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Real-world large-scale Peer-to-Peer (P2P) Video-on-Demand (VoD) streaming applications face more design challenges as
compared to P2P live streaming, due to higher peer dynamics and less buffer overlap. The situation is further complicated when

we consider the selfish nature of peers, who in general wish to download more and upload less, unless otherwise motivated.
Taking a new perspective of distributed dynamic auctions, we design efficient P2P VoD streaming algorithms with simultaneous
consideration of peer incentives and streaming optimality. In our solution, media block exchanges among peers are carried out
through local auctions, in which budget-constrained peers bid for desired blocks from their neighbors, which in turn deliver

blocks to the winning bidders and collect revenue. With strategic design of a discriminative second price auction with seller
reservation, a supplying peer has full incentive to maximally contribute its bandwidth to increase its budget; requesting peers
are also motivated to bid in such a way that optimal media block scheduling is achieved effectively in a fully decentralized

fashion. Applying techniques from convex optimization and mechanism design, we prove (a) the incentive compatibility at the
selling and buying peers, and (b) the optimality of the induced media block scheduling in terms of social welfare maximization.
Large-scale empirical studies are conducted to investigate the behavior of the proposed auction mechanisms in dynamic P2P
VoD systems based on real-world settings.
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1. INTRODUCTION

Following the success of P2P live media streaming, large-scale P2P VoD streaming applications have
been successfully deployed over the Internet [PPL ecom][UUS ecom], providing thousands of videos
to millions of users. The state-of-the-art P2P VoD applications are based on the design philosophy of
having peers watching the same video exchange available media blocks, in order to alleviate the server
load. As compared to live streaming, P2P VoD system design presents new fundamental challenges,
due to its higher level of streaming instabilities caused by VCR operations, and the inherently lower
levels of content overlap caused by asynchronous peer playback [Huang et al. 2008]. Consequently,
effective streaming strategy design becomes particularly important for a P2P VoD system.

A related challenge that further complicates the P2P VoD design is to handle the selfish nature
of real-world streaming peers. Unless otherwise regulated, a peer naturally wishes to maximize its
download rate and minimize upload contribution, compromising the foundation of a P2P system [Habib
and Chuang 2006][Sung et al. 2006]. The situation is exacerbated by the emerging P2P software war,
in which the system designers tend to furnish their client software with increasing end-user control,
in the hope of attracting a larger market share.

Given these challenges, an ideal P2P VoD solution should contain a set of judiciously designed algo-
rithms, under which (a) peers are automatically willing to contribute upload bandwidth for their own
benefit, and (b) the induced block scheduling optimizes the utilization of such upload bandwidth, lead-
ing to maximum aggregated playback “satisfaction”. For practical applicability, such algorithm design
should also be simple and fully decentralized.

Auction-based algorithm design is known to provide elegant solutions to a collection of network
optimization problems, which are simple, efficient, fully distributed, and allow intuitive interpretations
[Nisan et al. 2007][Lazar and Semret 1999]. We recently applied variations of auction algorithms to
bandwidth allocation in P2P live streaming [Wu et al. 2008], with a sole focus on solution optimality
but not on peer incentivization. While previous studies are based on media flow auctions, the higher
level of peer dynamics coupled with a lower level of playback synchrony in P2P VoD streaming require
a more realistic model of media block scheduling. In this paper, we approach the block scheduling
and peer incentive problems in P2P VoD streaming simultaneously, through a set of auction-based
streaming strategies.

We model media block exchanges among neighboring peers into a decentralized collection of dy-
namic, iterated auctions, where block valuations depend on block rareness and playback deadlines.
Each peer is furnished with a budget and assumes dual roles of both a bidder and a seller. As a bid-
der, it bids in neighboring auctions for desired blocks, and pays prices out of its available budget. As
a seller, it auctions buffered blocks, honors winning bids by delivering the corresponding blocks, and
charges strategically-set prices to re-build its budget. Towards the two separate goals of upload in-
centives and effective block scheduling, we carefully tailor a discriminative second price auction with

seller reservation for the sellers, and design a truthful start with iterative price discovery strategy for
the bidders.

We show that our auction mechanism and bidding strategy represent equilibrium strategies [Nisan
et al. 2007] at the sellers and the bidders, respectively. Furthermore, the auction mechanism we tailor
is better than other possible representative auction mechanisms for revenue maximizing at a seller,
and the bidding strategy is utility maximizing for a bidder. Based on convex optimization theory, in
particular by utilizing the KKT optimality conditions [Boyd 2004] and by analyzing the integrality
gap of the integer programs modeling local and global welfare optimization, we prove that the locally
administrated auctions may act in concert and achieve social welfare maximization in terms of block
distribution and streaming quality, under peer budget constraints. Finally, extensive empirical studies
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Fig. 1. An example of two adjacent auctions: numbered blocks in shadow denote the available blocks in a peer’s buffer.

are conducted to investigate behaviors of the auction protocols in dynamic P2P VoD settings resembling
real-world systems.

In the rest of the paper, we present our P2P VoD model and algorithm design in Sec. 2 and Sec. 3,
perform theoretical and empirical studies of the proposed auction algorithms in Sec. 4 and Sec. 5,
review related research in Sec. 6, and present concluding discussions in Sec. 7.

2. THE P2P VOD AUCTION MODEL

Consider a P2P VoD streaming system based on the typical pull-based design over mesh overlay topolo-
gies [Huang et al. 2008]. Each video is a sequence of media blocks streamed from the media server into
a P2P overlay of interconnected peers playing the video. Upon joining the overlay, a peer obtains from a
tracker a set of neighbors with similar playback progresses. A peer caches recently downloaded blocks
in its buffer, periodically exchanges buffer availability bitmaps (buffer maps) with its neighbors, and
requests desired blocks from them.

We organize block exchanges in a P2P VoD overlay into a collection of locally administrated auctions,
each representing a market where a peer sells media blocks to neighbors. Each peer is furnished with
a budget based on virtual currencies, for participating in adjacent auctions and bidding for desired
blocks. A peer’s initial budget is established when it first registers an account in the application, and
can be used for block purchase in multiple video overlays. When the peer goes offline, any surplus
remains in its account, and becomes its starting budget upon re-join.

We assume that the budget can be implemented by an existing virtual currency protocol [Vishnu-
murthy et al. 2003][Turner and Ross 2004] or as the simple credits in private BitTorrent systems [Liu
et al. 2010]. These work study the implementation of a robust budget/credit system, which are comple-
mentary to our work: They strike to ensure the integrity and robustness of the payments, while leaving
pricing strategies to the specific application; our work focuses on the design of incentive-compatible
pricing schemes, while relying on these existing work for implementing secure payments and transac-
tions between peers.

