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Abstract— With the ever-increasing elderly population, elder
walking assistance is in strong demand. Instead of receiving
assistance from a human carer, a smart walker can bring
an elder user a more convenient and autonomous walking
experience. Towards intelligent and safe walking assistance,
we propose a close-proximity front-following model for smart
walkers, which analyzes the walking gait and detects the
walking intention of the user, and intelligently follows the
user in the front to provide walking support, without the
user pushing the walker. We design a deep learning model
named Front-Following Net (FFLNet), consisting of CNN and
LSTM networks to extract spatial and temporal features of
the elder walking gait, collected in time windows through a
thermal camera and a 2D LiDAR, for effective walking intention
detection. As compared to other walking intention detection
approaches, our model can explore more effective information
in the gait data within a short walking period, and achieve
accurate hands-free tracking of the user. Experiments show
that our FFLNet can achieve over 77% detection accuracy
among six representative walking intentions and more than
90% accuracy for turning intentions. Combined with a carefully
designed walker control policy, our smart walker can achieve
high front-following correctness with the user.

Keywords: Front Following, Smart Walker, Close Proximity,
LSTM, Gait Analysis

I. INTRODUCTION

Recent years have witnessed a significant rise in the
elder population and a substantial increase in global life ex-
pectancy (from 66.8 years in 2000 to 73.3 years in 2019 [1]).
Various research has exhibited the benefit of daily walking in
improving elders’ health and life situation [2]. Many elders
are suffering from various mobility impairments.

A number of smart walkers have been designed for this
problem [3][4][5][6]. Some [3][4] utilize sensors such as a
joystick or pressure sensors for the user to move the walker;
the user needs to actively provide operating signals for the
walker to move along with him/her, which may lay burden on
the older user. We aim to design a walker control model with
better intelligence to automatically follow the user within
close proximity in the front while the user is walking with
the walker in a hands-free mode (see Fig. 1(A)). This walker
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Fig. 1. (A) An elder person uses the walker in a hands-free manner. The
walker can follow the user in close proximity to offer safety support. (B)
Correct front following and tracking failure of the walker, respectively. (C)
Overview of the smart walker and positions of a thermal camera and a 2D
LiDAR.

can offer sufficient walking support while releasing the active
operation burden for the user. The close proximity following
brings challenges for walker control. As shown in Fig. 1(B),
a collision between the user and the walker may well happen
when the control model does not perform well. User position
and walking intention detection is required for the control
model to perform accurate and intelligent front-following.

Some smart walkers use laser or infrared sensors to
detect the position of the lower limb of the user [7][8].
The measured distance between the user and the walker
is used for adjusting the moving speed or braking of the
walker [9]. Due to the low spatial resolution of these sensors,
recognizing the pose of the user from the distance data
typically requires a complex leg detection algorithm for leg
separation [10]. After separation, the gait intention can be
recognized by classifying limited location patterns in roughly
divided regions [8]. However, without the feet orientation
information, user walking intention may not be well detected.
For example, with similar leg positions, the orientation
between the two feet in cases of stepping forward and turning
may well differ, revealing different walking intentions.

There exist smart walker designs which use other sensors
(e.g., ultrasonic sensors, tri-axial load cells, RGB-D camera)
to detect user walking intention [8]. Sierra et al. [5] use
ultrasonic sensors to detect the presence of the user, and tri-
axial load cells with adaptive filters (e.g., Karmen Filters)
to estimate the walking gait. In [6], RGB-D camera data is
fed to a convolution neural network (CNN)-based model to
estimate human pose for gait estimation for walker control.
These designs largely rely on instantaneous data to infer the
walking intention, and seldom exploit temporal features of
human walking in a consecutive walking process. Further,
there is a lack of studies on robotic close-proximity front
following designs with deep learning methods, combining
temporal and spatial features.



We develop a front-following model on a smart walker
that utilizes the 2D LiDAR data and lower limb gait images.
The 2D LiDAR detects the user position to maintain close-
proximity and safety while the lower limb thermal gait
images indicate the walking intention. We seek to collect
consecutive lower limb images of the user through a non-
intrusive thermal sensor. The basic design of our smart
walker can be found in [11], together with a preliminary
walker front-following model: a neural network with 2 fully-
connection layers takes as input 8 gait images and leg
position vectors in a small period of a clear human step, and
produces a possible foot position, for inferring a movement
intention in this step. With this design, the walker can only
front-follow the user step by step, incurring jitters in its
movement. In the new front-following model presented in
this paper, we utilize more temporal and spatial features of
the gait data. Instead of clearly defining a step of the user,
we analyze all possible consecutive movements of the user.
Main contributions of this paper are summarized as follow:

• We propose a close-proximity front-following control
model, FFLNet, that can drive a walker to follow a
user’s walk smoothly, automatically and safely in the
front.

