
Data queue of sessiam on usern in time slot¢

transmission range of the former and a spectrum channe

available to both nodes. Otherwise, a multi-hop route néeds_q; Buffer size for data queu@(™ of sessionm on usern
be discovered to relay data packets. Yo (1) Transport virtual queue of sessien in time slott
Let E be the set of possible transmission links amo gGﬁfﬂ)(t) Network virtual queue of sessian on usern in time slot¢

|4 User-defined constant weight in Lyapunov Optimization

secondary users, where link; € E if node j is in the

Quantity defined in Lyapunov Optimization in Sec. IV-C

transmission range of node We consider a generic inter-
ference model. Lef denote the set of interference relations

TABLE |
NOTATION TABLE.

among potential _tra.msmissions in the ne_twork, which inequime slott, the application layer of sourcg,, injects data to
two types of pairs: .(1).(6” S€ri) €I With ejj,ept € E) o transport layer at ratd,, () € [O,A%)x] , where A™),
denotes that transmission along link cannot be scheduled o\ ias the maximum data arrival rate for sessionLet

on the same channel concurrently with that along link rm(t) € [0, A(t)] denote the admissible end-to-end data

(2) (v, eij) € I (with v, € Vp ande;; € E) means that 0 injected to the network layer of soureg,, such that

when F’.””_‘ary usen, is a_ctively using its subscribed channelc ngestion will not occur andetwork stability to be defined
transmissiore,; cannot simultaneously happen on the Chann?ﬁortly in Sec. IlI-D, is achieved. The traffic not admitted t

due to interference. We also assume that each secondary ys@r - layeri.e., A, (t)—rm(t), is discarded since it exceeds

IS equ[pped W'th one radio only, such that it may e'thethe network capacity and congestion would occur, if admitte
transmit or receive data on one channel at each time. Note

that the generic interference modelsubsumes most of the N€Work Layer: Each secondary user € Vs may receive
popular interference models in the literature, includimg t 9ata from multiple sessions (including the data sessiogi-ori
node-exclusive model and the-hop (¢ > 1) interference nated at itself), and makes routing decisions to forwardnthe
model (used in [18] and the references ?herein). toward respective destinations. At the network layer ofevod

. . (m) ; ;

Between each pair of secondary usérand j, a rational & GUeU€Q,  is created to buffer data for session except
number p;; € [0,1] is given a priori and characterizes thedt the destination node of sessien where data |s)d|rectly
strength of the social tie between the two users, where- delivered to upper layers without buffering. Let" (1) be
1 is strongest ang;; = 0 means no tie at &l In multi- the amount of data of session to be forwarded from node
hop relay of data sessionspcial preferencef eachsocially * t?n)nodej (wheree;; € E) in time slotz. For every queue
selfishintermediate node: depends on its social relationshipl» ~ at each nodex ¢ Vs — {dm}, m € M, we have the
with the source and destination nodes of each by-passimg d@llowing regarding the queue size:
sessionm,_ indicated bypgf’_” = h(p_n”gm,pn’dm). h(-) is a QU+ 1) =QU™ (1) — Z #537)(t)+ Z 2 (1)
non-negative non-decreasing function, and an example form eniCE = 1)
0pn.s,, +(1=0)pn.a,, With 8 € [0, 1] is used in our simulation n l{n:sm}m(t),

in Sec. VI. wherely,_, , is an indicator function defined as follows:

Table | summarizes the notations, for ease of reference. if n=s,,
Ly

1
1{77.:3,—,1,} = { .
B. Problem Model on Three Layers . |0 otherwise. _
We model the problems involved in enabling multi-session Without loss of generality, we assume that one unit of data
unicast at different layers of the network stack can be transmitted from nodeo nodej in each time sloti.e,

. . . the capacity of any linke;; € E is 1 if a transmission along
Transport Layer: End-to-end rate control is considered afye jink is scheduled in a time slot. A similar assumption can

the transport layer, at the source node of each data sessign, pa found in [11], [23]. Therefore, we know tW) (t)
L . 1 ]

Suppose the system runs in a time-slotted fashion. In each . .
PP y IS either0 or 1. In add|t|on,M§Z;L) (t) cannot be larger than the

2How to derive and maintain the social ties is out of the scoptaisfpaper. Size of queue@%’”) at timet¢. We derive



stronger social relationships. Interesting enough, weshibw
ui’f)( ) € {0, min{Q™ (£),1}}, Vn,j € Vs, n £ dum, later in Sec. V_and S_ec._VI that smaller buffer sizes agtyally
(2) lead to better dissemination performance for a data sgssion
Note that we always hav,e(’”)( ) =0 andu(m)( t)y=o0. terms of lower end-to-end delay.