The auction at each peer is carried out periodically. In each round, it receives bids from requesting
neighbors, transfers blocks to winning bidders, then computes and collects charges. Along with the
media streaming process, each auction executes round by round with continuously changing blocks
and possibly different bidders, constituting a dynamic multi-unit multi-round auction. Fig. 1 shows an
example of two auctions, where C, D, and E bid at A, and E and F bid at B.

Let Kij be the set of blocks available at i but not j. A bid from j to i is a pair b
(k)
ij = (I

(k)
ij , p

(k)
ij ). Here

k ∈ Kij is the block requested, with ID I
(k)
ij and bidding price p

(k)
ij . We denote the set of all possible

bids as B. Let Oi be the maximum upload capacity at i, and oi ∈ [0, Oi] be the bandwidth i decides to
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Table I. Notation

a
(k)
ij 1/0: i allocates k to j/not Kij blocks i can help j with

b
(k)
ij a bid from j to i for k Di i’s neighbor set

c
(k)
ij i’s charge to j for k p̃i market price at i

v
(k)
ij j’s valuation of k at i Oi i’s max. upload capacity

x
(k)
ij 1/0: j bids for k at i/not oi i’s upload contribution

p
(k)
ij bidding price ej j’s budget

q̈ij market price estimate êj j’s used budget

zk
j 1/0: bidder j requests block k from one neighbor or not

contribute in a round. We assume media blocks are of equal size taking exactly one round to transmit.

Therefore Oi (oi) equals the number of blocks i can (wishes to) transmit in a round. Let a
(k)
ij be a binary

variable indicating whether bid b
(k)
ij is successful (1 = yes, 0 = no), and c

(k)
ij be the price i decides to

charge if successful. Di is the set of neighbors of i. Given a vector of bids bi = (b
(k)
ij ) (let m = |bi|)

received by i, an auction mechanism decides the number of bids to accept, the winning bids, and the
prices to charge:

Definition 1. A P2P VoD auction mechanism M is a triple (A,C,U), where:

—A : Bm → [0, 1]m is the allocation rule that maps bi = (b
(k)
ij ) to ai = (a

(k)
ij ).

—C : Bm → R
m
+ is the charging scheme that maps bi = (b

(k)
ij ) to ci = (c

(k)
ij ).

—U : Bm × R+ → [0, Oi] is the upload capacity contribution strategy that maps bi = (b
(k)
ij ) and Oi to oi.

A peer j may bid at multiple neighbors in Dj . It has a valuation v
(k)
ij for each block k ∈ Kij . Let ej

be the budget j owns. Let hij ∈ H represent historical information regarding j’s bidding experience
at i, including its own previous bids and whether they were successful. Given a vector of n valuations

vj = (v
(k)
ij ) for the n blocks j desires from its neighbors, a history vector hj = (hij) for the l auctions j

participates in, and the budget ej , a bidding strategy at j is defined as follows:

Definition 2. A bidding strategy sj : R
n
+ ×Hl × R+ → Bn for j is a function that maps (vj ,hj , ej) to j’s

bid vector bj. It describes how j determines its bids to each neighbor i, based on its block valuations,
historical information, and budget.

Finally, we require that a peer j bids for a block at no more than one neighbor in the same round
to avoid duplicate transmissions, and that a peer’s total bidding price can not exceed its budget ej . We
summarize important notation in Table 2.

3. THE P2P VOD AUCTION DESIGN

We now present the design of the auction mechanism and bidding strategy, for efficient block schedul-
ing and incentive compatibility at selfish peers.

3.1 Auction Mechanism at a Seller

Since bidding for desired blocks requires a budget, a peer naturally wishes to maximize its budget
through revenue making from its own auction.

Definition 3. The revenue a seller i obtains in one round of an auction M is
∑

j∈Di

∑
k∈Kij

a
(k)
ij c

(k)
ij , i.e.,

total charge of the winning bids.
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At the end of a round, i’s budget ei is incremented by its revenue, which can be used for i’s future
block bidding. We now describe the VoD auction mechanism M = (A,C,U) for revenue maximization at
each seller.

3.1.1 The allocation rule A. Since charges are upper-bounded by bidding prices, a seller prefers the
highest bids. Assume oi ≤ Oi is the amount of upload capacity i decides to contribute using strategy U.
The allocation should be feasible:

X

j∈Di

X

k∈Kij

a
(k)
ij ≤ oi, a

(k)
ij ∈ {0, 1}.

We design the allocation rule at seller i as: order received bids by bidding prices, and maximally sell
blocks in that order, within the available upload bandwidth oi (break ties randomly).

In Fig. 1, A receives three bids, with bidding prices 5, 4, 3 for blocks 3, 7, 7, from C, D, and E,
respectively. Assume oA = 2, A will sell block 3 to C and 7 to D.

3.1.2 The charging scheme C. Towards the seller’s goal of revenue maximization, we design a dis-

criminative second price auction mechanism to decide the charge for each winning bid. A seller may

charge different prices during the same round: it charges a winning bid (with a
(k)
ij = 1) the bidding

price from the immediately lower bid, i.e., c
(k)
ij = p

(k′)
ij′ . Here p

(k′)
ij′ is the bidding price in bid b

(k′)
ij′ , which

is immediately lower than p
(k)
ij in bid b

(k)
ij , among all the bids seller i has received. In Fig. 1, the winning

bids from C and D will be charged the bidding prices from D and E, i.e., 4 and 3, respectively.

3.1.3 The upload capacity contribution strategy U. Another rational idea for revenue maximization
is to sell as many blocks as possible. In a multi-round auction where selfish bidders may probe the
market price, the seller needs to act more strategically though.

Definition 4. The market price in an auction round at a seller i, p̃i, is the highest bidding price among
the losing bids at i.

For example, in Fig. 1, the market price at seller A is 3, the bidding price in the losing bid from E.
In order to maintain a competitive local market, a seller i decides its upload capacity contribution as
follows: when the number of bids m is larger than Oi (demand higher than supply), i contributes all
Oi; when Oi is larger than or equal to m (sufficient supply), the seller may keep bandwidth supply
slightly lower than the demand, i.e., delivering one fewer block than requested, which we refer to as
seller reservation:

oi =



Oi, if m > Oi,
m− 1, if m ≤ Oi (2)

In Fig. 1, even if OA is 3 instead of 2, A still wishes to sell 2 blocks only. Otherwise, if all three bids
are entertained, A’s market price becomes 0 (assuming a virtual 4th bid with bidding price of 0).