• We utilize a thermal camera and a 2D LiDAR to detect
the gait of the user for cost-effectiveness and better
privacy protection.

• A combination of CNN, LSTM [12], and fully-
connection layers is applied to carefully extract tem-
poral and spatial gait information within time windows.
Consecutive gait data and the last gait image in each
time window are exploited separately in our model to
achieve high accuracy in walking intention detection.

• Two gait datasets are collected for effective FFLNet
learning including consecutive normal gait data of usual
walking with the walker and the static gait data that
seldom appears in the previous procedure. The two
datasets enable the FFLNet extract features of all kinds
of gait data.

• Experiments show that our proposed model can distin-
guish different walking intentions accurately, especially
for the turning intentions the FFLNet precision can
reach over 90%. The combined control policy can
further improve the front-following action and achieve
hands-free tracking with close proximity.

II. RELATED WORK

A. Robotic Following Models

In the domain of Human-Robot Interaction (HRI), robotics
following remains an active research topic. In some designs,
robots can detect, locate and follow the human user by
sensors such as LiDAR or LRF to scan the environment and
detect human legs for tracking [13][14][15][16]. Some robots
use cameras and compute human positions with computer
vision methods to achieve following [17][18]. In recent years,
deep learning approaches for robotic following have gained
attention. The robot in [19] adapts the MobileNet [20] to

obtain a bounding box of humans from 2D images, which
is then converted to 3D locations for human detection and
following. Similar designs of applying NNs and RGB-D
images to detect human positions can be found in [21][22].

Compared to these designs, our approach utilizes 2D
LiDAR and a low-resolution thermal camera. The 2D LiDAR
can measure the user’s position while the thermal camera can
offer the lower-limb images that can be analyzed to obtain
the walking intention. Though the LiDAR information can
recognize the user walking intention to some level, we argue
that the lower-limb images can offer more walking informa-
tion before the user’s position changes. Our design ensures
users’ privacy since we exploit low-resolution information
from the thermal camera compared to the design that utilizes
a high-resolution optical camera.

B. Learning Human Gait

Human gait data are commonly used for analyzing human
walking patterns for HRI. Some studies use lower limb data
collected by LiDAR or LRF [10]. Some designs [23][24]
adopt deep neural networks such as a CNN to achieve
human identification based on image features. They extract
walking image sequences from videos to obtain gait energy
images [25] as the input to their deep learning models. Also,
some researchers study abnormal gaits for disease diagnosis,
e.g., Parkinson’s disease, by detecting pressure changes of
the insole [26] or accelerator readings [27].

The FFLNet in our design combines CNN for spatial
features extraction and the LSTM [12] for temporal features
extraction. Unlike the method in [27] that inputs all the
data to an LSTM [12] within an observation period, we
argue that to predict the walking intention from the user’s
gait data, the learning model should analyze the adjacent
past gait information and the latest information separately
since the latest frame represents the intention more. FFLNet
adopts this separate analysis structure, which seldom appears
in other learning models for gait prediction. This design
achieves better performance.

III. PROBLEM FORMULATION

A. Walking Intention Detection Model

The proposed front-following model is designed on a
smart walker that offers walking and fall support for an
elder user in close proximity. In existing close-proximity
following designs [5][6], sensors such as LRF keep scanning
the user to detect leg positions and orientation changes. Few
have exploited the feet angle, which can better represent the
walking intention. With similar body positions, the walking
intention can be different if the orientation of the feet is
different. For example, when the user has just switched
from standing still to turning to left on the same spot, the
lower limb position is similar before and after, while the feet
orientations differ.

We seek to estimate human walking intention ζ according
to the observed gait data including the feet orientations and
leg positions. As human walking is a consecutive process, we
derive the walking intention based on a time window T of



observations and define the walking intention detection func-
tion as ζT = h(GT ,PT ). Here GT = {g1,g2, ...,gn} is the feet
orientation observation sequence, containing n consecutive
images captured by a thermal camera in the time window T .
PT = {p1, p2, ..., pn} is the leg position sequence, including
n leg position pairs (positions of left and right legs) detected
by a 2D LiDAR in T . We carefully design a deep neural
network (DNN) model as the intention detection function h.