m f - f
MAC Layer : Based on the routing decisions from the network Note thatq( )= 0, as there is no buifering reql(Jlr)ement
layer, a channel allocation and a link scheduling scherR® the destination,, of a sessionn. The bufer Siz€ys,,,
is designed for the MAC layer, to schedule transm|SS|o§$UVC3‘>’m of sessmrm is not constrained by the social relation
between nodes on each Channe| in each time slot. as it is natural to favor a session Orlglnated from itself.
We use a binary varlablenj( ) to indicate whether channeIAverage data relay rate As data transmissions consume
c € C is allocated to transmission along lirk; € E in time battery power, each secondary usesets upper bounds for

slot ¢: the average number of data units allowed for relay per time
(@), |1 if en; is scheduled on channelin time slott, slot for by-passing data sessioms € M,n # s, and
ng (1) = 0 otherwise. n # d,,.> Let z, denote the predefined upper bound of the
The following constraints guarantee a feasible channel &verage number of data units usermay relay for all by-
location and link scheduling scheme: passing sessions per time slot, which can be set according
to the power consumption per transmission, the total batter
Zai Z unj t),Ven; € E, (3) capacity, and the frequency of battery charging at the user.
cec meM For each of the sessions, an upper bou§d’ of average
Z[ Z () + Z o) (] <1L,VneVs, (4 relay rate is SetXC, c pnte, ntd, ™ = 2,), according
c€C enj€E ein €8 to an increasing function of the social reIanonsté"’)
o)+ Y al(t) <1,Ven; € E,ceC,  (5) between usen and sessiomn. An example function:{ =
(ertrens)€L Zn £e oy Is used in our simulations.

Zm 'eM,n#s,_y, n#d, Pn

©) ©) _
anf}(t) <L, (0).Ven; €E,c€C (6)  \\g"have that the average number of data units nade
al)(t) € {0,1},Ven; € B c€C, (7) forwards for sessiom: per time slot should be no larger than
(©) 4y i indi ion- (m) as follows
wherel, /(¢) is an indicator function: Zn -1
l(c)(t) __J1 if channelc is available toe,; in time slott, thm bup E( Z u;’:) ( ),
mi Y70 otherwise. T=0  e,;E€E
Constraint (3) states that the total amount of data transmis Vn € Vs,m € M,n# sm,n # dn. (8)

sion from noden to j on different channels, in one time slot,p, Network Stability and Capacity Region

should be equal to the overall units of data from all sessionsspome important definitions and theorems are presented next
to be routed fromn to j in that time slot. Inequality (4) from the literature on Lyapunov optimization [16], to be dse
models the primary interference constraint: a node careeithn our protocol design and analysis.

transmit or receive on at most one channel in each time slotpefinition 1 (Queue and Network Stability [16]A queue

Constraints (5) and (6) model the interference relationg:in Q is strongly stable(or Stab|ef0r short) if and only if

the former indicates that transmission along link should 1<

not be scheduled concurrently with that along any intentgri Jim sup > > E(Q(7)) < o0,

link on the same channel; the latter guarantees that eakh Wahere Q(7) is the queue’size at time sletand E(-) is the
transmission can only be scheduled on an available chanrgfpectation. A network istrongly stable(or stablefor short)
Channelc is available to linke;; in time slot¢ if primary if and only if all queues in the network are strongly stable.
userv, of the channel is not transmitting in the time slot or Theorem 1 (Necessity and Sufficiency for Queue Stabilit}):[16
no interference exists between the transmissions fsprand  For any queue) with the following queuing law,

alongey,;, i.e., (vp,en;) € 1. Q(t+1) = Q(t) — b(t) + a(t),

C. Social Preference in Routing wherea(t) andb(t) are the queue incoming rate and outgoing
Socially selfish userss € Vs differentiate their resource rate in time slot, respectively, the following results hold:

allocation when relaying traffic for by-passing data sessioNecessity If queue Q is strongly stable, then its average

m € M, wheren is neither the sourcen(# s.,) nor the incoming ratea = lim;_, o 1 Z E(a ( )) is no larger than

destination § 7# d,n). the average outgoing rate= hmtéoo 1S UE(b(T)).

Buffer space A secondary user provides a maximum buffer Sufficiency If the average incoming rate is stnctly smaller

size of g™ = f(pi™) for by-passing data session € M, than the average outgoing rdigi.e., a + ¢ < b with ¢ > 0,

where f(-) is a non-negative function that differentiates théhen queud is strongly stable.

buffer space allocated to sessions with different soclation- 5 o )

ShIpSp(m) with usern. The goal is to provide better end-to- We assume no such rate limit is imposed on sousgeof a data session

b m for sending out its own datd.e., enough power is provided at a source
end throughput and delay performance for data sessions witlde for transmitting its own data.



IV. DYNAMIC UTILITY MAXIMIZATION ALGORITHM wheren,,(t) is an auxiliary variable independent of,,(t),

In this section, we first describe the utility maximizatiorwhose value in each time slot will be decided in our dynamic
problem and then give a cross-layer back-pressure protoatorithm to be introduced shortly.
based on Lyapunov optimization [16]. The rationale is that, if the stability of each virtual queue
A. Utility Maximization Y,, is guaranteed, we know from the necessity condition in

Let 7, denote the average end-to-end admissible data rafaeorem 1 thaty,, <,,; therefore, by calculating expectation
of unicast sessmm (| e., throughput of sessiom), such that E(7m(t)) (which is calculable as long ag, (¢ ) 'S independent
P = limy_ oo 1 ZT UE(r (7). Let the vector of average of A,,(t) and not arbitrarily aSS|gned |P Amax]), and then
end-to-end admissible rates of all sessians, (7,,,m € M), the time averagej,, = lim;—cc 7 37— E(n(7)), we are
denote the throughput of the network is the capacity able to derive a lower boungi,, for 7.,.
region of the network, defined as the set of all vectors dbolution to issue 2 To fulfill users’ social selfishness in relay
admissible data ratas for each of which there exists a routingrate allocation (constraint (8)), another virtual que{ﬁfé”) is
and channel allocation algorithm to stabilize the networktroduced at the network layer of nodeor each data session

