
DynaPipe: Optimizing Multi-task Training through
Dynamic Pipelines

Chenyu Jiang∗
jchenyu@connect.hku.hk

The University of Hong Kong

Zhen Jia
zhej@amazon.com

Amazon Web Services

Shuai Zheng†
shuai@boson.ai

Boson AI

Yida Wang
wangyida@amazon.com
Amazon Web Services

Chuan Wu
cwu@cs.hku.hk

The University of Hong Kong

Abstract
Multi-taskmodel training has been adopted to enable a single
deep neural network model (often a large language model)
to handle multiple tasks (e.g., question answering and text
summarization). Multi-task training commonly receives in-
put sequences of highly different lengths due to the diverse
contexts of different tasks. Padding (to the same sequence
length) or packing (short examples into long sequences of the
same length) is usually adopted to prepare input samples for
model training, which is nonetheless not space or computa-
tion efficient. This paper proposes a dynamic micro-batching
approach to tackle sequence length variation and enable
efficient multi-task model training. We advocate pipeline-
parallel training of the large model with variable-length
micro-batches, each of which potentially comprises a differ-
ent number of samples. We optimize micro-batch construc-
tion using a dynamic programming-based approach, and han-
dle micro-batch execution time variation through dynamic
pipeline and communication scheduling, enabling highly effi-
cient pipeline training. Extensive evaluation on the FLANv2
dataset demonstrates up to 4.39x higher training throughput
when training T5, and 3.25x when training GPT, as compared
with packing-based baselines. DynaPipe’s source code is
publicly available at https://github.com/awslabs/optimizing-
multitask-training-through-dynamic-pipelines.

CCSConcepts: •Computingmethodologies→Distributed
computing methodologies; Machine learning.
∗Work done during Chenyu’s internship at AWS.
†Work done while at AWS.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys ’24, April 22–25, 2024, Athens, Greece
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0437-6/24/04. . . $15.00
https://doi.org/10.1145/3627703.3629585

Keywords: distributed systems, multi-task learning, pipeline
parallelism

ACM Reference Format:
Chenyu Jiang, Zhen Jia, Shuai Zheng, Yida Wang, and Chuan Wu.
2024. DynaPipe: Optimizing Multi-task Training through Dynamic
Pipelines . In Nineteenth European Conference on Computer Systems
(EuroSys ’24), April 22–25, 2024, Athens, Greece. ACM, New York,
NY, USA, 18 pages. https://doi.org/10.1145/3627703.3629585

1 Introduction
Recent studies have shown that a single deep neural net-
work (DNN), e.g., a large language model (LLM), can be
trained/fine-tuned on a mixture of datasets to perform mul-
tiple tasks effectively [6, 24, 32, 35]. For example, T0 [32] is
fine-tuned on 62 different NLP datasets and can perform a
wide-range of tasks including question answering, sentiment
analysis, summarization and sentence completion. Flan-T5
and Flan-PaLM [35] are fine-tuned on 473 datasets from 146
categories of tasks.

A crucial aspect of multi-task training is the accommoda-
tion of diverse text sequence lengths across various tasks
or datasets. Tasks like summarization or information extrac-
tion usually involve a long context text as input, while only
one sentence is usually used as input to simple question
answering (e.g., checking the grammatical acceptability of
the sentence) (Fig. 1a). The average input sequence length
is 977.73 tokens in the CNN/Daily Mail [14] dataset for the
text summarization task, while the MNLI dataset [36] for tex-
tual entailment only has an average input sequence length
of 51.59. This results in high sequence length variations in
multi-task dataset mixtures (e.g., FLANv2 [20]), as shown in
Fig. 1b. During training, batches of uniform-length samples
are usually needed to be fed into the accelerator devices (e.g.,
GPUs) for efficient processing. The input sequences need to
be uniformly padded to at least the largest sequence length
in each mini-batch (which can be very long due to the pres-
ence of long-context tasks), resulting in excessive padding,
increased memory consumption and wasted computation.
The packing [30] approach has been advocated to allevi-

ate this issue, which concatenates multiple short samples

https://orcid.org/0009-0006-5714-3872
https://github.com/awslabs/optimizing-multitask-training-through-dynamic-pipelines
https://github.com/awslabs/optimizing-multitask-training-through-dynamic-pipelines
https://doi.org/10.1145/3627703.3629585
https://doi.org/10.1145/3627703.3629585

EuroSys ’24, April 22–25, 2024, Athens, Greece Chenyu Jiang, Zhen Jia, Shuai Zheng, Yida Wang, and Chuan Wu

Write highlights for this article: Dressed in a Superman shirt, 5-year-old Youssif
held his sister's hand Friday...(omitted) Parents beam with pride, can't stop...

What are the important parts of this article? As he awaits a crucial progress
report on Iraq, President Bush will...(omitted) President Bush to address the...

Generate a short sentence that is
unacceptable. I'll fix you a drink.

Is the following sentence linguistically acceptable?
"The pond froze solid." [options]. Acceptable.

How is "Wie Sie sicher aus der Presse und dem Fernsehen
wissen...(omitted)" said in English? As you probably know...

"Ich bitte Sie, sich zu einer Schweigeminute zu
erheben." Say this using English. I ask you to...

Su
m

m
ar

iz
at

io
n

Tr
an

sl
at

io
n

G
ra

m
m

ar
A

cc
ep

ta
bi

lit
y

...
High variance in sequence length

(a) Example input sequences in multi-task training (instruction
tuning [24]). Orange texts are instructions to the model. Inputs to
process are colored black. Expected responses are in red.

0 10000 20000 30000 40000 50000 60000
Input Sequence Length

100
102
104
106
108

Co
un

ts

(b) The sequence length distribution in FLANv2 [20] zero shot
dataset (truncated at 65536). Y-axis is in log scale.

Figure 1. Model inputs exhibit high sequence length vari-
ance in multi-task training.

to form a long sample whose length matches the largest in-
put sequence length. Packing can be effective in reducing
padding. Since almost all current language models use the
Transformer [34] architecture, attention is computed among
tokens in each long sequence during training and such at-
tention computation is wasted among unrelated samples
packed into the same sequence. Such computation waste
grows quadratically with sequence length, leading to exten-
sive overhead in case of large sequence lengths. Attention
computation among unrelated samples can also have neg-
ative impact on model performance [18]. Additional atten-
tion masks [35] and adjustments of the positional embed-
dings [18] are needed to exclude this cross-contamination
effect, which complicates model implementation.
For better multi-task training efficiency, we propose a

dynamic micro-batching approach to address the variable-
length input challenges. Pipeline parallelism is commonly
adopted in LLM training [25]: the large model is partitioned
into stages deployed over multiple devices; the input mini-
batch of training samples in each training iteration is par-
titioned into micro-batches, and the micro-batches are pro-
cessed across the devices in a pipelining manner. Our key
idea is that we only need to ensure similar sequence lengths
among samples within each micro-batch, but not across
micro-batches, such that we can group samples accordingly,
minimize padding and eliminate any unnecessary attention
computation or masking among unrelated samples.

Current pipeline training systems adopt uniform micro-
batch sizes, and do not efficiently support processing of
micro-batches with different sequence lengths, memory con-
sumption and execution time. We design DynaPipe, a dy-
namic micro-batching pipeline training framework that en-
ables efficient multi-task model training with different input
sequence lengths. DynaPipe automatically optimizes micro-
batching, pipeline and communication scheduling in each
training iteration. We make the following contributions in
designing DynaPipe.
⊲ We devise an efficient dynamic programming-based
method to optimize micro-batch construction, that bal-
ances the trade-off between padding reduction, computation
efficiency and memory consumption of the micro-batches.
Upon input of each mini-batch, we first sort the samples
to minimize the sequence length difference between adja-
cent samples. We then use dynamic programming to decide
optimal splits of the sorted sample list into micro-batches,
exploiting our cost model on per-iteration LLM training time
under pipeline parallelism.
⊲We propose pipeline schedules that are robust to exe-
cution time variations of the micro-batches. We iden-
tify that the commonly adopted 1F1B pipeline schedule [25]
is prone to blocking (device idling during pipeline execu-
tion) under vacillating micro-batch execution time, based
on the concept of safety stocks [5]. To mitigate the issue,
we advocate adaptive scheduling which controls the injec-
tion time of micro-batches into the pipeline. We also make
it memory-aware, maximizing training throughput while
observing device memory limits.
⊲ We design effective communication schedule to al-
low irregular communication patterns in our dynamic
pipeline. Naïve communication schedule (i.e., sending ten-
sors to the next pipeline stage immediately after produc-
tion, and receiving them just before use) causes deadlocks
in our dynamic pipelines since different processing stages
of a micro-batch are no longer scheduled tightly one after
another. We perform ahead-of-time planning, scheduling
both send and receive operations at the production time of
each tensor, which is guaranteed to be deadlock-free.

We implement DynaPipe on PyTorch [29]. Extensive evalu-
ation on the FLANv2 dataset [20] reveals up to 4.39x through-
put improvement when training T5 [30], and 3.25x when
training GPT [6], compared with packing-based baselines.

2 Background and Motivation
2.1 Multi-task model training
Modern LLMs (e.g., T5 [30]) can perform different tasks with-
out the need for task-specific model structures. To perform
multi-task training, we only need to produce a mixture of
data from different datasets. The mini-batches are then ran-
domly sampled from the dataset. The exact way to mix data

DynaPipe: Optimizing Multi-task Training through Dynamic Pipelines EuroSys ’24, April 22–25, 2024, Athens, Greece

𝐵!,#

𝐵#,#
𝐵#,#

𝐵#,!
𝐵#,!

𝐵#,!

Split

Input
(Global

minibatch)

𝐵#,$

𝐵#,%

𝐵#,#

𝐵!,#

𝐵!,%

𝐵!,$
Microbatches

Pipeline Parallel

Data
Parallel

𝐵#,!

𝐵!,!

𝐵#,!

Tensor P
arallel

𝐵#,#
𝐵#,#

Broadcast

𝐵!,!
𝐵!,!

𝐵!,!
𝐵!,!
Broadcast

𝐵!,#
𝐵!,#

𝐵!,#

Pipeline Stage 2
(Layer n+1~…)

Pipeline Stage 1
(Layer 1~n)

Gradient synchronized
between model replicas

Figure 2. Illustration of 3D parallelism and input data par-
titioning. Each square block indicates (partitioned) model
layers (operators) on a GPU. Different data parallel model
replicas are denoted with different color (within each replica,
model is partitioned through tensor and pipeline parallelism).
The input global mini-batch is split into micro-batches (each
containing different data). 𝐵𝑖, 𝑗 : the 𝑗 th micro-batch for model
replica 𝑖 .