Similar selling strategies have been discussed in the existing literature for multi-product auction
[Armstrong 1996][Kirkegaard and Overgaard 2008]. Analysis in Sec. 4.1 will show that such seller
reservation is the best strategy for a seller in a practical dynamic P2P VoD market with intense market
competitions, outperforming no reservation or more aggregative reservation. We summarize the seller’s
auction protocol in Algorithm 1 at the end of the section.

3.2 Bidding Strategy at a Bidder

In each round, a utility-maximizing bidder j strategically determines the blocks to bid for and prices
to offer, within its budget ej . It first computes the price it is willing to pay for each block, and then
selects blocks with the highest marginal utilities to actually bid for from different sellers.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 2, No. 3, Article 1, Publication date: May 2010.



1:6 • Chuan Wu et al.

Definition 5. The utility of a block k ∈ Kij to a bidder j is v
(k)
ij − c

(k)
ij , i.e., j’s valuation of the block

minus the charge it pays to seller i.

A bidder’s valuation v
(k)
ij of a block k captures the “value” associated with receiving k from i. In

P2P VoD streaming, the valuation can reflect (a) the urgency level of downloading the block, i.e., the
closer the playback deadline, the higher a block is valued, and (b) the rareness level of the block, i.e.,
the rarer a block k is among bidder j’s neighbor set Dj , the higher resale opportunity k represents.
Concrete valuation methods are presented in simulations in Sec. 5. For now we only need to assume

that v
(k)
ij is a function over [0, 1] that is differentiable, non-decreasing, and quasi-linear [Lazar and

Semret 1999]. v
(k)
ij (1) (also short as v

(k)
ij hereafter) is the valuation for the block when it is completely

downloaded, and v
(k)
ij (0) equals 0.

3.2.1 Deciding bidding prices. In the first round a peer j bids at a neighbor i (e.g., upon joining a
VoD overlay), a reasonable strategy for j is to bid its true valuation for a block, since j has essentially
zero information regarding other buyers’ bids and the market price:

p
(k)
ij = v

(k)
ij , ∀i ∈ Dj , k ∈ Kij . (3)

In the subsequent rounds, the bidder may probe the lowest prices to win desired blocks based on its
past bids, in order to make the most of its budget. We design the following truthful start with iterative

price discovery strategy at the bidders: The first time j bids at i, j decides the bidding prices for blocks
in Kij as the true block valuations computed by (3). In each subsequent round, j maintains a market
price estimate for i, q̈ij . j may bid for multiple blocks at i in round t. If there are successful bids, q̈ij

is set to slightly lower than the lowest charge, i.e., q̈ij = mink c
(k)
ij [t] − δ, δ > 0; if all the bids fail, q̈ij

is larger than the highest bidding price, i.e., q̈ij = maxk p
(k)
ij [t] + δ. In round t+1, j computes the new

bidding price for a block k ∈ Kij as the minimum between its true valuation and the market price
estimate, i.e.,

p
(k)
ij [t + 1] = min(v

(k)
ij [t + 1], q̈ij), ∀i ∈ Dj , k ∈ Kij . (4)

3.2.2 Block request strategy. Given bidding prices computed by (4), bidder j selects blocks from Kij

to actually bid for at each seller i ∈ Dj . Let x
(k)
ij be a binary variable indicating whether k is selected

(1 = yes, 0 = no). The optimal block request strategy can be modeled as an integer program:

Maximize
P

i∈Dj

P

k∈Kij
(v

(k)
ij (x

(k)
ij )− p

(k)
ij x

(k)
ij ) (5)

Subject to:
8

>

<

>

:

P

i∈Dj

P

k∈Kij
p
(k)
ij x

(k)
ij ≤ ej (6)

P

i∈Dj
x

(k)
ij = zk

j ∀k ∈ Kij (7)

x
(k)
ij , zk

j ∈ {0, 1} ∀i ∈ Dj , ∀k ∈ Kij (8)

The objective function in (5) represents the maximization of j’s overall utility from all requested

blocks. Comparing it to Definition 5, we note that bidding prices, p
(k)
ij ’s computed using (4), are used

as block charge predictions. Constraint (6) models the budget limitation. To enforce that each block
is requested from at most one neighbor, we include constraint (7) with auxiliary binary variable zk

j ,

where zk
j = 1 indicates that bidder j bids for block k from one (and only one) of its neighbors in Dj (i.e.,

at most one x
(k)
ij can be 1, ∀i ∈ Dj), and zk

j = 0 means that block k is not selected by peer j to bid for in
this round.

The integer program in (5) is essentially a 0-1 knapsack problem. Given a set of blocks with re-
spective prices and utilities, a bidder is to determine the blocks to include in its bidding set, so that
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ALGORITHM 1: Protocol at Seller i (in every interval T )

(a) Allocation:
receive bids bi from neighbors in Di;
order bi in non-increasing order of bidding prices into list ls;
set oi = Oi if m = |bi| > Oi; otherwise set oi = m− 1;
while oi > 0 do

select next bid b
(k)
ij = (I

(k)
ij , p

(k)
ij ) in list ls;

let charge c
(k)
ij be p

(k′)

ij′
, price in the subsequent bid in ls;

send charge c
(k)
ij to bidder j;

start transfer of block I
(k)
ij to bidder j;

oi ← oi − 1;
end

(b) Upon receiving payment from bidder j for block I
(k)
ij :

update budget, ei ← ei + c
(k)
ij ;

its budget is respected and the total utility is maximized. A pseudo-polynomial time solution can be
designed using dynamic programming [Papadimitriou and Steiglitz 1998]. To derive a more intuitive
algorithm at the bidder, we consider a greedy algorithm: A bidder j sorts all blocks it can potentially

bid for in ∪i∈Dj
Kij in non-increasing order by marginal utility v

(k)
ij /p

(k)
ij . For a block available at multi-

ple neighbors, only one instance with the largest marginal utility is included in the list. j then selects
blocks from the list in order, until the remaining budget is not sufficient to bid further.

Let êj ≤ ej represent the amount of budget actually used in this round. The greedy algorithm can
derive the optimal solution to the optimization problem in (5), with constraint (6) replaced by:

X

i∈Dj

X

k∈Kij

p
(k)
ij x

(k)
ij ≤ êj . (9)

The bidding strategy is summarized in Algorithm 2, which is carried out periodically together with
Algorithm 1.

4. ANALYSIS OF THE AUCTION ALGORITHMS

We now analyze the auction-based algorithms according to the two design goals. In Sec. 4.1, we ex-
amine the auction mechanism and bidding strategy within the framework of mechanism design and
incentive engineering. In Sec. 4.2, we show effectiveness of block scheduling from the perspective of
global welfare maximization.