(Definition 1). m it relays @ # s, andn # d,,). This queue records the
Let U(-) be a concave, differentiable, and non-decreasimglaying history for each data session at the node:
utility function on throughput,,, of each data session € M. G (¢ 4 1) = max{G{™ (1) Z M(m) — 20 01 (13)

Our objective is to maximize the overall utility with guataa enreE
of network stability and in the presence of social prefeeenc According to the necessity condition in Theorem 1, if each

of the users. virtual queueG{™ is stable, then the time averaged number
max Z U(Fm) ) of data units node relays for sessiom per time slot, would
e not exceed the predefined upper bourifl”, i.e, constraint
st. TENA, (10) (8) is satisfied. Therefore, we can adjust relay ra&%@(t) in
0 < rm(t) < Am(t), Yme M, t =1,2,. (11) each time slot to guarantee that the virtual queue is always

stable, in order to satisfy constraint (8).
Constraint (10) guarantees that the derived average admiss fy ()

ble data rates iff can achieve network stabilitie., there ex- C. Dynamic Algorithm

ists a routing and channel allocation protocol that decidest 10 conclude, in our dynamic algorithm that solves the
of feasible admissible data rates (t), ¥m € M, in each time utilization maX|m|zat|on problem, three types of queues ar
slot ¢ (i.e, those satisfying constraints (2)(3)(4)(5)(6)(7)(8))”99de,l e, Qv (¥n # du, m € M), Yy, (Ym € M) and
such that all queues are strongly stable in the network a (Vn # s, 1 # dpm, m € M). Let O(t) = [Q, Y, G]
each queue buffer is finite without overflow. Constraint (119e the vector of all queues in the system. Define our novel

ensures that the admissible data rate of each sessioreach Lyapunov fUﬂCtiO“ as (m)

time slot is non-negative and upper-bounded by the resgecti | o(t)) =~ qu Yo ()2
rate A,,(t) at which data arrives at each source. ( m; n;:m (7”) T3 m;/,
B. Introducing Virtual Queues (m) [\ 2

+§ oY @rmy (14)

To derive a dynamic algorithm to solve the utility maximiza- vy PR O
tion problem, we apply Lyapunov optimization techniques. The one-slot conditional Lyapunov drift is
There are two issues that need to be resolved. AO(t) = L(O(t + 1)) — L(O(t)). (15)

Issue 1 Since r,(t) is constrained by an arbitrary rate According to thedrift-plus-penaltyframework in Lyapunov
Apm(t), it is hard to derive the expectatiof(r,,(t)), and optimization [16], an upper bound for the following expriess
thus the time averaged admissible rate of each sesgiprs  should be minimized in each time slot, with the observation
limy oo 1 20— E(rm (7)), Vm € M, of the queue stated(t), data arrival ratest,,(t), Vm € M,
Issue 2 Constraint (8), which formulates social selfishness @nd channel availabilit;l(c) (t), Yen; € E, ¢ € C, such that
users in relay rate aIIocatlon is defined on time averaged eelower bound fory ., U(ﬁm) as well asy - U(7m)

lay rateslim, . sup L 3207 0 EQ e, ep uf[;b)( )). How can is maximized (see Chapter 5 of [16]):
w(e )ensure the mequallty by controlling the relaying rates AO®1) -V Z U

Haj (t),Ym € M, per time slot?

Solution to issue 1 We derive a lower bound fof,,, vm €
M, by introducing a virtual queu&;,, at the transport layer
of source nodes,,, of sessionmn, as follows

Here,V is a user-defined cgﬁgant that can be understood as
the weight of utility in the expression.

By squaring the queuing laws (1), (12) and (13), we can
derive the following inequality (the detailed steps canduanfd

Yn(t 4 1) = max{Yom (8) = 7 (t) + 0 (1), 0}, (12) i oyr technical report [12])'
under the constraints
0 < rn(t) < Am(t),0 < () < AT, =V Y U (®) < B = Wa(t) = Wa(t) = V().

memM
(16)



(m)

Here, B = 313 cmi D ona,, q‘;;g) ((Lpnes, ) AT, + 1)2 + with the indicator function

(m) (m)y\2 H _ 1 ifn # Sy
+ 2 Zme./\/l Amaz + ZMGM Zn#sm nFEdm (( ) + 1)] IS 1{n¢sm} = {0 otherwise.
a constant value. H 10 decis g § .
W1 (t), Uy(t), and Us(t) are: At each usem € Vs, routing decisionsy,,;” (t) for eac

. . ) sessionm € M (wheren # d,,) can be made based on joint
» Terms related to auxmary Va”ableﬁ”( ) routing and channel allocation by solving the following:

=V Z U(nm Z N (t) + Yo ( max Ws(t)

mem 2™ (), C)(t) Ven; €E,YmeM,VceC
. Terms related {0 end-to-end rate control variablg$t): fna © ° ° (1)
(™) g s.t.  Constraints (2),(3),(4),(5),(6),(7)
To(t) = > r(t) - [Vin(t) — QU (1)]; Note here we do not include the social selfishness constraint

(8) in the above optimization, since it can be implicitly

meM L. . )
» Terms related to routing decision vanableg'? ®) satisfied by the optimal solution of the above problem. The