(i.e., proportion of each dataset in the final mixture) can be
method-dependent [30].
Multi-task LLMs are commonly trained with a combina-

tion of data, tensor and pipeline parallelism (i.e., 3D paral-
lelism) to address memory pressure induced by their large
model size. With pipeline parallelism, the model layers are
partitioned among devices (stages), and a mini-batch is split
into smaller micro-batches in the batch dimension. In each
training iteration, the micro-batches are sequentially exe-
cuted with gradient accumulated across the micro-batches.
The forward and backward order for each device is deter-
mined by the pipeline schedule (e.g., 1F1B [25], where each
stage executes one forward pass and one backward pass,
alternatively). Tensor parallelism shards computation within
individual operators (e.g., matrix multiplication) to different
devices, and is agnostic to micro-batching. In data-parallel
training, the model is replicated on each device and a differ-
ent portion of the mini-batch is processed on each replica.
Fig. 2 illustrates the input partitioning with 3D parallelism.

The input samples to a multi-task model often have vastly
different sequence lengths. For efficient processing of hard-
ware accelerator such as GPUs, samples are usually batched,
forming a single input tensor. To accommodate longer se-
quences, shorter samples in a input batch need to be padded
to (at least) the length of the longest sequence in the batch.
Under extreme sequence length variations, the amount of
padding can be substantial. For example, naïve padding (padding
every sample to the length of the longest sequence in a mini-
batch) of samples from the FLANv2 [20] dataset leads to
more than 80% of padding tokens in a mini-batch. Memory
and computation resources are wasted processing the un-
used padding tokens. While sorting (bucketing) samples by

Figure 3. Computation time of a single Transformer encoder
layer in T5-11B on an A100 GPU. The execution time exhibits
super-linear growth with sequence length.

sequence length before batching can alleviate padding [28],
it destroys randomness of batch sampling and may degrade
model performance: for example, after sorting, the mini-
batches with long sequence lengths may only consist of sam-
ples from a small number of tasks (such as summarization);
such homogeneous batches may harm the performance of
the multi-task model since it harms the model’s generaliz-
ability [1, 12].

2.2 The current packing solution
To alleviate the padding problem, packing is a common so-
lution, that concatenates multiple short sequences at the
sequence dimension to form a single sequence that matches
a (predefined) maximum sequence length [30]. Individual
sequences that are longer are usually truncated. Cross con-
tamination between samples that are packed into the same
sequence may happen, since attention is calculated across
unrelated samples, affecting model prediction. Special masks
are used during self-attention [18] to prevent it, which zero
out the attention scores between unrelated samples. Since
the packed sequences have similar lengths, padding is greatly
reduced.

However, computation overhead of packed sequences may
increase substantially with the maximum sequence length.
The computation complexity of self-attention increases quadrat-
ically with sequence length [34]. Fig. 3 shows super-linear
increase in computation time of a Transformer layer (an LLM
is often a stack of Transformer layers) with the sequence
length. Training throughput of the whole model is given in
Fig. 4, when training GPT [6] and T5 [30] on the FLANv2
dataset. We observe more than 50% throughput decrease
when the maximum sequence length increases from 512 to
8192, while the total number of non-padding tokens only
increases by 13.2% (due to less truncation).

We advocate dynamicmicro-batching that adapts the num-
ber of micro-batches and micro-batch sizes in each training
iteration according to the input data, to efficiently tackle
the variable sequence length problem. By grouping samples
with similar sequence lengths into the same micro-batch,
we reduce the amount of padding needed without introduc-
ing unnecessary attention computation as in packing. Fig. 4

EuroSys ’24, April 22–25, 2024, Athens, Greece Chenyu Jiang, Zhen Jia, Shuai Zheng, Yida Wang, and Chuan Wu

512 1024 2048 4096 8192
Maximum Sequence Length

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 (N

or
m

al
iz

ed
)

Packing
Dynamic Micro-batching

512 1024 2048 4096 8192
Maximum Sequence Length

0.0

0.2

0.4

0.6

0.8

1.0

P
ad

di
ng

 E
ffi

ci
en

cy

Naive Padding
Packing
Dynamic Micro-batching

(a) GPT

512 1024 2048 4096
Maximum Sequence Length

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 (N

or
m

al
iz

ed
)

Packing
Dynamic Micro-batching

512 1024 2048 4096
Maximum Sequence Length

0.0

0.2

0.4

0.6

0.8

1.0
P

ad
di

ng
 E

ffi
ci

en
cy

Naive Padding
Packing
Dynamic Micro-batching

(b) T5

Figure 4. GPT and T5’s training performance under packing
and dynamic micro-batching.

gives preliminary comparison of the dynamic batching ap-
proach (withmicro-batches split using our dynamic program-
ming method) with packing under the same settings. The
padding efficiency is computed by dividing the non-padding
tokens by the total number of tokens processed (padding
and non-padding). Dynamic micro-batching achieves com-
parable padding efficiency as packing and better training
throughput, which only slightly drops when the maximum
sequence length increases.

2.3 Challenges of dynamic micro-batching
⊲ No principled way to split training mini-batches into
micro-batches of different sequence lengths. Most cur-
rent pipeline training systems use micro-batches of exactly
the same shape: the same number of samples per micro-batch
(i.e., the samemicro-batch size) and the same sequence length
among samples in the micro-batches (padded or packed se-
quences in case of different sequence lengths). Other possible
methods include generating micro-batches of the same to-
ken count, so that there are fewer samples in micro-batches
of larger sequence lengths. Fig. 5 shows training through-
put under the two micro-batching methods. Using a uni-
formmicro-batch size leads to out-of-memory errors (OOMs)
when the micro-batch size increases and the maximum se-
quence length is large; when the maximum sequence length
is small, the performance first improves due to the increase
in computation efficiency, and then drops because of more
padding at larger micro-batch sizes. Equal token count-based
micro-batching achieves much better training throughput,
while still experiencing OOM before reaching the highest
throughput during T5 training.

32 64 128 256 512 1024204840968192
Micro-batch Tokens

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 (N

or
m

al
iz

ed
) DP Solution

Max Seq Len
512
1024
2048
4096
8192

0 10 20 30 40 50 60 70
Micro-batch Size

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 (N

or
m

al
iz

ed
) DP Solution Max Seq Len

512
1024
2048
4096
8192

(a) GPT

32 64 128 256 512 1024 2048 4096
Micro-batch Tokens

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 (N

or
m

al
iz

ed
) DP Solution

Max Seq Len
512
1024
2048
4096

0 10 20 30 40 50 60 70
Micro-batch Size

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 (N

or
m

al
iz

ed
) DP Solution Max Seq Len

512
1024
2048
4096

(b) T5

Figure 5. Training performance of GPT and T5 under dif-
ferent micro-batching methods. Left figures show results
for token-based micro-batching, and right figures are for
micro-batching using fixed micro-batch size. All throughput
values are normalized over that achieved by our dynamic
programming (DP)-based micro-batching method.

We observe that the choice of micro-batch size or the to-
ken number in the two methods greatly affects the training
throughput. We design an efficient dynamic programming-
based algorithm to decide optimal micro-batching in each
training iteration, that strikes a good trade-off between padding
efficiency, computation efficiency and memory consumption.
⊲ No efficient pipeline schedules for micro-batches of
diverse execution times. Most existing pipeline schedules
(e.g., 1F1B [25]) assume identical execution time of micro-
batches, and schedule micro-batch processing over consecu-
tive stages tightly one after another (Fig. 6a). In this way, any
variation in micro-batches’ execution time may cause block-
ing (computation/communication waiting for communica-
tion/computation), creating more “bubbles” in the training
pipeline (Fig. 6b).
To further quantify the effect of variable micro-batch ex-

ecution time on 1F1B schedule, we randomly disturb the
execution time of the micro-batches (assumed to be uniform
originally) by noises from a zero-mean Gaussian distribu-
tion. Fig. 7 shows that the per-iteration training time with
1F1B schedule grows rapidly as the variation level increases,
especially when there are more pipeline stages.
We present a scheduling algorithm that is more robust

to dynamic micro-batches, as shown in Fig. 7. However, to
achieve a higher throughput, it consumes more memory than
1F1B. We make the algorithm memory-aware, so it achieves
higher throughput than 1F1B when memory is abundant,

DynaPipe: Optimizing Multi-task Training through Dynamic Pipelines EuroSys ’24, April 22–25, 2024, Athens, Greece

(a) 1F1B (uniform micro-batches)

(b) 1F1B (dynamic micro-batches)

(c) Adaptive Schedule

(d) Adaptive Schedule & Micro-batch Reordering

Figure 6. Pipeline training under dynamic micro-batching
(except 6a) with different pipeline schedules.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Standard Deviation

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6

N
or

m
al

iz
ed

 M
ak

es
pa

n

Stages
2
4
8
16

Schedule
1F1B
Adaptive

Figure 7. Per-iteration training time (makespan) of different
pipeline schedules under different variation levels of micro-
batch execution time. X axis is the standard deviation of the
introduced variation (zero-mean Gaussian). The makespan
is normalized over the no variation case.

while automatically limiting memory consumption under
high memory pressure.
⊲ Improper communication order between pipeline
stages may lead to deadlocks in dynamic pipelines.
Current pipeline systems send an intermediate tensor to the
next stage right after its production, and launch the receive
operation of the tensor just before it is used, when applying
1F1B schedule. Since there is no gap between consecutive
execution stages of a micro-batch in 1F1B schedule, the send
and receive ops naturally align in time. As shown in Fig. 8a,
each crossing of arrows (a pair of sends in reverse direction)
can be implemented by a fused communication operator.
However, our pipeline schedule is different for each iteration
and can produce irregular communication patterns where
execution of consecutive stages of the same micro-batch are

(a) Regular communication pattern of 1F1B schedule.

(b) Irregular and dynamic communication pattern of dynamic
pipelines. Red arrows indicate communications which can trig-
ger deadlock if not scheduled correctly (only one shown for each
pair of devices).

Figure 8. Difference in communication pattern between
1F1B (with uniform micro-batches) and DynaPipe schedules.
Green (blue) blocks denote backward (forward) computa-
tion. Blue and orange arrows indicate the communication
of activations during forward pass and gradients during the
backward pass, respectively.

scheduled far apart (Fig. 8b), causing deadlocks for naïve
communication schedule (i.e., start sending whenever the
result of a stage is ready and start receiving whenever previ-
ous stage’s result is needed). For example, the uppermost red
arrows in Fig. 8b shows device 1 sending the activation of
micro-batch 0 to device 2, while at the same time, device 2 is
trying to send the gradient of micro-batch 7 to device 1. How-
ever, under naïve schedule, device 1 will continue to send
the activation of micro-batch 1 to device 2 before launching
a corresponding receive for micro-batch 7. Since only one
communication operation can happen between each pairs of
devices (required by libraries like NCCL [27]), this creates
a communication order mismatch thus can result in dead-
locks (fusing of communication ops like in 1F1B scheduling
is also infeasible due to the extra sending of the activation
of micro-batch 1).
We reorder the send and receive operations to resolve

deadlocking. For example, we can make Device 1 receive
micro-batch 0’s activation before it sends micro-batch 7’s
gradient, and make Device 1 receive micro-batch 7’s gra-
dient before it sends micro-batch 1’s activation. Given a
pipeline schedule, we schedule both send and receive op-
erators together when an intermediate tensor is produced,
ensuring the communication order is consistent across dif-
ferent stages.