B. Gait Dataset Composition

We collect two gait datasets for learning the walking
intention detection DNN. The first dataset D is collected
when a user pushes the walker along. Each data sample
DT in D contains the feet orientation image sequence GT
and the leg position sequence PT within a time window T ,
consisting of n frames. n is set to a suitable constant value,
e.g. 10, as in our experiments with a data sampling frequency
of about 4 Hz. The time window T is about 2.5 seconds
which keeps sliding at one-frame intervals. The label, i.e.,
walking intention, of each sequence sample is set based
on the velocity and position change of the walker. Each
sequence is the data of the time window T in which the
first and the last frames of the T are the start and end time
points of the sequence.

The other dataset S is collected when the user keeps a
posture at one spot and the walker is placed static in different
positions surrounding the user, to capture different static gait
images and leg positions. Each tuple of static gait image
and leg positions replicate themselves and form a sequence
sample ST of length n. Such replication ensures that the
samples in S are of the same dimension of samples in D.
This dataset is intended for improving walking intention
detection in the case of specific gait sequences that are under-
represented in D. For example, data collected when placing
the walker on a leftward angle to the user when the user
keeps the posture of stepping toward the right emulates the
case that the walker mistakenly turns left when the user
turns right. Samples in S are labeled manually based on the
emulated walking intention of the user.

The two datasets are shuffled and combined to form the
dataset C for learning our walking intention detection DNN
model. We also create separate testing datasets with gait
data collected from different users, to evaluate our model’s
generalizability on unseen gait data.

IV. FFLNET

We design a DNN, the Front-Following Net (FFLNet)
to estimate the walking intention of the user of the smart
walker, for guiding the movement of the walker over time.
As mentioned, human walking is a consecutive process;
the gait data includes both spatial and temporal features.
FFLNet combines CNN, and LSTM networks for extracting
useful spatial and temporal features. Especially, it contains a
Current Net and a Tendency Net, as illustrated in Fig. 2.

The input to the FFLNet is a sequence of gait data CT =
{GT ,PT} in a time window T , with n data points. The input
sequence is further divided into two parts, the Tendency part
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Fig. 2. Overview of FFLNet.

CA and the Current part CB. CA consists of all data from CT
except for the latest frame (gn, pn) in the sequence, while
CB contains the latest frame of gait data only, i.e., CA =
{(g1, p1),(g2, p2), ...,(gn−1, pn−1)} and CB = {(gn, pn)}.

The Tendency Net takes CA = (GA,PA) as input, where GA
is the thermal image sequence {g1,g2, . . . ,gn−1} and PA is
the leg position sequence {p1, p2, . . . , pn−1}. First, each gait
image gi, 1 ≤ i ≤ n−1, is fed to a CNN for spatial feature
extraction; the extracted features are then concatenated with
the leg positions pi collected at the same time point. Next, the
concatenated feature vectors, corresponding to different i’s,
are fed into an LSTM layer for temporal feature encoding.
The LSTM layer is further followed by several fully con-
nected layers to produce a feature vector fA. The Tendency
Net architecture design is to conduct a deep computation
on each frame in CA and to extract their temporal features
properly.

The Current Net takes gn in CB as input, which is the
last thermal image in the input sequence.1 The Current Net
is composed of a CNN followed by several fully connected
layers, which outputs another feature vector fB of the same
length as feature vector fA. The CNN structure of the Current
Net is set the same as the CNN structure of the Tendency
Net, similarly to extract the spatial feature, together with the
following fully connected layers. The rationale of separating
the last frame information and use a dedicated Current Net
to learn features in the last frame is due to our observation
that the last frame can often represent the walking intention
better than the previous frames.

The two feature vectors fA and fB are summed up, and
fed to a fully-connection layer to produce the final prediction
vector fF , through a Softmax activation function: fF =
Softmax( fA + fB). fF is a 6-dimensional vector, indicating
the probabilities of 6 possible walking intentions: stopping,
moving straightly forward, turning left while moving for-
ward, turning right while moving forward, turning left on the
spot, and turning right on the spot. The difference between
the turning left/right while moving forward and the turning
left/right on the spot is that the turning radius of the former
is typically larger than one third of the width of the walker,
while the turning radius of the latter would be smaller than
that (according to our observations). The turning center is

1Leg position pn in CB will be used in the walker control policy.



the midpoint of the connection between the two rear wheels.
We do not have moving backward as one output walking
intention of FFLNet, as it is easy for the walker control
module to recognize whether the user is walking backward,
based on his/her position relative to the walker detected by
the LiDAR. Details of different action modes of the walker,
upon user walking intention detection, will be discussed in
the next section. We train FFLNet using supervised training
with the dataset C and the Cross-Entropy Loss function [28].