Z qm) () Z RIC Z 1™ (¢)]) reason |(smt)hat the solution guarantees Stapl|lt¥ of eadhehr
meM n#dmy, qn en; EE e;in€EFR queueGn (vn # Sm, N # dm7 me M)'l WhICh IS proved in
Theorem 2 in Sec. V.
(m) (4 (m)
+ Z Z G (1) Z Hny Problem (21) can be simplified into a pure channel alloca-

m NFESm ,NFEdm . c

We then derive the following dynamic” algorlthm that obtion problem related only to variables,, ¥e,,; € E, Ve € C,
serves queues at every time siaind makes control decisions®S follows. D(eﬂ)ne
that maximize W, (t), ¥o(t), and ¥3(¢) at different layers (m) Do (m) (4 @™ om B (m)
of the network stack (thus minimizing the right-hand-side "™ t) = gtm Q") - q]“”)Q () = ey G (1),
of the drift-plus-penalty bound in (16)), for maximization (22)
of joint utility > U(nm(t)) (@nd thus lower bound for representing the weight Qi () in (). Constraint (4)
> mem Um) and>> o\ U(7m)). implies that in each time slot each nodecan transmit at

End-to-end Rate Control on Transport Layer: At the source most one data session on at most one channel to anther node
' j where linke,,; € E; therefore, we knowy_, _ \, u;’?) (t) =

nodes,, of each sessiom € M, the admissible end-to-end O
data rate,,(¢) is chosen by solving the following optimization)_.c¢ @,; (t) < 1, based on constraint (3). To maximize the

problem: ) objective function¥s(t), on each linke,;, only sessionn,,;
max i (t) - [Ym(t) = Qu,” ()] (17) associated with the largest weighf"” (t) should be scheduled
st 0<rm(t) < An(t). where .
Aucxiliary variablen,,(t) can be decided by solving: i = argmax{w,;” (¢)}, A (23)
max  V-Umm(t) — Y (t)  7m(t) while all other sessmns are noti.e, Nﬁ;"w)( t)y =
T 18) s cald(t) <1, andu(P(t) = 0,¥m # 1. Therefore

st 0 < m(t) <A )y
(17) is a linear optimization problem; (18) is a concavEonstraint (2) can be automat|ca||y satisfied S'm‘%ﬂ ’
maximization problem with a linear constraint, since tili must be a binary value, armflm"]) 0 whenQ™) (1) = 0
function U(-) is concave and differentiable. The maximunand themu("'"’) <0.
of the latter is achieved when the first order derivative sf it £ ther
objective function ove,,(t) is zero. The optimal solutions
can be derived as follows:

eI|m|nat|ng DM Donstan G (1)24™

that is not related tqu,, m)’s we can modify the objective
function ¥3(¢) into:

A i V() > QU (1) . .
rm(t) = {O otherwise ’ (19) Wy(t) = Z M;j ") (¢) 'wflj ") (t)
, Ym(t) enj EE,nFEdy,
N (t) = max{min{U _I(T)’ Al oY, (20) _ Z Z w0
where U’~!(-) is the inverse function ofU’(.), the first ey B oE0 ’

order derivative ofU/(-). Note that the above solutions are T4 conclude, the joint routlng and channel allocation prob-
only related to local information at node,,, i.e, An(t), |em (21) can be reduced to the following:
AU Vo (t) and QU™ (¢), and can thus be derived in a fully

Lmas Sm max Wy(t)

distributed fashion. alf) (1) Ven € E VeeC (24)
Joint Routing and Channel Allocation on Network and s.t.  Constraints (4),(5),(6),(7)

MAC Layers: We can reformulatellg(t) into After solving the above channel allocation problem, the

routing decision can be made as follows:

m)
(m) qu (m) qsm (m)
=2 > > G @ 0= Gy @) my _ {Zceca“? it m = 17

meEM n#dm en; €E J ,Un] 0 nJ otherwise/ ,Venj S E, VYm € M.

— Lnpan) G (0] + Z Z G ()2, The channel allocation problem (24) is a 0-1 integer pro-
MmEM n#sm ndm gram. A centralized solution with — é approximation ratio



Algorithm 1 Dynamic Utility Maximization Algorithm in Algorithm 2 Distributed Channel Allocation Protocol at Node

Time Slott n in Time Slot¢
Input: Q™ (1), Yin (), GE™ (), A (t), A V., g™ (Yn e Input: Q™ (¢ ( ), GE (1), i™, and g™ (vm e M)
Vs, Vm € M). output: a7 (t) (Yen; € E,c € )

1: In|t|aI|zat|on

output: 7, (t), nm(t), ol (t), ©(t) (vn € Vs,¥m e
M, Ve € C,Ve,; € E).
1: End-to-End Rate Control: For each data session €
M, the end-to-end rate,, (¢t) and auxiliary variabley,, (t)
are decided at source,, as

rn(t) = {Am(t) if Yi(t) >

0 otherwise

> QUM (t)

)

() = max{min{U" " (Y"‘T(t)), PIORNNY

2: Joint Routing and Channel Allocation: From each link

- Initialize channel allocation variabte;, ;(t) < 0, Ve,; €
E, c € C, and a candidate set of links to scheddle — §;

- Sense the spectrum and get the available channél,set
- Exchange queue siz&g*(¢), Ym € M, and available
channel set’;,, with neighbors;

- Calculate and propagate weighf’"’ based on Eqgn. (22)
and (23), and commonly available channelSg{ C; for
each linke,; € E;

: Channel allocation

eni € B, calculate - For each linke,,; € £ andC,, (1 C; # 0, do:
m ng) m S m m if wnjnj Z maxei EE,(eik,en;)EIL,C; Ch (D{wzzm}
wilJ')(t) ZT(Z”) () - q(m)Q () = Loy G 0), update candidatke Iin(k geﬁt()) L(t )ﬁ{enj};