4.1 Incentive Engineering at VoD Peers

We assume peers in the P2P VoD system are rational, i.e., they aim to use the best strategies to
maximize their own benefits, e.g., revenues and utilities for sellers and bidders, respectively.
Seller Incentive Compatibility

A rational seller wishes to maximize its revenue in the auctions, in order to gain more budget for its
own block purchase. We show the discriminative second price auction employed in Algorithm 1 is no
worse (if not better) than other possible representative auction mechanisms, including sealed-bid first
price auctions or the Vickrey auctions, in terms of a number of merits including seller revenue.

Discriminative second price auction is known to be an appropriate choice for auctioning virtual ob-
jects (e.g., units of upload bandwidth, advertisement banners for online keyword search) in general
[Edelman et al. 2007]. While first price auctions usually lead to longer-term contracts, such second
price auctions allow sales to happen quickly, dynamically, and at small scales [Edelman et al. 2007].
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ALGORITHM 2: Protocol at Bidder j

Initialization
set q̈ij to a MAX value, ∀i ∈ Dj ;

Every Interval T

(a) Bidding

for each neighbor i ∈ Dj do
exchange buffer map with i and derive Kij ;

set p
(k)
ij = min(v

(k)
ij , q̈ij), ∀k ∈ Kij ;

end

order blocks in ∪i∈Dj
Kij in non-increasing order of marginal utility v

(k)
ij /p

(k)
ij into list lb (excluding duplicates);

p
(k)
ij ← price of the first block in list lb;

êj ← p
(k)
ij ;

while ej ≥ êj do

send bid (I
(k)
ij , p

(k)
ij ) to the corresponding seller i;

p
(k)
ij ← price of the next block in list lb;

êj ← êj + p
(k)
ij ;

end

(b) After Bidding

pmax
i ← highest bidding price sent to neighbor i, ∀i ∈ Dj ;

set the lowest charge at i, cmin
i = pmax

i , ∀i ∈ Dj ;

for each charge c
(k)
ij received from i, ∀i ∈ Dj do

deduct ej by c
(k)
ij received;

pay c
(k)
ij to i;

cmin
i ← min(cmin

i , c
(k)
ij );

end
for each neighbor i ∈ Dj do

if no bid was successful (no charge received from i), q̈ij = pmax
i + δ; otherwise, q̈ij = cmin

i − δ;
end

Therefore, despite the fact that no dominant strategy equilibrium or truthful equilibrium generally ex-
ists, they are the practical auction mechanism of choice for Internet advertising by Google and Yahoo!.

Below we show that our discriminative second price auction is a better choice for a seller than its
natural alternative: uniform second price auction, which is equivalent to the Vickrey-Clarke-Groves
(VCG) mechanism. A VCG mechanism is known to induce truthful bids, i.e., each bidder bids its true
valuation for the object it wants. In a VCG mechanism, the seller charges a winner the externality
the winner imposes on others, i.e., the decrease of the overall valuation of other bidders due to this
winner’s presence. When one object is on sale (single-object auctions), the charge to the winner is the
second highest bid. In our context, oi units of upload capacity are on sale at each seller i. If we apply a
VCG mechanism, all the first oi bids with highest bidding prices (the bidders’ true valuations) win and
pay the (oi + 1)st highest bid, which constitutes a uniform second price auction.

Theorem 1 gives that Algorithm 1 always weakly dominates the VCG mechanism. Detailed proof of
the theorem can be found in Appendix 8.1.

Theorem 1. The discriminative second price auction in Algorithm 1 weakly dominates the VCG mech-

anism, by always generating equal or higher revenue for the seller than VCG does in Nash equilibrium

states, i.e., let Ralg1 =
∑

j∈Di

∑
k∈Kij

a
(k)
ij c

(k)
ij be the revenue seller i obtains with Algorithm 1 in Nash
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equilibrium, and Rvcg be the revenue obtained with the VCG mechanism in Nash equilibrium, we have

Ralg1 ≥ Rvcg.

In Algorithm 1, we also consider the upload capacity contribution strategy at the sellers: when m is
no larger than Oi, seller i refuses to sell the mth unit upload capacity. However, the total revenue is
unaffected since the price charged for the mth unit capacity is zero even if it is sold. On the other hand,
we may prevent an equal-to-zero market price in the auction, considering price probing at the bidders.

Should a seller be more aggressive and withhold more than one units of its upload capacity, for
perhaps a higher market price and hence higher revenues? The answer is no. In a P2P VoD market,
intense market competitions exist, i.e., sellers may well offer the same blocks through their own auc-
tions, and collusion among all sellers (who are also the buyers) with ubiquitous aggressive capacity
reservation is unlikely to happen. A buyer can choose from multiple competing sellers to bid for a
given block; if it discovers a high market price at one seller, it may well purchase the block (and later
blocks) from other cheaper sellers. Therefore, a seller that reserves a high fraction of its upload band-
width runs a high risk of failing to boost up the market price, but may loose sales to other competing
sellers in the interconnected markets. In a practical dynamic system where neither sellers or bidders
have complete information of real-time market status, the best strategy for a seller is to maximally
contribute its bandwidth in each round, as in Algorithm 1, in order to glean more revenue over time.

In conclusion, Algorithm 1 is therefore incentive compatible with the VoD sellers, i.e., sellers have
the incentive to apply it as their best auction mechanism, as compared to other representative auction
mechanisms, to achieve maximized revenue.

Bidder Incentive Compatibility

The bidding strategy in Algorithm 2 naturally leads to a truthful start followed by market price

probing at each bidder. In the first round upon joining an auction, a bidder j bids its true valuation of
a block. Even if the bid is temporarily higher than necessary, the overpayment will be corrected soon
with progressive price adjustments. Below we further discuss Algorithm 2’s bidding strategy for the
subsequent rounds.

Theorem 2. In the auction at seller i described in Algorithm 1, for each block k ∈ Kij , bidding a price

equal to min(v
(k)
ij , p̃i), i.e., the minimum between the block valuation and the market price at i, is an

equilibrium strategy for every bidder j.

Please refer to Appendix 8.2 for detailed proof of the theorem.

In each subsequent round, though the ideal action for j is to bid at min(v
(k)
ij , p̃i), p̃i is unknown at

this stage. Hence j can only probe it using its market price estimate q̈ij , which is captured in the

bid p
(k)
ij = min(v

(k)
ij , q̈ij) in (4) and the adjustment of q̈ij in Algorithm 2. A tradeoff of the probing is

that when q̈ij is eventually adjusted to slightly below p̃i, j may temporarily lose the auction before it
re-adjusts its bidding price upward.