V. MOVEMENT CONTROL

The specific range for the close proximity in our scenario
is that the walker would be in an area within 45cm from the
user. That requires the control policy to react to the user’s
movement promptly while keeping a safe distance from
the user. The FFLNet offers the timely walking intention
prediction. Control policy would rely on the LiDAR data
to further confirm the control command to achieve the
safe close-proximity following. According to the LiDAR
information, we can get the position of the left leg ll(Xl , Yl)
and the right leg lr(Xr,Yr). In addition, the central position
of the human lm(Xm, Ym) can be calculated as the midpoint
of the connection between the positions of the two legs ll ,
lr, to assist in walker movement control.

We use linear velocity and turning radius to control the
movement of the walker. When the linear velocity and
turning radius are determined, the angular velocity will also
be determined. The linear velocity Vcurr is preset according
to the user’s walking speed, varies from 10 cm/s to 30
cm/s. From experiments, we observe that when the turning
radius of the walker is between L

3 and 2L (two times of
L), the walker can cope with most usage scenarios, e.g.,
walking through narrow door frames, sharp turning indoors,
and walking in long aisles, etc. L is the width of the walker.
In our design, the L is about 66cm.

Let the LiDAR position be the original O. The y-axis is
along the walker’s central axis and the x-axis is perpendicular
to the y-axis (Figure 3). Based on the LiDAR measurements,
the walking area of the user is divided into the left area
(Xmin,Xcl), the central area (Xcl ,Xcr) and the right area
(Xcr,Xmax) along the x-axis. In each area, the maximal value
along y-axis is the distance from the center axis of the rear
wheel to the LiDAR. Here Xmax and Xmin are the maximum
and minimum positions that the user’s leg can reach along the
x-axis inside the walker. Their distance to the y-axis is 25cm
in our design. Xcl and Xcr are the left and right boundaries
of the central area along the x-axis.

According to the output of the FFLNet and leg position
information, the control of the walker is considered in five
cases:

• When the FFLNet indicates turning right or left on the
spot and the central position of human is in the central area
of the walker, the rotational speed of the walker is set to a
preset constant value Vm which is 0.2 rad/s.

• When FFLNet produces a turning right or left intention
and the central position of human is in the right or left area,
the turning radius is related to the position of the leg off the

Fig. 3. Division of walking area inside the walker.

central area. The farther the leg deviates from the center area,
the smaller the turning radius of the walker should be. Rr
(Rl) and ωr (ωl) are the turning radius and angular velocity
when turning right (left), respectively. The turning radius is
calculated as follows:

Rr =
L
3
+

5L
3

·
(

1− Xr −Xcr

Xmax −Xcr

)
(1)

Rl =
L
3
+

5L
3

·
(

1− Xcl −Xl

Xcl −Xmin

)
(2)

For the calculation of Rr in equation 1, since the Xr would
be in the area of (Xcr,Xmax), the Rr would be in the range of
(L

3 ,2L). Same procedure can be adapted to the calculation of
Rl . Then, we can calculate the angular velocities ωr,ωl by
having Vcurr be divided by Rr, −Rl :

ωr =
Vcurr

Rr
=

3 ·Vcurr · (Xmax −Xcr)

L · (6 ·Xmax −Xcr −5 ·Xr)
(3)

ωl =−Vcurr

Rl
=− 3 ·Vcurr · (Xcl −Xmin)

L · (5 ·Xl −6 ·Xmin +Xcl)
(4)

• When the output of FFLNet indicates a moving straight
forward intention and the central position of human is in
the central area, the turning radius is set to +∞, the angular
velocity is set to 0, and the linear velocity is set to Vcurr, to
ensure that the walker travels straight ahead at speed Vcurr.
• When the output of FFLNet indicates stop and the

position of human is ds (generally about 0∼15 cm) away
from the walking area along the positive y-axis direction or
there is no human detected, linear velocity, angular velocity,
and turning radius are all set to 0, to make the walker stop.

• When the position of the user is db (generally about
15∼20 cm) away from the walking area along the positive
y-axis direction, it shows the user is moving backward. The
linear velocity is set to -Vcurr, and angular velocity and
turning radius are set to 0, to ensure that the walker moves
backwards at speed -Vcurr.