-If L(t) # 0 ande,,; = argmax,,c ., {w"}, randomly
select an available channek C,, (N C; and allocate it to
en; DY settingaﬁf) = 1; inform each neighbor and senders
Derive channel allocation variablafﬁ,Veni € E,c € of interfering links about this channel allocation, and end
C, by solving problem (24) with the branch-and-bound the algorithm here and that at noge
algorithm [10] or our distributed algorithm in Alg. 2. 3: Information update : Upon receiving a channel allocation,
Routing decisions are made as follows update available channel set for each local link and inform

© i the updates to sender of each interfering link.
) = {Zcec Oy =105 o e Byme M. 4: The algorithm ends if either the available channel set is
nj 0

otherwise
3: Update queueg|™ (t+1), Yo (t+1), andGg\™ (t+1) empty for each local link or node is scheduled as a
receiver by some other node; Otherwise, go to step 2.

based on queuing law (1), (12), and (13), respectively.

Ym e M,
Mpy = argmax{w(m)(t)}

D. Distributed Channel Allocation Algorithm

We next propose a distributed protocol to solve the channel
can be obtained using the branch-and-bound method ugﬁ’ocation problem in (24)—Algorithm 2. Here we refer to

whered € (0,1) is the solution accuracy defined by use Shodej with ,; ¢ E as a “neighbor” of node:, and each
In the foIIowmg, we design a distributed algorithm to solve | =" ™ _ Emas 2 “local link” of usern. Similar to the
nj .

this problem. existing literature [3], [4], all the control messages can b

In summary, the sketch of our dynamic joint end-to-end ragmssed over a Common Control Channel (CCC) defined on an
control, routing, and channel allocation algorithm is givie unlicensed band available to all secondary users. Note that
Algorithm 1. unlike broadcasting the current queue size at each souece,
9(’”) ),Vm € M, to all relay nodes in [11], our algorithm
only needs the buffer size at each source, which is constant
and can be disseminated to each relay node once for all.

The distributed protocol executed at each node greedily
s (m) (m) (m) m) allocates available channels to its local links, each with a
w,,;” (t) in Eqn. (22),Qn"" (t)/qn " and Q7 (t)/q; are  weightw Z"”J)( ) that is largest among weights of all its inter-
the occupancy ratio of data buffers of sessienat noden fering links. Each node: senses the spectrum and maintains
and j in time slott, andG\"(t), the cumulative number of 4 set of available channels over time. To carry out channel

transmitted data units for sessian that exceeds the numbergiocation to its local links, it calculates link We'gmmna
allowed by relay ratez;", can be understood as the deficihased on Eqn. (22) and (23) for each local link, and denves

of relay capacity for sessiom at noden. The implication commonly available channels with destination node of each
of the J0|nt rou“ng and channel allocation in AlgOI‘Ithm 1 |qoca| ||nk us|ng necessary |nformat|0n from ne|ghbors

to prioritize transmissions from a relatively more congdst A link e,; satisfying the following three conditions will
node (with high buffer occupancy rati@\™ ()/¢%™) with pe chosen, and a randomly selected available channel from
low relay-capacity deficit to a less congested node (with loe commonly available channel set of nodeand nodej

buffer occupancy ratl@(m (t )/q}m)). will be assigned for the transmission: (1) there is at least o

Remarks: Algorithm 1 is a back-pressure style protocol sinc
the joint routing and channel allocation always prefer dciie

ing transmissions along links with the largest differeintia’
queue backlogw("“”)( t). In the differential queue backlog



i

commonly available channel at nodeand nodej; (2) w,,;

is the largest among weightsf,;’““ on all its interfering links

eir, where(e;x, e,;) € I; (3) w::’jJ is also the largest among

weights on all those local links at node which have the

largest weights among their respective interfering linksvall. _ :
After channelc is allocated to linke,,;, each neighbor of and-alliqueues fenthe nighwerkiaedstadieand one relay node

usern and the sender of each interfering link tg; are lim sup%z Y EGEM()

informed, which will exclude the channel from their avallb bee T=0 MEM n#sm ntdm
sets and further propagate the information. The algorithdse B+VY (U(AS,) — U )
here at nodes and j for the current time slot, while each < mejé(l =5 ;
non-scheduled node will continue with the above until they i1
are either scheduled or the available channel set for eaeth 0 1, gy 1 ZE(QS")(T)) < g™ Y #£dm,me M,
link becomes empty. e Bt

We will show in Sec. VI that the performance of the t—1

distributed protocol is in general close to that achieved by tlim Sup%ZE(Ym(T)) <VU'(0) + AT Ym e M,

the centralized branch-and-bound channel allocation mdeth =0
whereC; € (0,1) andé € (0,1) are constants, an®, V are

V. PERFORMANCEANALYSIS defined in Sec. IV-C.

We analyze the performance guarantee provided by ourrhe theorem is proved using Lyapunov optimization tech-

dynamic algorithm (Algorithm 1) with respect to utility op-pjques. The complete proof can be found in our technical
timality, network stability, finite buffer sizes, as well agr- report [12], due to space limit.

formance differentiation among sessions as a result osuser - (m) .
. . Corollary 1: If buffer sizeq,, ’ at relay noden of session
social selfishness.

o ) m (Vm € M,VYn # s;,,n # dy) is further proportional to
Lemma 1 (Finite buffer without overflowFor each data p er sizeq(m) — VU'(0) + 2A™) 1 1 at the sources, ,