4.2 Social Welfare Maximization

We now analyze the effectiveness of the resulting block scheduling based on Algorithms 1 and 2. We
first show that a Nash Equilibrium exists at the stable state of VoD streaming. We note that without
peer joins/departures and VCR operations, the equilibrium defined as E∗ in the proof of Theorem 1
constitutes a long-term stable operating state for the auction at a seller i, in which the market price

p̃i is the true block valuation in the highest losing bid, each participating bidder j with v
(k)
ij ≥ p̃i bids

and pays p̃i, and all other participating bidders bid their true valuations and lose. In the rest of the
analysis, we also refer to such a Nash Equilibrium as the stable state of the VoD system. All bidding
prices in the winning bids received by a seller i are equal in the stable state.
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Given the budget constraints imposed at the VoD peers, the problem of optimizing the global social
welfare can be formulated into the following integer program. Here N is the set of all peers in the
overlay.

Maximize
P

j∈N

P

i∈Dj

P

k∈Kij
v
(k)
ij (a

(k)
ij ) (10)

Subject to:

Pglobal

8

>

>

<

>

>

:

P

i∈Dj

P

k∈Kij
p
(k)
ij a

(k)
ij ≤ êj ∀j ∈ N

P

j∈Di

P

k∈Kij
a
(k)
ij ≤ oi ∀i ∈ N

P

i∈Dj
a
(k)
ij = zk

j ∀j ∈ N ,∀k ∈ Kij

a
(k)
ij , zk

j ∈ {0, 1}, ∀j ∈ N , ∀i ∈ Dj , ∀k ∈ Kij

Theorem 3 shows that the distributed local optimization carried out through block auctions in Algo-

rithms 1 and 2 leads to an efficient system design, in that aggregated “satisfaction” v
(k)
ij (a

(k)
ij ) among

all peers are implicitly maximized.

Theorem 3. Algorithms 1 and 2 solve (10), i.e., achieve social welfare maximization, in a stable P2P

VoD overlay.

Please refer to Appendix 8.3 for the detailed proof.

In summary, the analysis in this section shows that our auction-based algorithm design achieves
the following desirable objectives: (1) A seller has full incentive to apply our auction mechanism in
Algorithm 1, in order to achieve maximized revenue for itself. (2) A bidder is also incentivized to apply
our bidding strategies in Algorithm 2, which obtain the best blocks with the largest aggregate utility
for itself. (3) The auction mechanism and bidding strategies together enable efficient block scheduling
among peers, that leads to social welfare maximization in the entire P2P system at stable state. Social
welfare reflects balanced block distribution or timely block download to meet playback deadlines at all
peers, depending on the valuation functions used. On the other hand, in a dynamic system where VCR
operations and peer joins/departures persist, Algorithms 1 and 2 still strive to pursue optimal block
scheduling, chasing the objective of social welfare maximization, which is a moving target.

5. PERFORMANCE EVALUATION

For evaluating the auction-based P2P VoD algorithms, we have implemented an efficient multi-threaded
P2P network simulator in Java, based partly on the source codes of PlanetSim [Pla tsim]. Our sim-
ulator supports all peer dynamics, including VCR operations, peer joins and departures, by events
scheduled at their respective times. With careful optimization, it can simulate P2P systems with more
than 10, 000 simultaneous peers in highly dynamic scenarios, distinguishing itself from representative
existing P2P simulators [Naicken et al. 2007] which may support 3000 peers at most.

Our simulation settings are intended to model realistic VoD systems. An 80-minute video is streamed,
the playback bitrate is 450 Kbps, and each block equals 1/3 second of playback [Wu et al. 2008]. Peer
upload capacities follow a heavy-tailed Pareto distribution in the major range of [256 Kbps, 10 Mbps]
with shape parameter k = 2 or 3 (our default), corresponding to a mean upload bandwidth of 512
Kbps or 384 Kbps, respectively. Peers join the overlay following a Poisson arrival model with 1.8-second
mean inter-arrival time. Peer lifetime follows an exponential distribution with a mean of 30 minutes
[Hei et al. 2007]. A peer issues a random-seek VCR command periodically, with inter-command time
following an exponential distribution with a 5-minute mean. Each peer maintains around 30 neigh-
bors and may buffer blocks for up to 20-minute playback [Wu et al. 2008]. There is a streaming server
with 10 Mbps upload capacity. Buffer maps are exchanged and bidding and allocation are carried out
every 5 seconds. Though our simulator can support 10, 000 and more peers, 3000 peers are used in our
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Fig. 2. Average charges at sellers with different upload capacities.

experiments for timely execution without loss of intriguing observations. The default price adjustment
δ (used in the estimate of market prices) is set to 0.05.

We study different block valuation methods for v
(k)
ij : (i) Deadline-based valuation αd

log(βd+d) , emphasiz-

ing how urgent a block is. Here d is the time to playback deadline of the block, normalized by dividing 20
minutes (buffer capacity), and αd and βd are tunable constants. (ii) Rareness-based valuation αr

log(βr+r) ,

emphasizing how rare the block is among peer j’s neighbor set Dj . Here r is the number of neighbors
possessing the block divided by |Dj |, and αr and βr are tunable constants. (iii) A hybrid valuation (our
default) based on linear combination of (i) and (ii). The default constant values are: αd = 1, βd = 1.2,
αr = 1 and βr = 1.2. Initial peer budget is set to 2000, sufficient to buy blocks for 5-min playback.

5.1 Dynamics of Prices and Budgets
We first study the evolution of prices and budgets in the microscopic level. During an 80-min run of the
VoD system, we pick four representative peers with upload capacity of 270 Kbps, 360 Kbps, 510 Kbps
and 2 Mbps, respectively, who join the overlay at around 18 minutes. We temporarily disable VCR
functions and allow peers to stay till the end, to investigate prices/budgets in relatively stable states.

5.1.1 Evolution of charges. Fig. 2 shows the average and 95% confidence intervals of all charges
to their bidders at the four sellers in each round. All average charges and confidence intervals at the
sellers are calculated at the same time in each round. We observe that the confidence intervals are very
small (largely overlapping with the averages) and charges at each seller stabilize quickly to the vicinity
of the respective market prices, due to the dynamic price probing strategy taken by each bidder.

5.1.2 Evolution of estimate market prices. We further explore the impact of price adjustment gran-
ularity, δ, on the convergence of estimated market prices at the bidders. In Fig. 3, we plot the average
market price estimate among all bidders at seller C in each round, when different δ values are used
in the estimation. We observe that the smaller δ is, the slower the average market price estimate con-
verges. Though it always stabilizes to the vicinity of the “true” market price when different δ values are
used, how close it is to the market price is decided by δ: the smaller δ is, the closer the market price es-
timate can converge to the “true” market price. Therefore, the choice of δ results in a tradeoff between
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convergence speed and accuracy. We choose a default δ = 0.05 in our experiments. Nevertheless, an
intelligent price adjustment algorithm may be devised to achieve fast convergence with high accuracy,
e.g., larger δ can be used at the first few bidding rounds and smaller δ is applied in the following. This
investigation is orthogonal to the focus of the current paper, which we leave as future work.