3 DynaPipe Overview
We propose DynaPipe to enable efficient pipeline training of
multi-task models with dynamic micro-batching. DynaPipe
comprises of two main modules: (1) Planners that run on
CPUs, perform optimization and generate execution plans
for each training iteration; (2) Executors that retrieve and

EuroSys ’24, April 22–25, 2024, Athens, Greece Chenyu Jiang, Zhen Jia, Shuai Zheng, Yida Wang, and Chuan Wu

Executors

ForwardPass

BackwardPass

SendActStart

RecvActStart

WaitRecvAct
…

Instruction
Implementations

Fetches
Micro-batch

Partition

…
Micro-batches

Schedule
Optimization

Communication
Planning

Stage 1 Stage 2 Stage 3

Instructions for each
pipeline stage

Planners

Distributed
Instruction Store

Machine 0

Executor
0

GPU0 GPU1 GPU2 GPU3

User Dataset

…
Micro-batch

execution order

Prefetch

Distributed
Instruction Store

Sequentially
executes

Distributed Instruction Store

Machine 1

CPUs: Planner 1

GPU0 GPU1 GPU2 GPU3

CPUs: Planner 0

Memory Cost Model Execution Time Cost Model

Modules
Physical View

Executor
1

Executor
2

Executor
3

Executor
4

Executor
5

Executor
6

Executor
7

Figure 9. System architecture of DynaPipe.

execute the assigned execution plans on the GPUs. A sys-
tem overview of DynaPipe is given in Fig. 9. We detail the
components and terminologies used in our design as follows.
Execution plans specify micro-batch splitting, pipeline ex-
ecution schedule, the communication order and the shape of
all communicated tensors on each executor (GPU). They are
represented as sequences of pipeline instructions, following
the design principle of DeepSpeed [22]. The pipeline instruc-
tions include ForwardPass, BackwardPass, which executes the
forward/backward computation for a micro-batch, SendAct,
RecvAct, SendGrad, RecvGrad, which sends/receives model
activation/gradients. These pipeline instructions abstract key
operations (ops) in pipeline-parallel training.We further split
every type of communication into two conjugate pipeline
instructions: a Start op (e.g., RecvActStart), which launches
the communication into an asynchronous GPU communica-
tion stream, and aWait op (e.g.,WaitRecvAct), which adds
a dependency between the communication stream and the
computation stream, allowing computation to wait for the
result of communication. The instruction abstraction allows
flexible pipeline scheduling and communication planning.
Planners pre-fetch training data from user-provided dataset.
For each mini-batch of training samples, a planner splits the
mini-batch into micro-batches using our dynamic program-
ming algorithm (§4). It then generates an optimized pipeline

execution schedule (§5) and decides the appropriate execu-
tion order of communication between pipeline stages (§6),
along with the shapes of the communicated tensors. All the
above decisions are compiled into an execution plan and
pushed to a distributed instruction store in the host memory
of one of the machines (e.g., machine 0), ready to be fetched
by corresponding executors.
Executors retrieve execution plans from the instruction
store and executes the pipeline instructions in the order spec-
ified in the execution plans using the underlying deep learn-
ing framework (e.g., Megatron-LM [26] and PyTorch [29]).
Cost models estimate the execution time and memory con-
sumption of a single layer of the model executing a micro-
batch under different micro-batch sizes and sequence lengths
on a single GPU. They are used to guide all decisions in the
planners. To construct these cost models, we run memory
consumption and execution time profiling for both forward
and backward passes under different combinations of micro-
batch size and sequence length at power-of-two intervals
(e.g., micro-batch size of 1, 2, 4, etc, and sequence length of
32, 64, 128, etc). For training with only data and pipeline
parallelism, single-GPU profiling is sufficient since the com-
munication cost is constant (under different micro-batch size
and sequence lengths) for data parallelism and very small
for pipeline parallelism. Tensor parallelism profiling runs
multi-GPUs to capture the significant communication cost.
Linear interpolation is used to bridge the gaps between sam-
pled data points. We show that this simple cost modeling
suffices to provide good estimation of execution time and
peak memory consumption for training iterations in Sec. 8.6.
To hide the plan generation overhead, we overlap model

execution and the execution plan generation of future itera-
tions in DynaPipe, as planners and executors run on differ-
ent hardware resources. We exploit the abundance of CPU
cores to parallelize plan generation on a machine. When the
training is run on multiple machines, DynaPipe distributes
execution plan generation of distinct training iterations to
different machines.

4 Micro-batch Construction
In each training iteration, micro-batching samples of differ-
ent sequence lengths should attend to the trade-offs among
padding, computation time,memory consumption and pipeline
bubble size, for throughput maximization without OOM. We
present an algorithm to optimize micro-batch partitioning.
Model the iteration time under pipeline parallelism.
We group a set of 𝑁 input sequences (samples), S, in the
current training iteration into a set of micro-batches, 𝝅 =

{M1,M2, · · · ,Mm}, whereMi ⊆ S represents a micro-batch
and Mi’s are disjoint. Let 𝑡𝑓 (Mi) (𝑡𝑏 (Mi)) be the forward
(backward) pass execution time of micro-batch 𝑖 obtained
from the cost model, and let 𝑡 (Mi) = 𝑡𝑓 (Mi) + 𝑡𝑏 (Mi). Let
𝑐 be the number of pipeline stages. The execution time of

DynaPipe: Optimizing Multi-task Training through Dynamic Pipelines EuroSys ’24, April 22–25, 2024, Athens, Greece

0
0

0
0

1
1

1
0

2

1 1 2

3
3

3
3 3

𝑐 − 1 ⋅ 𝑡!(𝑴𝟎) 𝑐 − 1 ⋅ 𝑡#(𝑴$𝟏)) 𝑡(𝑴)
𝑴𝒊∈(

Stage 1
Stage 2
Stage 3
Stage 4

2
2 0

0
0

2
1

1
1

2
2

2

3
3

3

(1) (2) (3)

Figure 10. Approximation of pipeline execution time. 𝑐 : the
number of pipeline stages, 𝑐 = 4 in this example.M0,M−1: the
first and the last micro-batch. 𝑡𝑓 (M), 𝑡𝑏 (M): the forward and
backward execution time of micro-batchM. 𝑡𝑓 (M) + 𝑡𝑏 (M) =
𝑡 (M).

the entire pipeline can be modelled in three parts (Fig. 10):
(1) the time for the forward pass of the first micro-batch
(M0) to reach the last stage, (𝑐 − 1) · 𝑡𝑓 (M0); (2) the execu-
tion time of all micro-batches on the last stage,

∑
M𝑖 ∈𝜋 𝑡 (M);

(3) the time for the backward pass of the last micro-batch
(M−1) to reach the first stage, (𝑐 − 1) · 𝑡𝑓 (M−1). However,
under dynamic micro-batching where the execution time
of micro-batches differs, 𝑡𝑓 (M0) and 𝑡𝑏 (M−1) is determined
by the exact pipeline schedule which we do not know in
advance. Therefore we model 𝑡𝑓 (M0) and 𝑡𝑏 (M−1) using
the execution time of longest micro-batch, so the total ex-
ecution time of part (1) and (3) can be approximated as
(𝑐 − 1) · max{𝑡 (Mi) |Mi ∈ 𝝅 }. The iteration time is thus
𝑡𝑖𝑡𝑒𝑟 = (𝑐 − 1) ·max{𝑡 (Mi) |Mi ∈ 𝝅 } +

∑
Mi∈𝝅 𝑡 (Mi). We seek

to derive the best micro-batch assignment 𝝅 that minimizes
the iteration time, i.e., maximizes the training throughput:

min
𝝅

{
(𝑐 − 1) ·max{𝑡 (Mi) |Mi ∈ 𝝅 } +

∑︁
Mi∈𝝅

𝑡 (Mi)
}

(Eq1)

Determine the order of samples. The problem of assign-
ing samples into disjoint sub-sets (micro-batches) while op-
timizing an objective (throughput) belongs to the family of
set partitioning problems (SPP), which is NP-hard [17]. We
simplify the problem by ordering the samples first and then
grouping consecutive samples into micro-batches using a
dynamic programming (DP) approach.

For sample ordering, a natural intuition is that to minimize
padding, micro-batches should contain samples with similar
sequence lengths. For decoder-only models (e.g. GPT [6]),
sorting the samples according to their sequence lengths suf-
fices. For encoder-decoder models like T5 [30] with multiple
input sequences (i.e. a input sequence processed by encoder,
and a target sequence fed into the decoder), we can sort
the samples first by the length of the input sequence and
then by the target sequence. Alternatively, we can take the
pair of input and target sequence lengths as a 2D point, and
find a visiting order that minimizes the sum (or maximum)
of distances between adjacent points. This can be solved
by an off-the-shelf Travelling Salesmen Problem solver. We
compare the two methods to order samples in Sec. 8.4.

Partition ordered samples with dynamic programming.
Now we have an ordered list of samples S = [s1, s2, · · · , sN].
We construct a DP algorithm to optimally partition the list.
Let 𝝅∗S[:n] represent the optimal partition of the first 𝑛 sam-
ples in S, which minimizes the total execution time of the
resulting micro-batches. Let 𝑓 (𝑛; 𝑡𝑚𝑎𝑥) =

∑
Mi∈𝝅∗S[:n]

𝑡 (Mi),
where 𝑡𝑚𝑎𝑥 denotes the maximum micro-batch execution
time. We have

𝑓 (𝑛; 𝑡𝑚𝑎𝑥) = min
1≤𝑖≤𝑛−1

{𝑓 (𝑖; 𝑡𝑚𝑎𝑥)+

𝑡 (MS[i+1:n]) |𝑡 (MS[i+1:n]) ≤ 𝑡𝑚𝑎𝑥 } (Eq2)

where MS[i+1:n] denotes the micro-batch that is constructed
from samples si+1, si+2, · · · , sn. To find the best micro-batch
partitions minimizing (Eq1), we only need to find 𝑡𝑚𝑎𝑥 that
minimizes (𝑐−1) ·𝑡𝑚𝑎𝑥 + 𝑓 (𝑁 ; 𝑡𝑚𝑎𝑥). There are𝑂 (𝑁 2) unique
possible 𝑡𝑚𝑎𝑥 values, since there are at most 𝑁 (𝑁+1)

2 ways to
construct a single micro-batch by consecutively partition-
ing S. For each 𝑡𝑚𝑎𝑥 , finding 𝑓 (𝑁 ; 𝑡𝑚𝑎𝑥) takes 𝑂 (𝑁 2) steps.
Therefore, the computation complexity of this DP approach
is𝑂 (𝑁 4). With input sequences in multi-task model training,
many 𝑡𝑚𝑎𝑥 values are very similar to each other. We may
greatly speed up the DP algorithm by sampling 𝑡𝑚𝑎𝑥 at fixed
intervals (in our evaluation, we only consider possible 𝑡𝑚𝑎𝑥

values 5𝑢𝑠 apart from each other).
Balance data parallel model replicas. The above al-
gorithm splits an input mini-batch into micro-batches for
execution in a single pipeline. When the pipeline training is
combined with data parallelism, the micro-batches should
also be distributed among different data-parallel model repli-
cas, balancing the execution time between all pipelines. We
extend our micro-batching algorithm to handle hybrid data
and pipeline parallel training. Let 𝝅𝒅 ⊆ 𝝅 be the collection of
micro-batches for model replica 𝑑 . The iteration time under
hybrid data and pipeline parallelism becomes