Sm

sessionm € M, define e, ¢ =™ . ¢ with constantc{™ > 0), then B is
YU A VU(0) + AR, a2 VU(0) + 2457, + 1. a constant independent &f, and the overall utility achieved
(m)(t) and Q(’”)(t) (for all n # s with our Algorithm 1 can be arbitrarily close to the maxi-

Queue sizey’,(t), Qs.. i e hieved without finite buff
andn +# d,,) are upper-bounded by buffer siz¥é$%, qg:) mum utility >, U(7;,) achieved without finite buffer re-

H . . . . t—1

and any given non-negatid™ — F(ol™Y (where £() is a quwement,l_.f:., ZﬁeM U(hmt_a)o inf + 30 E(rm(7))) —
non-negative function), respectively, without buffer di@v, 2mem U(r7,), whene — 0 and V' — oo.
e, Yo (t) <V QU () < ¢f™, and QU™ (¢) < ¢{™ in We next give two propositions on the impact of users’ social
each time slot. B B selfishness on utility and end-to-end delay experienced by

The lemma can be proven by induction. The induction basclj'sfferent s_e_355|or.15. . .
(t = 0) is trivial since all queues are empty at time lofThe Proposition 1: If each relay node: differentiates the upper

= U istivial si queu pty ath bound of lay rate[")) set for different by-passi
induction steps fot,, (¢) anng’j)(t) can be derived based onsg::ionom?v(@ragz rj/ta)ya:n ) se #or )I aesre:n ir{cpr):zi:ilr?g
the end-to-end rate control policy in Algorithm 1 and quegei ) mes A VI 7 Sms T 7 m 'SIng
laws (1) and (12), while the induction ste f@("m) () can be function of the social tie strength betweenand m, sessions
derived usin thé oint routing and chanI?]eI allocation @oli with stronger social ties with intermediate relays can exahi
in Al orithmgl andJ Leuein ?aw (1). The detailed rogmépcaﬂigher utility, when all the other parameters are the same.

9 q 9 ' P Proposition 2: If each relay node: differentiates the buffer

be found in our technical report [12], due to space limit. space @(lm)) allocated to different by-passing sessions

Definition 2 g-optimum): The e-optimal solution r¢ = (Ym € M,Vn # sm.n # qm) as a decreasing function of the
(77, m € M) is the optimal solution to the utility maximiza- socjal tie strength betweenm and m, sessions with stronger
tion problem modified from that in (9), without finite buffersqcial ties with intermediate relays can achieve lower tead-
requirement and replacing constraint (10)iby € € A where  end delay while maintaining similar utility with other sesss,

€=(¢,...,€) ande > 0. when all the other parameters are the same.

Theorem 2 (Utility optimality):Given buffer sizqu’m"’) = We briefly illustrate the propositions using a case study of
VU'(0) + 2407, + 1 at sources,, of sessionm, and non- the simple network in Fig. 1, and more detailed analysis can
negative buffer size)™ = f(p{™) (where f(-) is a non- De found in our technical report [12]. There are one avaslabl

negative function) at each relay node(n # s,,,n # d,,) of channel, five secondary users,_and two sessions fsanto
sessionm, Vm € M, the overall utility achieved is within a D21, and fromS2 to D2, respectively. Suppc()ls)e rela();)noﬁe
constant gapg from the e-optimum, with Algorithm 1,i.e, ~ has stronger social tie with sessiani.e, p;" < pz’; all
= B other parameters with the two sessions are the same.
Z U(lim inf 5 » E(rm(7))) 2 Z UTm) = 37 To illustrate proposition 1, supposk only differentiates

t—oo

meMm =0 meM preset relay rate upper bounds but not buffer sizes for both



sessions, bya(l) < a§§> and a;” + a§§> = 1. Based on A. Utility with Centralized and Distributed Implementatio
Algorithm 1, the achieved average end-to-end data rates We compare the total throughput utility achieved on time
and 7, are exactlya(l) and ag), respectively. This shows averaged end-to-end raties, > e U(Tm)), in cases where
that sessior2 with stronger social tie with relay? is able the centralized and distributed channel allocation atgors
to achieve higher throughput utility. stated in Algorithm 1 and 2 are used, respectively. We in-
To illustrate PrOpOSItlon 2, suppose nodk differentiates vestigate a network with0 secondary users, sessions, and
buffer sizes by]R > qR ,but sets the same relay rate bound3 channels as shown in Fig. 2(a), and a network with
g> g) . Based on the back-pressure joint routingecondary userd0 sessions, and channels as in Fig. 2(b),
and channel aIIocatlon in Algorithm 1, the achieved averagiespectively. The average end-to-end rate is calculate af
end-to-end rates are identical for both sessions. The geeré = 10,000 rounds Of algonthm execution. The buffer sizes
end-to-end delays are different, which are equivalent ® thare set followingg\™ (l/pn ) with an average size of
queueing delays in the respective buffersiaif we ignore 10 data units. The average data arrival rates are calculated as
transmission delays on the links. Since sesgidras smaller -+ ZT 1 Am (7). We can observe that the total utility achieved
average queue length (analysis in [12]) but identical queueth the distributed algorithm is close to that achieved ty t

outgoing rate with sessiom, its average queueing delay iscentralized one, under each social relationship disiobut

smaller. We will further validate the performance impact of e — e T
social selfishness under realistic network settings in 8éc. 25 ‘//‘—;—- ° S ?
2 2 S 24
VI. EMPIRICAL STUDY EN / oz roR] 2 | et o
We evaluate the throughput utility of our protocol and the2 i cenalzed RSR|  © 21 Cenualized RSR
impact of social relationships with discrete-event sirtiates 05 -«-Distributed TSR 1 -«-Distributed TSR
.. . . . . . ——Distributed RSR ——Distributed RSR
under realistic settings. A cognitive radio network is simu o s > S 3 o T = 5
lated with several typical settings of the number of primary AVRTage dala arival ate Aveiage dala arval fate
users (channels), the number of secondary users, and averag (& 10-node case. (b) 20-node case.