VI. EXPERIMENTS AND RESULTS

A. Implementation Details

1) Sensors on the Walker: We use a thermal camera with a
24×32 resolution to capture thermal gait images, with a data
collection frequency of about 4 Hz. The 2D LiDAR adopted
has a sampling frequency of 7.5 Hz. We use electronic
wheels and an Inertial Measurement Unit (IMU) to record
the movement of the walker.



TABLE I
DIFFERENT WALKING PATTERNS

Pattern Description
8-Shape Walking in an 8-shape path

Forward Turning Turning in a circle
(Left or Right) anti-clockwise or clockwise
Spot Turning Turning on the spot

(Left or Right) towards left or right
Standing Still Not moving

2) Gait Data Collection: We invite different users to
collect their gait data for training the FFLNet. All the
participants are aware and agree that their gait data is used for
the research in this project only. The gait data is anonymous
and unprofitable so data privacy and safety are guaranteed.
To get different gait data, we select users with different
gender, height, and weight. The height range is from 160cm
to 180cm while the weight range is from 50kg to 75kg. We
have 5 users to walk with the walker around for about 20
minutes each, in different patterns as defined in Table I. We
ask each user to move in three speed levels in each walking
pattern: 0.05 to 0.1m/s, 0.1 to 0.3m/s, and 0.3 to 0.5m/s. We
also collect data in the case that no user is using the walker,
to allow FFLNet to recognize whether a user is inside the
walker.

To collect static gait images (set S), we let the users stand
in different postures indicating different walking intentions
of moving straight forward, turning left/right while moving
forward, turning to left/right on the spot, or standing still.
In each case, we capture the thermal gait images and the
leg position data, and manually label the images. We collect
about 400 images from each user.

For testing dataset, we further collect about 15 minutes
of gait data from 3 users who do not participate in training
data collection. They push the walker following a random
path including all kinds of walking patterns as listed above,
with different walking speeds.

3) FFLNet Implementation: In the Tendency Net of
FFLNet, the CNN contains 4 convolution layers, each with
20 filters of the size of 3×3. The LSTM layer has 64 units,
followed by 3 fully-connected layers which consist of 128,
256, and 64 units, respectively. The Current Net contains 4
convolution layers and 3 fully-connected layers, using the
same layer settings as respectively in the Tendency Net. The
learning rate is set to 10−5.

We set the length n of each gait data sequence to 10, as the
walking tendency of a user can normally be told by observing
the past one to two steps, the time for a user to complete a
full step is about 1 to 2 seconds, and the sampling frequency
of the thermal camera is about 4Hz. The time window for
collecting a sequence of gait data, T , is set to 2.5 seconds.

B. Evaluation of FFLNet

We compare the walking intention estimation performance
of FFLNet with two other NNs, which are revised from
the two sub-networks of FFLNet: (1) Tendency+ is based
on the Tendency Net in FFLNet, by using all n frames of
gait data instead of the first n− 1 frames as the input and
adding an output layer to obtain the intention prediction from

Fig. 4. Validation loss and accuracy during the training of FFLNet,
Tendency+ and Current+.

(A) Precision (B) Recall

Fig. 5. Confusion matrix of FFLNet. (A) Precision matrix; (B) Recall
matrix

the features produced by the Tendency Net; (2) Current+ is
constructed by adding an output layer to the Current Net of
FFLNet. Fig. 4 gives the validation loss and accuracy of the
three NN models.

We observe that Tendency+ achieves an accuracy of about
70.7%, while Current+ about 64.5%, which indicates the
importance of the temporal features in walking intention
detection. FFLNet, which combines the Tendency Net and the
Current Net, achieves the best accuracy of 77.4%. This result
shows that combining both temporal and spatial features, and
emphasizing the last frame of the gait sequence, can lead to
better intention detection performance.

We further inspect the intention estimation performance
of FFLNet by calculating its Confusion Matrix [29] which
gives the precision and the recall of FFLNet in predicting
each walking intention class on the test dataset. The results
are given in Fig. 5, where “Prediction” is the predicted label
and “Real” indicates the true label. Among the six walking
intentions, we can see from the precision that FFLNet works
well in predicting turning left/right while moving forward
and turning left/right on the spot. Lower performance results
in inferring stopping and moving forward. The reason is
that the gait information is similar in these two cases:
when moving forward, chances are high for the two legs
to be close to each other, which is similar to the posture
of standing still, especially when the user is walking at a
slow speed with small steps. The error can be reduced by
calculating the relative position of the user from the LiDAR
data. Further, in the case of distinguishing spot turning and
stopping, our model works well with similar leg position
data in these situations. While for the recall evaluation, all
the intention reaches over 70%, meaning that the FFLNet can
well distinguish similar intention into the same prediction.
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Fig. 6. FFLNet output, yaw angular rates, and lateral movements of human
legs.