𝑡
𝑑𝑝𝑝

𝑖𝑡𝑒𝑟
= max

𝑑

{
(𝑐 − 1) ·max{𝑡 (Mi) |Mi ∈ 𝝅𝒅} +

∑︁
Mi∈𝝅𝒅

𝑡 (Mi)
}
,

which denotes the maximum execution time across all data
parallel model replicas. We minimize its upper bound

(𝑐 − 1) ·max{𝑡 (Mi) |Mi ∈ 𝝅 } +max
𝑑

{ ∑︁
Mi∈𝝅𝒅

𝑡 (Mi)
}

in our micro-batching. The first term is the same as that in
(Eq1), and the second term is the maximum total micro-batch
execution time amongmodel replicas. Minimizing the second
term is not easy, since it requires solving another subset par-
tition problem, which is NP-hard [17]. We approximate the
second term using the tight lower bound 1

|D |
∑

Mi∈𝝅 𝑡 (Mi),
which is achieved when the total micro-batch execution time
is equal across all model replicas. Then, the approximated

EuroSys ’24, April 22–25, 2024, Athens, Greece Chenyu Jiang, Zhen Jia, Shuai Zheng, Yida Wang, and Chuan Wu

objective to minimize becomes

min
𝝅

{
(𝑐 − 1) ·max{𝑡 (Mi) |Mi ∈ 𝝅 } +

1
|D|

∑︁
Mi∈𝝅

𝑡 (Mi)
}
.

Comparing it with (Eq1), the only difference lies in the con-
stant 1

|D | in the second term. Therefore, we can optimize
this objective using the same DP algorithm: we first solve
for micro-batch partitioning to minimize the above objec-
tive, and then partition resulting micro-batches among data
parallel replicas to minimize max𝑑

{∑
Mi∈𝝅𝒅

𝑡 (Mi)
}
, by (ap-

proximately) solving the subset partition problem using the
Karmarkar–Karp algorithm [16].
Limit memory consumption. In pipeline parallel train-
ing, the peak memory consumption (in 1F1B scheduling) is
determined by the maximum accumulated activation dur-
ing a sliding window of 𝑐 micro-batches, since on the 𝑛th
device, it executes 𝑐 + 1 − 𝑛 forward passes, followed by
regular backward-forward cycles. Such a sliding window
introduces dependency between micro-batching decisions,
which destroys the optimal substructure property of DP.
Therefore, we resort to limiting the memory consumption of
every micro-batchMS[i+1:n] during DP, i.e., only considering
MS[i+1:n]s that do not violate memory limit in (Eq2). The per-
micro-batch memory limit is related to the pipeline schedule.
In 1F1B schedule, the per-micro-batch memory limit is set to
1
𝑐
of the device memory limit. In the next section, we show

different schedules with different such factors ranging from
1 to 1

𝑚
(m is the number of micro-batches).

5 Pipeline Execution Schedule
We analyze pipeline execution performance under dynamic
micro-batching and propose pipeline schedules for better
throughput under non-uniform micro-batch execution time.
Analysis of pipeline execution performance. Let op 𝑓𝑖, 𝑗
(𝑏𝑖, 𝑗) denote the forward (backward) computation of micro-
batch 𝑖 on the 𝑗th device. We associate a virtual buffer with
each device, containing the ops ready for execution on it
(i.e., whose proceeding forward/backward stages have been
completed). Ops are removed from this buffer when its exe-
cution on the device starts. Whenever device 𝑗 has executed
an op 𝑓𝑖, 𝑗 or 𝑏𝑖, 𝑗 , the op of the next stage, 𝑓𝑖, 𝑗+1 (𝑏𝑖, 𝑗 for the
final forward stage) or 𝑏𝑖, 𝑗−1 is added to the buffer of the
corresponding device (𝑗 + 1 or 𝑗 − 1). Ops in this buffer are
called safety stocks of that device, in the scheduling litera-
ture [5]. To prevent device idling, it is essential to maintain
non-empty safety stocks when the device has executed an
op and is ready for the next. In 1F1B scheduling shown in
Fig. 11a, only the first stage has 7 safety stocks initially since
all micro-batches are ready for execution (no dependencies
on prior stages); its safety stock gradually depletes as more
micro-batches are executed. For all other stages, the number
of safety stocks is zero throughout the steady states (the
period where forwards and backwards are closely packed

(a) 1F1B schedule, with zero safety stock across the steady state.

(b) Adaptive schedule which injects 7 micro-batches in the begin-
ning, with 1 safety stock across the steady state.

(c) Adaptive schedule with peak memory limited to 3 micro-batch
activations. Micro-batch 3 and 6 are delayed due to memory limit.

Figure 11. The trade-off between safety stock size (orange
row for each device) and memory consumption (green row)
under different pipeline schedules.

and follows strict one-forward-one-backward order). This is
because 1F1B schedules consecutive stages closely together
without any gap time in between. Whenever the previous
stage finishes executing an micro-batch (and thus the added
to the safety stock of the current stage), the current stage
will immediately start the computation of this micro-batch,
resulting in a net zero change in safety stock level. With zero
safety stocks, any deviation in micro-batch execution time
will result in device idling.
Schedules robust for dynamicmicro-batching. We seek
a pipeline execution schedule that maintains more safety
stocks at each device. The problem of micro-batch execution
scheduling can be viewed as a special type of the re-entrant
flow shop problem [13] (i.e., scheduling jobs onto machines
where each job follow the same process route through the
machines; a machine can be used more than once by a job),
since all our micro-batches passes through the devices fol-
lowing the same routine (perform forward computation once
on each stage, then follow the reverse route backward).
Cyclic scheduling is an algorithm that has demonstrated

commendable performance in solving re-entrant flow shop

DynaPipe: Optimizing Multi-task Training through Dynamic Pipelines EuroSys ’24, April 22–25, 2024, Athens, Greece

problems [5]. Under cyclic scheduling, execution on each de-
vice is divided into cycles; in each cycle, each device tries to
execute exactly one forward pass and one backward pass of
any micro-batch. Each device maintains two buffers of ready
ops (forward and backward), and fetches an op to execute
from each buffer in each cycle. If no ops are available, the cor-
responding forward or backward pass is skipped. Like 1F1B
schedule, cyclic schedule will interleave forward and back-
ward pass of micro-batches during the course of scheduling.
However, unlike 1F1B schedule which fixes the execution
order of all micro-batches regardless of their execution time
and memory consumption, cyclic schedule provides us with
a systematic way of controlling when micro-batches should
be injected into the pipeline during the scheduling process
(We can mark all micro-batches as not “ready” on the first
stage during initialization. To inject a micro-batch, we insert
it into the buffer of ready forward ops on the first device). We
refer to such micro-batch-injection-regulated cyclic sched-
ules as adaptive scheduling, since the injection time can be
adjusted adaptively for different input micro-batches.
Micro-batch injection time in turn affects the level of

safety stocks. For example in Fig. 11b, if we inject more
micro-batches into the pipeline at the beginning, we raise
the number of safety stock to one at each device during the
steady state. This means at least one micro-batch is ready for
execution for each device, therefore, a device will not idle
even if the previous stage does not produce the activations in
time (e.g., when executing a large micro-batch). The increase
in safety stock level leaves room for variations in execution
time of the micro-batches.
Optimizing trade-off between time and memory. In-
jecting more micro-batches also increases the memory con-
sumption, since devices need to accumulate more activations
in memory. In Fig. 11b, since 7 micro-batches are injected
at the beginning of the schedule (compared to 4 in 1F1B),
the activation memory of maximum 7 micro-batches needs
to be accumulated. Conversely, we can reduce memory con-
sumption by delaying micro-batch injection until previously
accumulated activations are freed up by the backward pass.
In Fig. 11c, we delay the injection of memory-consuming
micro-batches 3 and 6 until backward pass of micro-batches
0 to 2 and 3 to 5 have been executed, freeing up more activa-
tion memory. This reduces the peak accumulated activation
to 3 micro-batches.
Memory-aware adaptive scheduling algorithm. To
maximize throughput while limiting peak memory consump-
tion, we dynamically decide the injection or delayed execu-
tion of micro-batches in the pipeline. We give our memory-
aware adaptive scheduling in Alg. 1. During execution sched-
uling, each device keeps track of the current memory con-
sumption (lines 9, 15). On scheduling a forward pass of a
micro-batch, if memory consumption exceeds the device

Algorithm 1:Memory-aware Adaptive Scheduling
Inputs :𝐶 - the number of devices (stages),𝑀 - the

number of micro-batches, 𝑎𝑖, 𝑗 - activation
memory of micro-batch 𝑖 on the 𝑗th device;
𝑙 𝑗 - memory limit of device 𝑗

Outputs :𝑂 𝑗 - micro-batch execution order on device
𝑗

1 𝑂 𝑗 ← [],∀𝑗 ∈ [1,𝐶]
/* Op buffers 𝑆

𝑓

𝑗
, 𝑆𝑏

𝑗
, current memory 𝑚 𝑗 for device 𝑗 */

2 𝑆
𝑓

𝑗
, 𝑆𝑏𝑗 ← [],𝑚 𝑗 ← 0,∀𝑗 ∈ [1,𝐶]

/* Initialize forward buffer on device 1 */

3 𝑆
𝑓

1 ← [𝑎1,1, 𝑎2,1, . . . , 𝑎𝑀,1]
4 while ∃ 𝑗 s.t. 𝑆 𝑓

𝑗
≠ [] or 𝑆𝑏𝑗 ≠ [] do

/* New ops unlocked this cycle */

5 𝑁
𝑓

𝑗
, 𝑁𝑏

𝑗 ← [],∀𝑗 ∈ [1,𝐶]
6 foreach device 𝑗 do
7 if 𝑆𝑏𝑗 ≠ [] then // Schedule a backward op

8 𝑎𝑖, 𝑗 = 𝑆𝑏𝑗 .pop(0) // get first op in buffer

9 𝑚 𝑗 -= 𝑎𝑖, 𝑗 // update memory

10 𝑂 𝑗 += (𝑖, ‘B’) // record op order

11 append next stage op to corresponding
𝑁𝑏

𝑗∗ , if exists
12 if 𝑆 𝑓

𝑗
≠ [] then // Schedule a forward op

13 𝑎𝑖, 𝑗 = 𝑆
𝑓

𝑗
.pop(0) // get first op in buffer

14 if 𝑚 𝑗 + 𝑎𝑖, 𝑗 < 𝑙 𝑗 then
15 𝑚 𝑗 += 𝑎𝑖, 𝑗 // update memory

16 𝑂 𝑗 += (𝑖, ‘F’) // record op order

17 append next stage op to the
corresponding 𝑁

𝑓

𝑗∗ or 𝑁
𝑏
𝑗∗ , if exists

18 else
19 𝑆

𝑓

𝑗
.prepend(𝑎𝑖, 𝑗)