number of neighbors per secondary user in its transmission ~ Fig- 2. Centralized vs. Distributed Algorithm on Utility.

range:3, 10, 5; 5, 20, 5; 7, 50, 8; and 10, 100, 8. A primary B. Impact of Social Relationship between Sessions and KRelay
user is active in a time slot following a Poisson distribotio e compare utility and end-to-end delay experienced by
with an average probability ¢f.2. Sources and destinations ofsessions with different levels of social ties with relays,ai
sessions are randomly chosen in the network. Data areetjechetwork with50 secondary usergp sessions, and channels,

at the sources fOllOWing Poisson arrivals with average/alrri and a network withL00 secondary userd0 sessionS, ando
ratesA,, (t). The average relay rate for sessi@non usem is  channels, respectively. The average data arrival rate o ea

decided byz(m) =z, ol o7 With 2z, = 0.5 session isl.5 units of data per time slot. The buffer sizes are
(m) Dttt P set following ¢{™  (1/p{™), with an average size of0

andpn "’ = 6pn,s,, + (1 = 0)pn,q,,, 6 = 0.5. In our default gata units. The end-to-end delay experienced by each sessio

settings, the utility function ig/(7,,) = 7., V' = 2000. is calculated as the average number of time slots taken for a

We set the social relationships among secondary usersyag of data to travel from the source to the destination. We
follows: We first construct a social graph following a poweyse social relationships from the traces in these expetsnen

law distribution of node degree with scaling exponént= S S — e
1.76 [14], which is derived from the Bluetooth contact traces ®°|J00-node case L - [1100-node case
provided in [19]. Then we assign weigpt; to the links in f"s E_gw
the social graph in three ways: g0t 14°

1) Homogenous Social Relationship (HSR)The social = -y
relationship strengths are all the sarhe, p;; = 1 for each & | s 3,
pair of nodes with direct link in the social graph. 2o e e A =7, 1 i B i i

2) Random Social Relationship (RSR) The social rela- Average social tie strength Average social tie strength
tionship p;; on the links are uniformly randomly assigned (a) Impact on Utility (b) Impact on End-to-End Delay
values betweerQO, 1]. Fig. 3. Performance of sessions with different social tiergths with relays.

3) Social Relationship derived from the Traces (TSR)  We calculate the average social tie strength for each sessio
We calculate contact frequencies between devices from Mj@ween itself and re|ay nodes, group sessions based aon thei
traces in [19], normalize them to values withi@, 1], and set average social tie strength, and compare the averagey utilit
social relationshipp;; between two nodes in our social grapfand end-to-end delay per session among different groups in
following the distribution of normalized contact frequé®  Fig. 3. We observe that sessions of stronger social rekation

Note that in all three cases, userand j without a direct achjeve higher throughput utility and lower end-to-endaglel
link in the social graph is assigned a social relationshiphis verifies the effectiveness of our buffer size and refg r

pi; = 0. We compare the impact of the three social relationshififferentiation methods, as stated in propositions 1 and 2 i
patterns in the following experiments. Sec. V.



C. Impact of Buffer Size Differentiation Methods
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differentiation methods are applied: (1) buffer size atheac

node is proportional to its strength of social relationshith

a by-passing sessiom, i.e, ¢ o pi™, with an average
size of 10 data units; (2) buffer size is inverse proportional

to its strength of social relationship with a sessiom.,

g™ o (1/p5™), with an average size db data units. In this
set of experiments, there ar80 secondary userd() sessions,

(1]

REFERENCES

I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty. NéXGenera-
tion/Dynamic Spectrum Access/Cognitive Radio Wirelesswiéeks: A
Survey. Computer Networks50(13):2127 — 2159, 2006.

] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty. A 8tey on

(3]

and 10 channels in the network. The average data arrival rate

of each session i$.5 units of data per time slot.

BN o T
m m 12|

% o5l 0™ 5 < [ Ja™oqet™

@ L S10

G o4 I3

.y 2 &8

£03 25 6

5 g2

202 S Fa4

© 0.1 L T2

[}

Z 0 0

0-0.2 0.2-0.40.4-0.60.6-0.80.8-1.0 0-0.2 0.2-0.40.4-0.60.6-0.80.8-1.0

Average social tie strength

Average social tie strength

(a) Impact on Utility (b) Impact on End-to-End Delay
Fig. 4. Performance with different buffer size differeritat methods.

(4]

(5]
(6]

(7]

8l

In Fig. 4, we observe that with both ways of differentiating!®!

buffer sizes, the average utility per session achievednsiagi,

and increases with the increase of the sessions’ social [fié}
strength. On the other hand, if the buffer sizes are smal

when the social ties are strongef/® o (1/p§f”))), lower

Therefore, setting smaller buffer sizes for sessions wtteln

14
social tie strengths is a more suitable way to reflect users’

social preference, validating our analysis in Sec. V.