5.1.3 Evolution of budgets. We next investigate how the budgets at the four peers evolve under
various bandwidth abundance levels and block valuation methods. The budget is sampled at the end
of each round, after prices paid and charges collected. Fig. 5 shows a rising budget at the high-capacity
peers and a decreasing budget at the low-capacity ones. Such an interesting phenomenon can be fur-
ther illustrated by Fig. 4 which plots peers’ net profit in each round. Peers with larger capacities are
making profit over time (income≥expense), while low-capacity ones have deficits (income≤expense).
This is due to the higher upload bandwidth contribution at the high-capacity peers, than their down-
load bandwidth consumption.

When the network bandwidth is insufficient (Fig. 5(b)), peer D with the largest upload capacity
continuously aggregates the budget in the system, while the budgets at low-capacity peers (e.g., A, B)
decreases. Upload capacity is saturated at all peers in the case that network bandwidth is insufficient;
thus high-capacity peers earn more than with sufficient bandwidth supply, and can prefetch more
blocks. Their larger block diversity further attract more bidders. All these lead to an interesting “the
rich get richer” phenomenon.

In Fig. 5(c) and (d), we employ deadline-only and rareness-only block valuations, respectively. Com-
paring Fig. 5(c) with Fig. 5(a), we notice a lower level of budget aggregation by the high-capacity peers,
as their block diversity is lower when only blocks needed for playback are prefetched, leading to less
revenue at those peers. Comparing Fig. 5(d) with Fig. 5(a), budget aggregation is more evident. Peer
block diversity is highest with rareness-only evaluation. After joining the system, high-capacity peers
with larger revenue can increase their block diversity faster, as they can afford to buy more rare blocks;
this edge is lost (their budgets stabilize) when the block diversity at low-capacity peers catches up.

5.2 Incentives
To incentivize peer contribution, it is important to guarantee that peers who contribute more upload
bandwidth can benefit more in streaming. We have observed that peers with larger upload capacity
(thus large upload bandwidth contribution) aggregate more budget over time in Fig. 5. Fig. 6 and
Fig. 7 show that the larger a peer’s lifetime average upload bandwidth is, the higher download rate
it enjoys on average (calculated as the average rate during its video download period, which could be
shorter than its lifetime), helping more blocks meet playback deadlines. Each sample in the figures
represents one of the 3000 peers that join the system, with arrival interval of 1.8 seconds.
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Fig. 5. Evolution of budget at peers with different upload capacities.
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(b) Deadline−based block valuation

Fig. 7. Average percentage of blocks meeting playback deadline
vs. average upload bandwidth at each peer.

Fig. 7 depicts the percentage of blocks meeting playback deadlines, during a peer’s continuous view-
ing periods (excluding re-buffering periods upon a VCR operation). Comparing Fig. 7(b) to Fig. 7(a),
we see that the percentage is higher with deadline-based valuation. In both cases, better playback
smoothness is achieved at peers with larger upload bandwidth contributions.

5.3 Social Welfare

We now investigate the social welfare achieved by our auction-based algorithm, and compare it with
two scheduling algorithms representing commonly used protocols: (1) Algorithm S, identical to our
algorithm except for block scheduling: each downstream peer exchanges buffer maps with neighbors
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Fig. 8. Evolution of the percentage of peers meeting playback deadline.
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Fig. 9. Evolution of the average block distribution index.

and requests blocks according to the order of deadlines or rareness; each upstream peer decides the re-
quests to serve randomly. (2) The scheduling algorithm in [Annapureddy et al. 2007], referred to as the

WWW algorithm, by which each video is divided into s segments and each segment into h blocks. Blocks
in a segment are encoded with network coding such that only segment level scheduling is needed. Its
segment scheduling is based on a combined consideration of playback deadline and rareness: rarest
segment of immediate interest is uploaded first. We simulate the WWW algorithm by setting s to 80
and h to 180, such that the total number of blocks in the video is the same as in our other experiments.
In the following set of experiments, 3000 peers join the overlay simultaneously at the beginning, simu-
lating the flash crowd of users at new video release. All other settings remain the same.

5.3.1 Playback deadline. We first compare overall playback smoothness at the peers. Fig. 8(a) and
(b) show that the percentage of peers meeting deadlines is higher in our algorithm when deadline-
based block valuation is applied, as compared to algorithm S (with deadline-based block valuation)
and the WWW algorithm, regardless of the bandwidth abundance level. We also studied more severe
system dynamics by setting the arrival interval of peers, peer life time, and the interval between VCR
operations to half of their default values. Fig. 8(c) shows our algorithm still outperforms the others.
This exhibits the effectiveness of our algorithm in utilizing prices to regulate the supply and demand
at each peer, such that their upload bandwidth are most efficiently used to serve highest valued blocks.

5.3.2 Block distribution. Next we evaluate how well blocks are distributed in the system to serve
peers’ needs, with the three scheduling algorithms. We evaluate the block distribution around peer i
by the block distribution index, which represents the average probability that a neighbor may serve
peer i a block it needs:

total # of copies of i’s needed blocks in Di

# of blocks i currently needs × |Di|
.

Fig. 9 shows that the average block distribution index across all peers is higher in our system based
on rareness-based block valuation, as compared to algorithm S (with rareness-based block valuation)

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 2, No. 3, Article 1, Publication date: May 2010.



Auction-based P2P VoD Streaming: Incentives and Optimal Scheduling • 1:15

0 20 40 60 80
0

2

4

6

8

10

12

Time (minutes)

A
ve

ra
ge

 c
on

tr
ol

 m
es

sa
gi

ng
 o

ve
rh

ea
d(

K
bp

s)

 

 

Auction (hybrid, k=3)
Alg. S (hybrid, k=3)
WWW Alg.

Fig. 10. Evolution of control messaging overhead.

and the WWW algorithm under all settings. This again validates the effectiveness of our auction-based
scheduling, in making the best use of bandwidth in distributing blocks effectively.

5.3.3 Control messaging overhead. We now compare the control messaging overhead incurred in
the three algorithms. For control messaging, buffer map exchange messages are common among all
three algorithms. Our auction algorithm further involves delivery of bids and charges among sellers
and buyers; Algorithm S includes block requests sent to the upstream nodes and responses of block
allocation to the downstream nodes; for the WWW algorithm, the overhead includes segment requests
sent to upstream nodes and coding coefficients sent together with coded blocks.