20 𝑆
𝑓

𝑗
← 𝑆

𝑓

𝑗
+ 𝑁 𝑓

𝑗
, 𝑆𝑏𝑗 ← 𝑆𝑏𝑗 + 𝑁𝑏

𝑗

memory limit, the device will skip forward passes until back-
ward passes have freed up enough memory to avoid OOM
(line 14). In this way, the training can continue without OOM
as long as the activation of one single micro-batch fits into
device memory.
Micro-batch ordering. Ourmemory-aware adaptive sched-
ule algorithm assumes an ordered list of micro-batches as
input. The injection order of micro-batches could also im-
pact throughput due to variations in micro-batch execution
time. Owing to the complexity of the scheduling problem,
modeling this effect, let alone optimizing it, is considerably
challenging. We address this issue by clustering the micro-
batches by predicted execution time (using our cost model),
assuming that micro-batches with similar execution time
should be scheduled in proximity, and permute execution

EuroSys ’24, April 22–25, 2024, Athens, Greece Chenyu Jiang, Zhen Jia, Shuai Zheng, Yida Wang, and Chuan Wu

Stage 1

Stage 2

A

B

B

A

A

B

Stage 1 Comm Order

Stage 2 Comm Order

Recv
Grad

Start(B)

Send
Act

Start(A)

Recv
Act

Start(A)

Send
Grad

Start(B)

Wait
Recv

Grad(B)

Wait
Recv
Act(A)

Comm

Window for B’s communication

Window for A’s communication

Figure 12. Planning the order of send and receive operations
using simulated execution timeline.

order of the resulting clusters to find the best order attaining
highest throughput. We find that merely 3 or 4 clusters are
adequate to attain satisfactory performance (i.e., throughput
increase is insignificant when further increasing the number
of clusters) through empirical study.

6 Communication Planning
Given the micro-batches and their execution order in a train-
ing iteration, we further generate a communication plan
specifying the order of all communication between pipeline
stages (i.e., sending activation to the next stage and receiv-
ing gradient from the previous stage for each micro-batch
at each stage). To avoid deadlocking, we need to make sure
that all pairs of sends and receives are executed in the same
order on adjacent stages. We guarantee this by scheduling
both send and receive operations together at the time where
the tensor to be sent is generated.
Specifically, we simulate a device computation timeline

using the pipeline schedule generated in Sec. 5 and the micro-
batch execution time cost model, as shown in Fig. 12. Then,
we iterate through operations (ops) in the timeline (forward
and backward of micro-batches) in ascending order of their
end time, while maintaining a queue for each pipeline stage
to record the communication order. Upon processing each
op, we push the corresponding send Start op (SendActStart
for forward passes, and SendGradStart for backward passes)
into the queue of the executing stage. At the same time,
we also insert the matching receive Start op into the re-
ceiver’s queue. The leftmost two vertical orange lines in
Fig. 12, demonstrates this process.
To minimize blocking, we schedule the corresponding

Wait ops as late as possible, i.e. we only add Wait ops be-
fore computations that consume the received tensor (the last
two orange lines in Fig. 12). This maximizes the time win-
dow in which communication can execute without blocking
computation.
The pipeline execution and communication schedule is

specified as a sequence of instructions for each device. We
then calculate the shapes of the communicated tensors based

on the shape of input micro-batches and the model architec-
ture, and include the shapes in the generated instructions to
avoid exchanging them at runtime.

7 Implementation and Other Optimizations
DynaPipe is implemented using 10K LoC in Python, with
additional 500 LoC in C++ for accelerating the DP algorithm.
We use Redis [21] as our distributed instruction store. Com-
munication in pipeline training is implemented based on Py-
Torch’s distributed communication package with NCCL [27]
backend. We implement the set of instructions in around
400 LoC in Megatron-LM [26] with PyTorch nightly version
2.1.0.dev20230322+cu117. We further enable ZeRO [31] op-
timizer by integrating Megatron-LM with DeepSpeed [22]
version 0.9.1 since it’s often used together with data par-
allelism. We adopt the Megatron-LM’s implementation for
data and tensor parallelism while apply DynaPipe to replace
its pipeline modules, enabling training with mixed 3D paral-
lelism.
To leverage DynaPipe with Megatron-LM, users can di-

rectly reuse existing training scripts with additional argu-
ments specifying configurations for DynaPipe (e.g., the de-
vicememory limit and the number of CPU cores to use during
planning). To extend DynaPipe to frameworks other than
Megatron-LM, users only need to implement the pipeline
instructions in the framework.
Dynamic recomputation. Activation checkpointing (re-
computation) [7] is a widely-used technique to reduce mem-
ory consumption during DNN training, by recomputing the
activations during backward pass instead of storing them.
However, they come with extra computation cost. There are
also multiple ways to apply recomputation (e.g., [26]), result-
ing in different trade-offs between training throughput and
memory consumption. Under dynamic micro-batching, the
peak memory consumption in different training iterations
varies; thus we dynamically decide the best recomputation
scheme for each iteration (i.e., the one with the least compu-
tation overhead without triggering OOM). This is achieved
by repeating scheduling and micro-batch partitioning un-
der different assumptions for recomputation method (using
different cost-models).
Reducingmemory fragmentation. Dynamic tensor shapes
exacerbate the pressures to caching memory allocators (e.g.,
in PyTorch) since their dynamic memory requirement causes
frequent cache misses. Under memory pressure, we some-
times observe blocking cudaMalloc’s and cudaFree’s during
training, which are caused by the allocator failing to find
a usable memory block and PyTorch’s effort to defragment
GPUmemory. To reduce training slow-down caused by these
blocking operations, we instruct PyTorch to use a single uni-
fied memory pool to manage all CUDA memory, and pre-
allocate all GPU memory into the pool before training starts.

DynaPipe: Optimizing Multi-task Training through Dynamic Pipelines EuroSys ’24, April 22–25, 2024, Athens, Greece

This eliminates the need for allocating (and freeing) CUDA
memory during runtime.

8 Evaluation
Testbed Set-up We conduct our experiments in a cluster
of 4 Amazon EC2 p4d.24xlarge instances (32 GPUs in total).
Each p4d node is equipped with 8 NVIDIA A100 (40GB)
GPUs and 96 vCPU cores. NVSwitch connects the GPUs
within each node, and the nodes are connected by a 400Gbps
network with EFA [3] enabled.
DNNs We evaluate DynaPipe by training two popular LLM
models: GPT [6] (decoder-only architecture) and T5 [30]
(encoder-decoder architecture). We evaluate each model on
four different cluster sizes, with the model size scaling ac-
cordingly. For GPT, we scale the model parameters following
the configuration in the GPT-3 paper [6]. For T5, since T5-
11B is already the largest model specified in its paper and its
hidden size in feed forward layers is huge, we simply scale
the number of layers. We list the detailed model specifica-
tions in Table 1.
Dataset We use the zero-shot version of the FLANv2 [20]
dataset in our experiments, which consists of 1836 different
tasks and is one of the largest public multi-task training data
collections. The full dataset contains 15M training samples.
To reduce evaluation costs, we randomly down-sample it to
100K samples. All our metrics reported are collected during
one epoch of training on the down-sampled dataset.
Baselines We use Megatron-LM integrated with Deep-
Speed (MLM+DS) as the training system baseline, which
implements packing (i.e., pack multiple sample into the same
sequence so the resulting sequence length matches the spec-
ified maximum sequence length). For each experiment, we
grid search through common 3D parallelism combinations
(power of twos in each of the data, tensor and pipeline paral-
lel dimensions, with tensor parallelism limited to intra-node
only) for both baselines and DynaPipe to use on the given
cluster configuration. DynaPipe implements 3D parallelism
by reusing the data and tensor parallel implementation of
Megatron-LM, but replacing its pipeline modules with our
executor. For baselines, we grid search common combinations
of micro-batch size and activation checkpointing strategy,
and report the best results.
Metrics We report the system throughput in terms of actual
tokens processed, which does not count the padding tokens.
Specifically, throughput is calculated by dividing the total
number of tokens in the training dataset by the amount of
time needed for one epoch of training.

8.1 Throughput under sequence length scaling
We fix the global batch size (i.e., size of the input mini-batch
in each training iteration, to be divided among devices if data
parallelism is used) to 65536 tokens and vary the maximum

sequence length allowed in the dataset (sequences that are
longer are truncated). Since the baseline (MLM+DS) and Dy-
naPipe may achieve maximum throughput under different
grid-searched parallelisms, we also evaluate the throughput
of the baseline when it uses the same parallelism configura-
tion as DynaPipe (MLM+DS (c)).
In Fig. 13, we observe that in most cases, the through-

put of MLM+DS decreases rapidly as maximum sequence
length scales up, due to the super-linear relationship be-
tween computation time and maximum sequence length
(Fig. 3). DynaPipe dynamically decides the sequence lengths
in micro-batches, and its performance is determined more
by the average sequence length than the maximum. As a
result, while we still see throughput decrease in DynaPipe as
maximum sequence length increases (since we allow longer
sequence to exist without truncation), the decrease is much
less than that of MLM+DS.
On T5 (16 and 32 GPUS), DynaPipe scales to higher se-

quence lengths than baselines. This is because our memory-
aware adaptive schedule can dynamically adjust the schedule
to accommodate memory limit (Fig. 11c), achieving a lower
peak memory consumption than 1F1B which is used by base-
lines. In many cases (e.g. T5 on 8 GPUs), we also find the
MLM+DS under-performs using the optimal parallelism for
DynaPipe. This indicates that the performance characteristic
is very different for DynaPipe and packing-based baselines.

8.2 Throughput under global batch size scaling
In Fig. 14, we set the maximum sequence length to 2048
and adjust the global batch size. For the GPT model, both
MLM+DS and DynaPipe’s performance increases with global
batch size, since larger global batch sizes reduce the synchro-
nization frequency of data parallelism and the size of the
pipeline bubble in pipeline parallelism. We also observe the
performance of DynaPipe increase faster than MLM+DS,
since DynaPipe also benefits from the increased opportunity
to optimize micro-batch splitting when global batch size is
large. For T5 model, the baselines make and extensive use
of tensor parallelism whose performance is less affected by
the global batch size. While DynaPipe uses higher degree
of pipeline parallelism, therefore still see the performance
improvement when global batch size scales up.