VIl. CONCLUDING REMARKS

ey

end-to-end delay is experienced by sessions with strondi#
social ties with relays; if the buffer sizes are proportiotma

the social tie strengthsqf(’") o p%m)), delay experienced by
sessions with stronger social ties is not apparently small&3]

[15]

(16]

This paper addresses throughput utility maximization

among multiple unicast sessions in a cognitive radio ndtwo[rl7]

under the constraint of social selfishness of the parti¢paia

joint end-to-end rate control, routing, and channel alfioca

protocol as well as its distributed implementation are psmul
that can achieve utility optimality with network stabiliguar-

(18]

(19]

antee using Lyapunov optimization techniques. We novelly

model social selfishness of users via differentiated bsftazs

and relay rates allocated at each relay node for data session

The differentiation is based on the different social relaships
the relay has with the sources and destinations of th

with no-buffer-overflow guarantee, which is in sharp costtral??
to the common assumption of infinite buffers in the literatur 23]
The utility optimality and the impact of social selfishness a

studied with both rigorous theoretical analysis and extens 24

simulations. It will be our future work to investigate thepact

Spectrum Management in Cognitive Radio NetworksEE Communi-
cations Magazing08:40-48, April 2008.

L. Ding, T. Melodia, S. Batalama, and M. J. Medley. ROSAsibuted
Joint Routing and Dynamic Spectrum Allocation in Cognitivaedi® Ad
Hoc Networks. InProc. of ACM MSWiM’'092009.

L. Ding, T. Melodia, S. N. Batalama, and J. D. Matyjas. [Disited
routing, relay selection, and spectrum allocation in ctigmiand coop-
erative ad hoc networks. IRroc. of IEEE SECON'102010.

FCC. Notice of proposed rule making and ordell. Docket No. 03-222
Dec. 2003.

Z. Feng and Y. Yang. Joint transport, routing and spewstisharing
optimization for wireless networks with frequency-agiledics. In
Proc. of IEEE INFOCOM'09 2009.

S. Haykin. Cognitive Radio: Brain-Empowered Wirelessn@ounica-
tions. IEEE Journal on Selected Areas in Communicatjd@8(2):201 —
220, Feburary 2005.

P. Hui, A. Chaintreau, J. Scott, R. Gass, J. Growcroft] & Diot.
Pocket switched networks and human mobility in conferencéremv
ments. InProc. of ACM SIGCOMM’'05 Workshop&005.

J. J. Jaramillo and R. Srikant. Darwin: Distributed andaptie
reputation mechanism for wireless ad-hoc networksPtoc. of ACM
MOBICOM'07, 2007.

E. L. Lawler and D. E. Wood. Branch-and-bound methods:ufvey.
Operations Researcli4:699-719, 1966.

L. B. Le, E. Modiano, and N. B. Shroff. Optimal control ofireless
networks with finite buffers. IrfProc. of IEEE INFOCOM'10 2010.

H. Li, W. Huang, C. Wu, Z. Li, and F. C. M. Lau. Utility-mamiizing
data dissemination in socially selfish cognitive radio nekwoTechnical
report, The University of Hong Kong, http://i.cs.hku.RKixli/social-
cog.pdf, 2011.

Q. Li, S. Zhu, and G. Cao. Routing in Socially Selfish Beleolerant
Networks. InProc. of IEEE INFOCOM’'10 2010.

] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B.aBh

tacharjee. Measurement and Analysis of Online Social Nétsvoin
Proc. of IMG 2007.

M. Motani, V. Srinivasan, and P. Nuggehalli. Peoplertatgineering a
wirelessvirtual social network. IRroc. of ACM MOBICOM'05 2005.
M. J. Neely. Stochastic Network Optimization with Application to
Communication and Queueing SysteriMorgan&Claypool Publishers,
2010.

M. J. Neely. Opportunistic Scheduling with Worst Caseldy Guaran-
tees in Single and Multi-Hop Networks. Rroc. of IEEE INFOCOM'11
2011.

G. Sharma, R. R. Mazumdar, and N. B. Shroff. On the complexiit
scheduling in wireless networks. Rroc. of ACM MOBICOM'062006.

V. Srinivasan, A. Natarajan, and M. Motani. CRAWDAD
data set nus/bluetooth (v. 2007-09-03). Downloaded from
http://crawdad.cs.dartmouth.edu/nus/bluetooth, Sé)ii72

L. Tassiulas and A. Ephremides. Stability propertiescofistrained
queueing systems and scheduling policies for maximum thrautgip
multihop radio networkslEEE Trans. Autom. Contrpl37:1936—-1948,
Dec. 1992.

. ; . . ?J V. J. Venkataramanan, X. Lin, L. Ying, and S. Shakkot€@n scheduling
data sessions. Another unique contribution of our Lyapunov

optimization is that only finite buffer is needed at each node

of social selfishness on data dissemination in other types of

wireless networks.

for minimizing end-to-end buffer usage over multihop wirelesswvorks.
In Proc. of IEEE INFOCOM 20102010.

] B. Wang, Y. Wu, and K. J. R. Liu. Game theory for cognitiedio

networks: An overviewComputer Networks54:2537-2561, Oct. 2010.
D. Xue and E. Ekici. Guaranteed opportunistic scheduln multi-hop
cognitive radio networks. IfProc. of IEEE INFOCOM'11 2011.

] S. Zhong, J. Chen, and Y. R. Yang. Sprite: A simple, clpabtf,

credit-based system for mobile ad-hoc networks. Pioc. of IEEE
INFOCOM'03 2003.