Fig. 10 shows that control messaging in the WWW algorithm consumes the most network bandwidth,
as random coefficients need to be delivered together with coded blocks in this network coding scheme.
In the WWW algorithm, there are 180 blocks in each segment and each coefficient is 2 bytes long; the
size of random coefficients to be delivered with each coded block could be as large as 360 bytes. On the
other hand, control messaging overhead is much lower with our auction algorithm and algorithm S. As
compared to algorithm S, our algorithm involves more control messages to send bids/charges among
peers. However, the overhead with both algorithms is only as low as 0.4 − 0.6% of the streaming rate.

5.3.4 Impact of block valuation methods. We now explore how different block valuation methods,
αd

log(βd+d) + αr

log(βr+r) with different values of αd, βd, αr and βr, influence the overall playback smoothness

and block distribution in the system. For this purpose, we repeat experiments with our auction scheme,
when different valuation methods are adopted. Fig. 11 shows that when the radio of αd over αr is larger,
i.e., when the deadline-based term dominates the rareness-based term, the playback smoothness in the
system is better.

On the other hand, Fig. 12 shows that in general, the larger the ratio of αr over αd is (the rareness-
based term dominates the deadline-based term), the larger the block distribution index is (more effi-
ciently blocks are distributed). Nevertheless, for the purely deadline-based evaluation (when αr = 0),
the block distribution index is not as expected the smallest. Our close investigation reveals the reason:
neighbors of a peer are mostly peers with similar playback progresses, and therefore valuable blocks
at a peer (based on deadline-based valuations) may well be needed by its neighbors as well.

From the above observations, we can derive the following rules of setting parameters in the block
valuation: if playback smoothness is more desirable in the system, more weight should be placed on
the deadline-based valuation part (i.e., larger αd over αr), and the optimal setting to achieve the best
playback smoothness is to set αr = 0 (i.e., only considering deadline-based valuation); if more efficient
block distribution in the network is in demand, more weight should be put on the rareness-based
evaluation part (i.e., larger αr over αd).
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Fig. 11. Evolution of the percentage of peers meeting
playback deadline with different block valuation methods.
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Fig. 12. Evolution of average block distribution index
with different block valuation methods.

6. RELATED WORK

Incentive engineering in P2P streaming has attracted increasing research attention in recent years
[Golle et al. 2001; Lai et al. 2003; Habib and Chuang 2006]. In the context of P2P live streaming, it
was shown that simple tit-for-tat from P2P file sharing does not work well for streaming applications,
which have additional delay and bandwidth requirements [Pai and Mohr 2006]. New incentive mech-
anisms were then proposed, connecting a peer’s bandwidth contribution to its streaming quality, by
differentiating the supplying peers it can download from [Habib and Chuang 2006], or the amount
of bandwidth/substreams it can receive [Sung et al. 2006]. For P2P VoD streaming, Give-to-Get [Mol
et al. 2008] advocates that peers favor uploading to proven good uploaders; the recent proposal of iPass
[Liang et al. 2009] differentiates pre-fetching ability at the peers, allowing peers with high contribution
to prefetch at high speed. In comparison, our budget-based incentive provides a quantitative approach
for evaluating a peer’s cumulative contribution over time (the budget a peer aggregates in the past can
be used to purchase desired services in later streaming). We also show that maximal contribution is
the best strategy at the peers with our algorithms, which has not been shown in existing proposals.

Budget-based mechanisms have been proposed for incentivizing peer contribution in P2P content
distribution systems. PACE [Aperjis et al. 2008] proposes a market-based mechanism where curren-
cies are exchanged for content based on a simple pricing mechanism, i.e., a single charging price per
seller. Such simple pricing may not be able to achieve optimal block scheduling if applied to P2P VoD
streaming (with fast changing demand and supply relationship), while our algorithm has been proven
to achieve so. Tan et al. [Tan and Jarvis 2008] design a payment-based incentive mechanism for P2P
live streaming, based on first-price auctions. Targeting at substream auction in live streaming scenar-
ios, their auctions cannot address the challenges of VoD streaming well. With respect to BitTorrent-like
file sharing systems, a few auction-based models have been discussed for peer incentive engineering
[Levin et al. 2006; Hausheer and Stiller 2005]. However, rigorous analysis of either the incentive com-
patibility or the optimality of chunk scheduling, is missing from these work.

Various heuristic algorithms on scheduling of block transmissions have been proposed. In [Huang
et al. 2008], a peer pulls chunks from others with a mixed strategy of first sequential and then rarest-
first downloading. The scheduling algorithm in [Annapureddy et al. 2007] encodes blocks in a segment
with network coding and prioritizes the rarest segment of immediate interest. In iPass [Liang et al.
2009], either rarest-first, oldest-first, or random selection of pieces can be adopted. In comparison, our
algorithm implements optimal scheduling by quantitatively optimizing social welfare.

In our previous work on P2P live streaming [Wu et al. 2008], we employ auctions to model the
bandwidth allocation across multiple P2P live streaming overlays. Chu et al. [Chu et al. 2009] apply

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 2, No. 3, Article 1, Publication date: May 2010.



Auction-based P2P VoD Streaming: Incentives and Optimal Scheduling • 1:17

auction algorithms to design a distributed solution to a min-cost media flow multicast problem. The
two work above are based on auctions of abstract ‘flows’, while this work conducts auctions on realistic
media blocks. In addition, they have both applied auctions to achieve optimal resource allocation, but
not peer incentivization. We are not aware of any other existing work that achieves both incentive
compatibility and optimal scheduling in one integral auction design.

7. CONCLUSIONS

We presented P2P VoD algorithms that target full upload incentives at peers and optimal block schedul-
ing across the streaming overlay. Employing strategically designed dynamic auctions, we achieve the
goals in a simple, efficient, and fully decentralized fashion. Leveraging theories of mechanism design
and convex optimization, we prove the effectiveness of the auction algorithms, in that each peer is
fully incentivized to upload blocks strategically and the block scheduling in the entire system achieves
social welfare maximization, in terms of meeting playback deadlines or balancing block distribution.
Our large-scale empirical studies support our conclusions in highly dynamic real-world settings.

Beyond what were discussed in the paper, we believe that our auction-based design motivates peers
to contribute in a variety of ways, facilitating optimal streaming in practical P2P VoD systems. In a
real-world P2P VoD application where a user has a large collection of videos to choose from, a wealthy
user (who owns a large budget) will have the advantage of enjoying better streaming quality (e.g.,
better playback smoothness and shorter buffering delays), among the flash crowd to view a newly
published video. Towards getting wealthier, a peer is not only fully motivated to contribute its upload
capacity during its own playback, but also may choose to stay longer in the system, just to make the
best use of its idling capacity to continue building its budget through block sales. Similarly, a peer
may also temporarily join another video channel where bandwidth demand exceeds supply (e.g., a less
popular channel), to assist in block distribution, again for the purpose of gleaning block resale revenue.
In this way, the puzzle of how to design an effective cross-overlay help algorithm for maximizing global
streaming performance in a multi-overlay system, is naturally solved in a fully decentralized fashion.