8.3 Padding efficiency
For GPTmodels, both packing and our dynamicmicro-batching
can achieve a high padding efficiency (>0.8, Fig. 15a), with
ours slightly higher. However, aswe can see from the through-
put results in Fig. 13a, high padding efficiency does not di-
rectly translate to better throughput. In Fig. 15a, we also see
the padding efficiency of packing increases with maximum
sequence length. For T5 models, packing has a very high
padding efficiency in terms of input to the encoder, while
padding efficiency to the decoder is much lower. Our padding
efficiency is more balanced between encoder and decoder,

EuroSys ’24, April 22–25, 2024, Athens, Greece Chenyu Jiang, Zhen Jia, Shuai Zheng, Yida Wang, and Chuan Wu

Model # GPUs # layers Model Dim # Heads # KV Channels FFN Dim # Param (B)
GPT 4,8,16,32 16,32,40,16 4096,4096,5140,12288 32,32,40,96 128 16384,16384,20560,49152 3.35,6.7,13,29
T5 4,8,16,32 12,24,48,96 1024 128 128 65536 5.5,11,22,44
Table 1. DNN model configurations. For T5, “# layers” refers to layers present in both the encoder and the decoder.

512 1024 2048 4096 8192
Max Sequence Length

0

5000

10000

15000

20000

25000

30000

35000

Th
ro

ug
hp

ut
 (T

ok
en

s/
s)

MLM+DS (C) MLM+DS DynaPipe

(a) GPT (3.35B) on 4 GPUs.

512 1024 2048 4096 8192
Max Sequence Length

0

5000

10000

15000

20000

25000

30000

Th
ro

ug
hp

ut
 (T

ok
en

s/
s)

MLM+DS (C) MLM+DS DynaPipe

(b) GPT (6.7B) on 8 GPUs.

512 1024 2048 4096 8192
Max Sequence Length

0

2500

5000

7500

10000

12500

15000

17500

Th
ro

ug
hp

ut
 (T

ok
en

s/
s)

MLM+DS (C) MLM+DS DynaPipe

(c) GPT (13B) on 16 GPUs.

512 1024 2048 4096 8192
Max Sequence Length

0

5000

10000

15000

20000

25000

Th
ro

ug
hp

ut
 (T

ok
en

s/
s)

MLM+DS (C) MLM+DS DynaPipe

(d) GPT (29B) on 32 GPUs.

512 1024 2048 4096
Max Sequence Length

0
2000
4000
6000
8000

10000
12000
14000

Th
ro

ug
hp

ut
 (T

ok
en

s/
s)

MLM+DS (C) MLM+DS DynaPipe

(e) T5 (5.5B) on 4 GPUs.

512 1024 2048 4096
Max Sequence Length

0

2000

4000

6000

8000

10000

Th
ro

ug
hp

ut
 (T

ok
en

s/
s)

MLM+DS (C) MLM+DS DynaPipe

(f) T5 (11B) on 8 GPUs.

512 1024 2048 4096
Max Sequence Length

0

2000

4000

6000

8000

Th
ro

ug
hp

ut
 (T

ok
en

s/
s)

MLM+DS (C) MLM+DS DynaPipe

(g) T5 (22B) on 16 GPUs.

512 1024 2048 4096 8192
Max Sequence Length

0

2000

4000

6000

8000

Th
ro

ug
hp

ut
 (T

ok
en

s/
s)

MLM+DS (C) MLM+DS DynaPipe

(h) T5 (44B) on 32 GPUs.

Figure 13. Training throughput under different maximum sequence lengths.

16384 32768 65536 131072
Global Batch Size

0

5000

10000

15000

20000

25000

30000

35000

Th
ro

ug
hp

ut
 (T

ok
en

s/
s)

MLM+DS (C) MLM+DS DynaPipe

(a) GPT (3.35B) on 4 GPUs.

16384 32768 65536 131072
Global Batch Size

0

5000

10000

15000

20000

25000

30000

Th
ro

ug
hp

ut
 (T

ok
en

s/
s)

MLM+DS (C) MLM+DS DynaPipe

(b) GPT (6.7B) on 8 GPUs.

16384 32768 65536 131072
Global Batch Size

0
2000
4000
6000
8000

10000
12000
14000

Th
ro

ug
hp

ut
 (T

ok
en

s/
s)

MLM+DS (C) MLM+DS DynaPipe

(c) GPT (13B) on 16 GPUs.

16384 32768 65536 131072
Global Batch Size

0

5000

10000

15000

20000

25000

Th
ro

ug
hp

ut
 (T

ok
en

s/
s)

MLM+DS (C) MLM+DS DynaPipe

(d) GPT (29B) on 32 GPUs.

16384 32768 65536 131072
Global Batch Size

0

2000

4000

6000

8000

10000

12000

14000

Th
ro

ug
hp

ut
 (T

ok
en

s/
s)

MLM+DS (C) MLM+DS DynaPipe

(e) T5 (5.5B) on 4 GPUs.

16384 32768 65536 131072
Global Batch Size

0

2000

4000

6000

8000

10000

Th
ro

ug
hp

ut
 (T

ok
en

s/
s)

MLM+DS (C) MLM+DS DynaPipe

(f) T5 (11B) on 8 GPUs.

16384 32768 65536 131072
Global Batch Size

0

2000

4000

6000

8000

Th
ro

ug
hp

ut
 (T

ok
en

s/
s)

MLM+DS (C) MLM+DS DynaPipe

(g) T5 (22B) on 16 GPUs.

16384 32768 65536 131072
Global Batch Size

0

2000

4000

6000

8000

Th
ro

ug
hp

ut
 (T

ok
en

s/
s)

MLM+DS (C) MLM+DS DynaPipe

(h) T5 (44B) on 32 GPUs.

Figure 14. Training throughput under different global batch sizes.

since we consider both input sequence lengths during our
DP algorithm.

8.4 Ablation study
We assess the design components within DynaPipe to ana-
lyze and decompose its performance improvement.
We first compare our dynamic programming algorithm

against packing in MLM+DS and token-based (TB) micro-
batching (which splits micro-batches so that each micro-
batch contains roughly the same number of tokens), when

training T5 with maximum sequence length 4096 and global
batch size 65536 on 8 GPUs in Fig. 16a. In this setting, the
optimal parallelism configuration does not use pipelining,
isolating the impact of micro-batching. After searching for
the best number of tokens per micro-batch, we find that
TB already achieves significantly higher throughput than
MLM+DS, indicating the inefficiency of packing-based so-
lutions. Our dynamic programming algorithm further out-
performs TB (without the need for parameter searching) by

DynaPipe: Optimizing Multi-task Training through Dynamic Pipelines EuroSys ’24, April 22–25, 2024, Athens, Greece

512 1024 2048 4096 8192
Max Sequence Length

0.0

0.2

0.4

0.6

0.8

1.0

Pa
dd

in
g

Ef
fic

ie
nc

y

MLM+DS DynaPipe

16384 32768 65536 131072
Global Batch Size

0.0

0.2

0.4

0.6

0.8

1.0

Pa
dd

in
g

Ef
fic

ie
nc

y

MLM+DS DynaPipe

(a) GPT (6.7B) on 8 GPUs

512 1024 2048 4096
Max Sequence Length

0.0

0.2

0.4

0.6

0.8

Pa
dd

in
g

Ef
fic

ie
nc

y

MLM+DS (Encoder)
MLM+DS (Decoder)

DynaPipe (Encoder)
DynaPipe (Decoder)

16384 32768 65536 131072
Global Batch Size

0.0

0.2

0.4

0.6

0.8

Pa
dd

in
g

Ef
fic

ie
nc

y
MLM+DS (Encoder)
MLM+DS (Decoder)

DynaPipe (Encoder)
DynaPipe (Decoder)

(b) T5 (11B) on 8 GPUs

Figure 15. Padding efficiency case study.

MLM
+DS

TB (S) TB (T) DP (S) DP (T)

Micro-batching Method

0

1000

2000

3000

4000

5000

6000

7000

8000

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

(a) Micro-batching methods.

1F1B Adaptive
(no reorder)

Adaptive

Schedule Method

1.00

1.02

1.04

1.06

1.08

1.10

No
rm

al
ize

d
Th

ro
ug

hp
ut

Global Batch Size
16384
65536

(b) Pipeline schedule methods.

Figure 16. Ablation study.

striking better trade-offs among padding, computation effi-
ciency and memory consumption. We also evaluate different
ways of determining the order of samples in our dynamic
micro-batching and the TB baseline, i.e., sorting (S) versus
solving a traveling salesman problem using a solver (T), and
find that they do not impact the performance much.
We next compare our pipeline schedule (adaptive sched-

uling with and without micro-batch ordering) with 1F1B
schedule, when training GPT with the same maximum se-
quence length and GPU settings as above. The grid-searched
best parallelism uses 4 pipeline stages. As shown in Fig. 16b,
our pipeline schedule achieves 10.1% and 7.4% throughput
improvement over 1F1B, under global batch size 16384 and
65536, respectively. The performance gain is less than that
from our simulations (Fig. 7), since now our dynamic micro-
batching includes the longest micro-batch execution time in
the cost function (Eq1), which, when minimized, produces
more uniform micro-batches. The effect of micro-batch or-
dering is less prominent under a large global batch size, since
sequence lengths in micro-batches can be made more similar

16384 32768 65536 131072
Global Batch Size (Tokens)

0

20

40

60

Ti
m

e
Pe

r I
te

ra
tio

n
(s

) Model
GPT
T5

(a) Planning time distribution.

16384 32768 65536 131072
Global Batch Size (Tokens)

0.0
2.5
5.0
7.5

10.0
12.5

Ra
tio

 To
 It

er
at

io
n

Ti
m

e Model
GPT
T5

(b) Comparison between average planning time and average itera-
tion time (planning time / iteration time).

Figure 17. Execution planning time.

by our DP algorithm when the global batch size is large (due
to more opportunities for better micro-batch splitting).

8.5 Execution planning time
We present the single-thread execution plan generation time
during all our experiments in Fig. 17a. Execution planning for
most training iterations takes less than 20 seconds for both
GPT and T5 when the global batch size is small. Under larger
global batch sizes, the time needed for our dynamic micro-
batch and scheduling algorithms increases. The execution
planning can be parallelized among the large number of CPU
cores or even multiple nodes, allowing it to be completely
overlapped with GPU computation. Fig. 17b compares our
planning time to actual execution time per iteration. Across
all our experiments, the average planning time to iteration
time ratio peaks at 12.9x, which means full overlapping be-
tween training and planning is feasible with only 13 CPU
cores, much less than available cores in typical LLM train-
ing instances (Amazon EC2 p4d [2], Microsoft Azure ND
A100 v4 [23] and Google Could a2-highgpu-1g [11], each
possessing 96 vCPU cores). In our experiments, we paral-
lelize plan generation on 64 CPU cores in each machine that
participates in training, and observe no slow-down caused
by execution plan generation.

8.6 Accuracy of cost models
Fig. 18 illustrates the prediction accuracy of our iteration
time and memory cost models, where data points are col-
lected from all our experiments. For T5, the estimated itera-
tion time matches well the actual value. The iteration time
prediction error for GPT is slightly larger, and the out-liners

EuroSys ’24, April 22–25, 2024, Athens, Greece Chenyu Jiang, Zhen Jia, Shuai Zheng, Yida Wang, and Chuan Wu

0 2500 5000 7500 100001250015000
Measured Iteration Time (ms)

0

2000

4000

6000

8000

10000

12000

14000

16000

Es
tim

at
ed

 It
er

at
io

n
Ti

m
e

(m
s)

Mean Percentage Error:
T5: 4.28%
GPT: 11.23%

Model
GPT
T5

(a) Iteration time.