Fig. 7. Trajectory of the smart walker, the human center, the left and right
legs, the right and left wheels of the walker.

C. Online Evaluation

We test online front-following performance by having
the walker follow the human automatically along an ar-
bitrary path for about 100s. Three trails of this test are
conducted, and the human walks with six walking intentions
in arbitrary combination.We evaluate FFLNet output against
the user’s yaw angular rates and lateral movement of the
central position of user legs lm. The yaw angular rates are
measured by IMU attached to the user waist. The lateral
movement of human legs with respect to the walker are
measured by the LiDAR data. Fig. 6 shows that FFLNet
estimations and real turning directions are kept in sync
and consistent in orientation. On the other hand, the lateral
movements of human legs are sometimes inconsistent with
the turning intentions (yellow region in Fig. 6). This shows
that the scanning results of the LiDAR are not sufficient for
recognizing all walking intentions, and the thermal images
are needed. The combination of LiDAR and thermal camera
data effectively improves the accuracy of gait recognition.

D. Evaluation of Movement Control

We let a user walk with the walker without holding the
handrails. We apply an IMU on the walker to record its po-
sition and direction in real-time (for performance evaluation
purpose only). The positions of legs are collected by LiDAR.
Then we calculate the coordinates of the legs and wheels
to the absolute coordinate system, to evaluate the tracking
performance of the walker with the user. Fig. 7 plots the
positions obtained for the walker and the user. We observe
that the distance between the user and walker trajectories is

much less than L
2 , and the two legs are always within the

walking area of the walker, revealing safe and close front-
following of the user by the walker is achieved.We further
test our walker in an outdoor environment with brick roads
and blind tracts. The outdoor temperature will affect the
thermal images greatly, bringing a challenge to the FFLNet.
When the temperature is over 29 Celsius degrees, the FFLNet
prediction accuracy will drop to about 60% on average.
But since the control policy considers the user’s position
detection by the LiDAR, the performance of outdoor can
still maintain a smooth following with close proximity that
the walker is within the range of 40cm away from the user.
Though the walker’s shaking in the rough environment can
bring errors in the LiDAR measurement, the average error
of the leg position is less than 3cm, which can be tolerated.

E. Comparison with Other Designs

Compared to other designs, our walkers outperform in a
close-proximity following while maintaining fast computa-
tion time. The computation time for our model to handle a
sequence of 10 frames data would be less than 30ms, which
is faster than the 500ms for the temporal model of [6]. The
turning radius in our walker can be 0cm to achieve higher
flexibility, while in [5] the minimum turning radius is 15cm,
leading to a worse moving trajectory. For the walker in our
previous design [11], the prediction label is labeled as the
orientation and movement of the user’s feet. This design
could well distinguish the legs’ movement. However, the
operation for the old walker is a step-by-step procedure.
Also, the old walker cannot predict well when the user just
changes their feet orientation without stepping them out. In
the new design, we further collect data within steps, enabling
the model to predict continuously. The average orientation
error between the user and the walker decrease to 4◦ from
the 5.5◦ in [11].

VII. CONCLUSION

We design a deep learning model, FFLNet, to detect
user walking intention for developing a smart walker with
automatic user front-following functionality. By exploiting
the user’s leg positions and thermal images of the user’s feet,
the proposed approach can successfully detect more types of
walking intentions than other existing smart walker designs
do. Our deep learning model extracts spatial and temporal
features of gait sequences, and achieves good detection
accuracy among representative walking intentions; combined
with the walker control model, good front-following tracking
results are attained. However, the proposed method has some
limitations. One limitation is that the thermal camera we use
is greatly affected by the environmental temperature. In a
warm place, it’s hard to distinguish the user’s legs from the
background because their temperature is similar. Under this
condition, the walker has to rely on the LiDAR data only to
detect human position for front-following. Another limitation
of our proposed approach is that our learning dataset is small
and not diverse enough. More user gait data need to be
collected to get a more universal model in the future.
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