20000 25000 30000 35000 40000
Measured Peak Memory (MB)

17500

20000

22500

25000

27500

30000

32500

35000

37500

40000

Es
tim

at
ed

 P
ea

k
M

em
or

y
(M

B)

Mean Percentage Error:
T5: 5.73%
GPT: 3.30%

Model
GPT
T5

(b) Peak Memory Consumption.

Figure 18. Prediction accuracy of our iteration time and
peak memory cost models.

are due to the all-reduce operation in data parallelism it uses,
which we do not model. For memory estimation, we achieve
lower than 6% mean prediction error for both T5 and GPT.
These confirm that our cost models can provide accurate
signals for guiding our optimizations.

9 Related Works
3D parallel training frameworks. Megatron-LM [26],
DeepSpeed [22] are two popular frameworks supporting 3D
parallel LLM training. Alpa [40] further automates the paral-
lelization of the model, considering both intra- (including but
not limited to data and tensor parallelism) and inter-operator
(i.e., pipeline) parallelism. These frameworks assume fixed
micro-batch sizes, fixed number of micro-batches and use a
static pipeline schedule (e.g., 1F1B). They also do not consider
construction of micro-batches, leaving the decision to users.
DynaPipe optimizes micro-batch construction, supports dy-
namic micro-batches, and adopts adaptive pipeline schedule
to accelerate multi-task training. Approaches that shard the
model and optimizer states (e.g., ZeRO [31], FSDP [39]), or
optimize communication in data parallelism (e.g., MiCS [38])
are also often used together with 3D parallelism. These ap-
proaches are orthogonal to DynaPipe and may be used in
conjunction.
Sort dataset before batching. Some libraries (e.g., fairseq [28]
and tensor2tensor [33]) offer an option to sort the dataset be-
fore constructing the mini-batches, so each mini-batch will
contain samples with similar sequence lengths (also referred
to as bucketing). Such bucketing destroys the randomness in
batch construction thus may affect model performance. Dy-
naPipe fully respects users’ mini-batch construction method
and only reorders samples within each mini-batch, preserv-
ing mathematical equivalence with models trained using
traditional methods (padding or packing).
Custom attention kernels that ignore padding. Byte-
Transformer [37] implements special CUDA kernels to skip
padding during self-attention. FlashAttention [9] also in-
clude attention kernels allowing variable sequence lengths.
However, to ignore padding in other parts of the models,

the model code needs to be adapted accordingly. Both li-
braries also only offer padding-free implementation for the
BERT [10] model. Through dynamic micro-batching, Dy-
naPipe directly minimizes padding in the inputs without
needing to modify any model components. Recent updates
(since the submission of DynaPipe) in FlashAttention also
includes a method to “unpack” samples from packed inputs,
enabling the variable length attention kernels to be used
in conjunction with packing. It would be interesting future
work to benchmark the performance of packing while en-
abling such kernel optimizations. None of the above works
discussed the performance implications when jointly used
with data or pipeline parallelism. DynaPipe optimizes for
hybrid 3D parallel training by balancing the data parallel
model replicas during micro-batch construction and using
efficient pipeline schedules for dynamic micro-batches.
Training LLMs with extremely long sequences. Al-
gorithmic approaches like sparse attention [8] and Long-
former [4] tries to lower the quadratic complexity of self-
attention in sequence length. Systematic approaches like
DeepSpeed-Ulysses [15] and LightSeq [19] partition themodel
inputs at sequence dimension and distribute the calculation
of self-attention to multiple machines. DynaPipe pursue dif-
ferent goals from these works since we do not aim to im-
prove the computation speed or memory consumption for
extremely long sequence lengths. Instead, we tackle the prob-
lem of input sequence length variation and avoid packing
short input samples to long sequences using dynamic micro-
batching. It would be interesting future work to study how to
concurrently utilize these methods and DynaPipe to achieve
both goals.

10 Conclusion
In this paper, we propose DynaPipe, which uses dynamic
micro-batching as a solution for the highly variable sequence
length in multi-task training, circumventing packing which
is computationally inefficient. We propose a dynamic pro-
gramming algorithm to optimize micro-batch construction,
present a pipeline scheduling algorithm that is robust to
micro-batch execution time variations, and design an ef-
fective pipeline communication planning mechanism for
efficient dynamic pipeline training. Extensive evaluation
demonstrates up to 4.39x speed up when training T5, and
3.25x when training GPT.

11 Acknowledgements
We would like to thank the anonymous reviewers and our
shepherd Jongsoo Park for their valuable feedback. This
work was supported by an Amazon Research Award (ARA)
on AWS AI and grants from Hong Kong RGC under the
contracts HKU 17208920 and C7004-22G (CRF).

DynaPipe: Optimizing Multi-task Training through Dynamic Pipelines EuroSys ’24, April 22–25, 2024, Athens, Greece

References
[1] Armen Aghajanyan, Anchit Gupta, Akshat Shrivastava, Xilun Chen,

Luke Zettlemoyer, and Sonal Gupta. 2021. Muppet: Massive Multi-task
Representations with Pre-Finetuning. arXiv:2101.11038 [cs.CL]

[2] Amazon Web Services, Inc. 2023. Amazon EC2 P4d Instances. https:
//aws.amazon.com/ec2/instance-types/p4/.

[3] Amazon Web Services, Inc. 2023. Elastic Fabric Adapter. https:
//aws.amazon.com/hpc/efa/.

[4] Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020. Longformer:
The Long-Document Transformer. (2020). arXiv:2004.05150 [cs.CL]

[5] Tami Boudoukh, Michal Penn, and Gideon Weiss. 2001. Scheduling
jobshops with some identical or similar jobs. Journal of Scheduling 4,
4 (2001), 177–199.

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. 2020. Language Models are Few-Shot Learners. In
Proc. of NeurIPS, Vol. 33. 1877–1901.

[7] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin.
2016. Training Deep Nets with Sublinear Memory Cost. (2016).
arXiv:1604.06174 [cs.LG]

[8] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. 2019.
Generating Long Sequences with Sparse Transformers. (2019).
arXiv:1904.10509 [cs.LG]

[9] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré.
2022. FlashAttention: Fast and Memory-Efficient Exact Attention with
IO-Awareness. In Proc. of NeurIPS.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2019. BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In Proc. of NAACL. ACL, 4171–4186.

[11] Google. 2023. GPU platforms. https://cloud.google.com/compute/
docs/gpus#a100-40gb.

[12] Ananth Gottumukkala, Dheeru Dua, Sameer Singh, and Matt Gardner.
2020. Dynamic sampling strategies for multi-task reading comprehen-
sion. In Proc. of ACL. ACL, 920–924.

[13] Stephen C Graves, Harlan C Meal, Daniel Stefek, and Abdel Hamid
Zeghmi. 1983. Scheduling of Re-Entrant Flow Shops. Journal of
operations management 3, 4 (1983), 197–207.

[14] Karl Moritz Hermann, Tomás Kociský, Edward Grefenstette, Lasse Es-
peholt, Will Kay, Mustafa Suleyman, and Phil Blunsom. 2015. Teaching
Machines to Read and Comprehend. In Proc. of NeurIPS. 1693–1701.

[15] Sam Ade Jacobs, Masahiro Tanaka, Chengming Zhang, Minjia
Zhang, Shuaiwen Leon Song, Samyam Rajbhandari, and Yuxiong
He. 2023. DeepSpeed Ulysses: System Optimizations for Enabling
Training of Extreme Long Sequence Transformer Models. (2023).
arXiv:2309.14509 [cs.LG]

[16] Narendra Karmarkar and Richard M Karp. 1982. The differencing
method of set partitioning. Computer Science Division (EECS), Univer-
sity of California Berkeley.

[17] Richard M Karp. 2010. Reducibility among combinatorial problems.
Springer.

[18] Mario Michael Krell, Matej Kosec, Sergio P. Perez, and Andrew Fitzgib-
bon. 2022. Efficient Sequence Packing without Cross-contamination:
Accelerating Large Language Models without Impacting Performance.
arXiv:2107.02027 [cs.CL]

[19] Dacheng Li, Rulin Shao, Anze Xie, Eric P. Xing, Joseph E. Gonzalez, Ion
Stoica, Xuezhe Ma, and Hao Zhang. 2023. LightSeq: Sequence Level
Parallelism for Distributed Training of Long Context Transformers.
(2023). arXiv:2310.03294 [cs.LG]

[20] Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung,
Yi Tay, Denny Zhou, Quoc V. Le, Barret Zoph, Jason Wei, and Adam
Roberts. 2023. The Flan Collection: Designing Data and Methods for
Effective Instruction Tuning. arXiv:2301.13688 [cs.AI]

[21] Redis Ltd. 2023. Redis. https://redis.io/
[22] Microsoft. 2023. DeepSpeed. https://github.com/microsoft/

DeepSpeed.
[23] Microsoft. 2023. ND A100 v4-series. https://learn.microsoft.com/en-

us/azure/virtual-machines/nda100-v4-series, Last accessed on 2023-
10-31.

[24] Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Ha-
jishirzi. 2022. Cross-Task Generalization via Natural Language Crowd-
sourcing Instructions. In Proc. of ACL. ACL, 3470–3487.

[25] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri,
Nikhil R. Devanur, Gregory R. Ganger, Phillip B. Gibbons, and Matei
Zaharia. 2019. PipeDream: Generalized Pipeline Parallelism for DNN
Training. In Proc. of SOSP. ACM, 1–15.

[26] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGres-
ley, Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi
Kashinkunti, Julie Bernauer, Bryan Catanzaro, et al. 2021. Effi-
cient Large-Scale Language Model Training on GPU Clusters Using
Megatron-LM. In Proc. of SC. ACM, 1–15.

[27] NVIDIA. 2023. NCCL. https://developer.nvidia.com/nccl
[28] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross,

Nathan Ng, David Grangier, and Michael Auli. 2019. Fairseq: A Fast,
Extensible Toolkit for Sequence Modeling. In Proc. of NAACL. ACL.

[29] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. In Proc.
of NeurIPS. 8024–8035.

[30] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J Liu, et al. 2020.
Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research 21, 140 (2020), 1–67.

[31] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He.
2020. ZeRO: Memory optimizations toward training trillion parameter
models. In Proc. of SC. IEEE, 1–16.

[32] Victor Sanh, Albert Webson, Colin Raffel, Stephen Bach, Lintang
Sutawika, Zaid Alyafeai, Antoine Chaffin, Arnaud Stiegler, Teven
Le Scao, Arun Raja, et al. 2022. Multitask Prompted Training Enables
Zero-Shot Task Generalization. In Proc. of ICLR. OpenReview.net.

[33] Ashish Vaswani, Samy Bengio, Eugene Brevdo, Francois Chollet,
Aidan N. Gomez, Stephan Gouws, Llion Jones, Łukasz Kaiser, Nal
Kalchbrenner, Niki Parmar, Ryan Sepassi, Noam Shazeer, and Jakob
Uszkoreit. 2018. Tensor2Tensor for Neural Machine Translation. (2018).
arXiv:1803.07416 [cs.LG]

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. Proc. of NeurIPS 30 (2017).

[35] Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu,
Brian Lester, Nan Du, Andrew M. Dai, and Quoc V Le. 2022. Finetuned
Language Models are Zero-Shot Learners. In Proc. of ICLR. OpenRe-
view.net.

[36] Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A Broad-
Coverage Challenge Corpus for Sentence Understanding through In-
ference. In Proc. of NAACL. ACL, 1112–1122.

[37] Yujia Zhai, Chengquan Jiang, Leyuan Wang, Xiaoying Jia, Shang
Zhang, Zizhong Chen, Xin Liu, and Yibo Zhu. 2023. ByteTransformer:
A high-performance transformer boosted for variable-length inputs.
In Proc. of IPDPS. IEEE, 344–355.

https://arxiv.org/abs/2101.11038
https://aws.amazon.com/ec2/instance-types/p4/
https://aws.amazon.com/ec2/instance-types/p4/
https://aws.amazon.com/hpc/efa/
https://aws.amazon.com/hpc/efa/
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/1604.06174
https://arxiv.org/abs/1904.10509
https://cloud.google.com/compute/docs/gpus#a100-40gb
https://cloud.google.com/compute/docs/gpus#a100-40gb
https://arxiv.org/abs/2309.14509
https://arxiv.org/abs/2107.02027
https://arxiv.org/abs/2310.03294
https://arxiv.org/abs/2301.13688
https://redis.io/
https://github.com/microsoft/DeepSpeed
https://github.com/microsoft/DeepSpeed
https://learn.microsoft.com/en-us/azure/virtual-machines/nda100-v4-series
https://learn.microsoft.com/en-us/azure/virtual-machines/nda100-v4-series
https://developer.nvidia.com/nccl
https://arxiv.org/abs/1803.07416

EuroSys ’24, April 22–25, 2024, Athens, Greece Chenyu Jiang, Zhen Jia, Shuai Zheng, Yida Wang, and Chuan Wu

[38] Zhen Zhang, Shuai Zheng, Yida Wang, Justin Chiu, George Karypis,
Trishul Chilimbi, Mu Li, and Xin Jin. 2022. MiCS: Near-Linear Scaling
for Training Gigantic Model on Public Cloud. Proc. VLDB Endow. 16, 1
(2022), 37–50.

[39] Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang,
Min Xu, LessWright, Hamid Shojanazeri, Myle Ott, Sam Shleifer, Alban
Desmaison, Can Balioglu, Pritam Damania, Bernard Nguyen, Geeta
Chauhan, Yuchen Hao, Ajit Mathews, and Shen Li. 2023. PyTorch
FSDP: Experiences on Scaling Fully Sharded Data Parallel. (2023).
arXiv:2304.11277 [cs.DC]

[40] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng
Chen, Yanping Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo,
Eric P Xing, et al. 2022. Alpa: Automating inter- and intra-operator
parallelism for distributed deep learning. In Proc. of OSDI. USENIX,
559–578.

https://arxiv.org/abs/2304.11277

DynaPipe: Optimizing Multi-task Training through Dynamic Pipelines EuroSys ’24, April 22–25, 2024, Athens, Greece

A Artifact Appendix
A.1 Abstract
This artifact appendix documents the steps to reproduce Fig.
13 through 18 in the paper DynaPipe: Optimizing Multi-task
Training through Dynamic Pipelines. The experiments are
expected to be run on a single AWS EC2 p4d instance. The
evaluation is expected to take around 26 hours to complete.

A.2 Description & Requirements
A.2.1 How to access.
The code used to generate results in the paper is mainly
implemented in two repositories:

• DynaPipe: contains the main implementation of Dy-
naPipe. Can be accessed through https://github.com/
awslabs/optimizing-multitask-training-through-dynamic-
pipelines
• A modified version of Megatron-LM: Main modifica-
tions include adding support for packing in the dat-
aloader, implementing the pipeline instructions for
DynaPipe, and adding the scripts for running the ex-
periments. Can be accessed through https://github.
com/chenyu-jiang/Megatron-LM

A permanent copy of the artifact can be found at https://
zenodo.org/records/8413925 (DOI: 10.5281/zenodo.8413925),
which contains a copy of this document, a pre-built docker
image containing all codes and dependency required to run
the artifact, and pre-processed datasets used in the experi-
ments.

A.2.2 Hardware dependencies.
The evaluation is expected to be performed on a single Ama-
zon EC2 p4d instance. Evaluation on other platforms with
multiple GPUs (which supports PyTorch and Megatron-LM)
is also possible when generating everything from scratch
(see later sections for details).

A.2.3 Software dependencies.

• PyTorch (>= 2.1.0)
• DynaPipe (please see requirements.txt in the repository
for details)
• ModifiedMegatron-LM (dependencies of originalMegatron-
LM still apply)
• ModifiedDeepSpeed: https://github.com/chenyu-jiang/
DeepSpeed. We removed a timer that introduce unnec-
essary synchronization which disrupts our schedule
and disabled overflow checking for more consistent
throughput measurement.

A.2.4 Benchmarks.
We used the FLANv2 dataset in our experiments. For artifact
evaluation, we provide a pre-downloaded and pre-processed
dataset in the provided machine (also accessible in the Zen-
odo repository). To copy the pre-downloaded dataset into

the container, run the following command outside of the
container:
cd ~/preprocessed_datasets
docker cp datasets dynapipe:/root/Megatron-LM

Otherwise, the dataset can be downloaded using the follow-
ing steps:

1. Clone the repository for the dataset (a fork of the origi-
nal repository with some version mismatch fixed. Also
added a downloading script) and install dependencies:
git clone https://github.com/chenyu-jiang/
text-to-text-transfer-transformer.git
cd text-to-text-transfer-transformer
pip3 install -r requirements.txt

2. Download the raw dataset
(generates supervised_proportional.jsonl):
python3 prepare_dataset.py

3. Perform some initial cleaning
(generates cleaned_supervised_proportional.jsonl):
python3 clean_dataset.py

4. Preprocess the dataset withMegatron-LM’s data loader
script (generates .bin and .idx files)
cd <path_to_modified_MegatronLM>
./experiment_scripts/run_preprocess_flan.sh
<path_to_cleaned_jsonl>

A.3 Set-up
We provide a Dockerfile to setup a container image for eval-
uation. To generate the image, run:
git clone
https://github.com/chenyu-jiang/Megatron-LM.git

cd Megatron-LM/docker
./build_image.sh

For artifact evaluation, a pre-built image will be installed on
the provided machine (also available in the Zenodo reposi-
tory). To create a container from the image, run (inside the
docker directory):
./run.sh

You will find DynaPipe and the modified Megatron-LM at
/root in the container.

A.4 Evaluation workflow
A.4.1 Major Claims.
• (C1): DynaPipe significantly outperforms the state-of-
the-art packing-based systems for multi-task training.
This is proven by the experiment (E1) described in
Section 8 whose results are illustrated in Figure 13 and
14.
• (C2): DynaPipe achieves comparable batching efficiency
as packing-based systems. The batching efficiency sta-
tistics are illustrated in Figure 15.

https://github.com/awslabs/optimizing-multitask-training-through-dynamic-pipelines
https://github.com/awslabs/optimizing-multitask-training-through-dynamic-pipelines
https://github.com/awslabs/optimizing-multitask-training-through-dynamic-pipelines
https://github.com/chenyu-jiang/Megatron-LM
https://github.com/chenyu-jiang/Megatron-LM
https://zenodo.org/records/8413925
https://zenodo.org/records/8413925
https://github.com/chenyu-jiang/DeepSpeed
https://github.com/chenyu-jiang/DeepSpeed

EuroSys ’24, April 22–25, 2024, Athens, Greece Chenyu Jiang, Zhen Jia, Shuai Zheng, Yida Wang, and Chuan Wu

• (C3) The dynamic-programming-based micro-batch
generation and memory-aware adaptive scheduling
algorithms proposed in DynaPipe out-performs naive
alternatives. This is proven by experiment (E2) in Sec-
tion 8, results illustrated in Figure 16.
• (C4) The planning overhead of DynaPipe is low (when
parallelized onto multiple CPU cores). The planning
time distribution is illustrated in Figure 17.
• (C5) DynaPipe’s cost models can achieve a high pre-
diction accuracy. Cost model accuracy statistics is il-
lustrated in Figure 18.

A.4.2 Experiments.
Note: we provide some pre-computed results for some very
time-consuming steps like grid searching for the best paral-
lelism. To produce everything from scratch, see the README
in https://github.com/chenyu-jiang/Megatron-LM. We also
provide a single script for running all needed experiments
at /root/Megatron-LM/experiment_scripts/run_all.sh.

Experiment (E1): [Throughput Benchmark] [18 compute-
hours]: Uses pre-generated configs (obtained by the grid
search) to run full benchmarks for throughput compari-
son. Note for artifact evaluation, only Fig.13 (a)(b)(e)(f) and
Fig.14 (a)(b)(e)(f) can be generated on a single p4d node.
The other sub-figures of Fig.13 and 14 require multiple p4d
nodes. For Fig.17, only Fig.17 (a) will be generated. Verifies
(C1),(C2),(C4),(C5).

[How to] Run the following command in the docker con-
tainer:
cd /root/Megatron-LM
performs benchmark
(generates raw results in ./experiments directory)
./experiment_scripts/run_benchmark.sh
generate figures
./experiment_scripts/generate_figure_13_14.sh
./experiment_scripts/generate_figure_15.sh
./experiment_scripts/generate_figure_17.sh
./experiment_scripts/generate_figure_18.sh

[Results] Figure 13, 14, 15, 17, 18will be generated in /root/Megatron-
LM/reproduced_figures.

Experiment (E2): [Ablation] [8 compute-hours]: Performs
ablation study to verify (C3).
[How to] Run the following command in the docker con-
tainer:
cd /root/Megatron-LM
performs ablation experiments
(generates raw results in ./experiments directory)
./experiment_scripts/run_ablation.sh
generate figures
./experiment_scripts/generate_figure_16.sh

[Results] Figure 16 will be generated in
/root/Megatron-LM/reproduced_figures.

 https://github.com/chenyu-jiang/Megatron-LM

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Multi-task model training
	2.2 The current packing solution
	2.3 Challenges of dynamic micro-batching

	3 DynaPipe Overview
	4 Micro-batch Construction
	5 Pipeline Execution Schedule
	6 Communication Planning
	7 Implementation and Other Optimizations
	8 Evaluation
	8.1 Throughput under sequence length scaling
	8.2 Throughput under global batch size scaling
	8.3 Padding efficiency
	8.4 Ablation study
	8.5 Execution planning time
	8.6 Accuracy of cost models

	9 Related Works
	10 Conclusion
	11 Acknowledgements
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Description & Requirements
	A.3 Set-up
	A.4 Evaluation workflow