We have observed some interesting phenomena in our empirical studies of our algorithms, such as
the possible wealth condensation phenomenon (Sec. 5.1.3), which warrant further exploration: How
would the budget distribution in the system evolve over a very long term of months or even years?
Given the observation that high-capacity peers may aggregate the “wealth” in the system, should we
apply a taxation mechanism to counter-act this, while still guaranteeing full incentives for peers to
contribute? We are studying these interesting questions in ongoing work.

8. APPENDIX

8.1 Proof of Theorem 1

Proof: We prove by showing that in the worst Nash Equilibrium for the seller under Algorithm 1, the
revenue equals that of VCG. The following is a Nash Equilibrium of the auction under Algorithm 1 at

seller i: all the oi bidders with the highest block valuations (v
(k)
ij ’s) bid and is charged a price equal to

the (oi+1)st highest block valuation among all bids (which is the market price), and win the auction; all
other bidders bid their true block valuations and lose. No bidder can improve its utility by unilaterally
changing to a different bidding price: peer j with a winning bid has no incentive to bid higher (still
wins, pays the same price, utility unchanged) or lower (lose the auction, utility decreases to zero); peer
j with a losing bid has no incentive to bid higher (either wins at a charge higher than true valuation
that results in negative utility, or still loses with unchanged utility) or lower (still loses, no change in
utility). We denote this equilibrium as E∗.
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Next, one can translate the auction at a seller i into an assignment problem, in which a bid is to be
assigned to each unit of i’s upload capacity. Any equilibrium of the discriminative second price auction
corresponds to a stable assignment [Edelman et al. 2007], in which there does not exist a bid (from j)
and a unit capacity at seller i, such that j is willing to purchase that unit capacity at a price slightly
higher than what another bidder currently pays. Consequently, E∗ corresponds to a stable assignment.

In any stable assignment, the charge paid for any winning bid of j is at least the (oi + 1)st highest
block valuation among all bids, otherwise the bidder of the (oi+1)st bid would be willing to purchase
the unit capacity won by j, by paying a price slightly below its block valuation. Since the charge in E∗

for any winning bid is equal to the (oi+1)st highest block valuation, we derive that E∗ is the worst-
case equilibrium for the seller. Furthermore, the total seller’s revenue in E∗ equals that of VCG. We
conclude that the discriminative second price auction in Algorithm 1 always generates equal or higher
revenue for the seller than VCG does. ⊓⊔

8.2 Proof of Theorem 2

Proof: In each round, j can win a desired block k at i with a bidding price no lower than the market

price p̃i. To maximize its utility (v
(k)
ij −c

(k)
ij ) under its budget constraint, j is incentivized to bid a price no

higher than p̃i. In addition, a rational bidder won’t bid for a block with a price higher than its valuation

v
(k)
ij , to avoid negative utility. There are two cases: (a) if v

(k)
ij ≥ p̃i, bidding p̃i wins the block with the

minimum budget expenditure and the largest utility, as compared to bidding p
(k)
ij > min(v

(k)
ij , p̃i) = p̃i;

(b) if v
(k)
ij < p̃i, bidding v

(k)
ij leads to zero utility (the bid will be unsuccessful), which is better than

bidding a price higher than the true valuation (p
(k)
ij > v

(k)
ij ) and winning the block with a negative

utility (v
(k)
ij − c

(k)
ij ≤ v

(k)
ij − p̃i < 0).1 In both cases, the bidding price is equal to min(v

(k)
ij , p̃i), which leads

to the largest utility for the block at bidder j. Therefore, bidding min(v
(k)
ij , p̃i) constitutes a utility-

maximizing equilibrium strategy for every bidder j. ⊓⊔

8.3 Proof of Theorem 3

Proof: We prove the theorem by showing that optimal solutions obtained at individual bidders through
solving (5) can be combined to construct an optimal solution to the global social welfare maximization
in (10) at the stable state. We first show that (i) the relaxation of (5) always has an integral optimal
solution. We next show that (ii) the KKT conditions of the relaxation of (5), aggregated across all VoD
peers, are equivalent to the KKT conditions of the relaxation of (10), i.e., optimal solutions to (the
relaxation of) (5) can be combined to construct an optimal solution to (the relaxation of) (10).

(i) Given a fixed set of zk
j ,∀k ∈ Kij , the relaxed bidding preference program at each peer j (to (5)) is

Maximize
P

i∈Dj

P

k∈Kij
(v

(k)
ij (a

(k)
ij )− p

(k)
ij a

(k)
ij ) (11)

Subject to: 8

>

>

>

<

>

>

>

:

P

i∈Dj

P

k∈Kij
p
(k)
ij a

(k)
ij ≤ êj (12)

P

i∈Dj
a
(k)
ij = zk

j ∀k ∈ Kij (13)

a
(k)
ij ≥ 0 ∀i ∈ Dj , ∀k ∈ Kij (14)

a
(k)
ij ≤ 1 ∀i ∈ Dj , ∀k ∈ Kij (15)

A bidder’s original optimization in (5) involves vector x instead of a. However, for each optimal
solution x

∗, the corresponding vector a
∗ also satisfies (12)-(15); furthermore, replacing x

∗ with a
∗ does

not change the objective function value in (11). The reason for the latter is that for an entry where x and

1We note that a peer would not go for negative utility with a higher bidding price, and would rather spend the budget on other

blocks it needs. When the playback deadline or rareness of a block changes, a peer’s valuation of the block v
(k)
ij changes, and it

may bid for it again in a later round using the same strategy p
(k)
ij = min(v

(k)
ij , p̃i).
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a differ, the corresponding bid is unsuccessful; at Nash equilibrium, a bid is unsuccessful if the bidder

bids p
(k)
ij = v

(k)
ij lower than market price, and therefore v

(k)
ij (x

(k)
ij )− p

(k)
ij x

(k)
ij = v

(k)
ij (a

(k)
ij )− p

(k)
ij a

(k)
ij = 0 for

the corresponding bid.
At equilibrium, the following constraint is also satisfied:

X

j∈Di

X

k∈Kij

a
(k)
ij ≤ oi, ∀i ∈ N . (16)

The constraint group (13)-(16) is totally unimodular [Papadimitriou and Steiglitz 1998], defining a
polyhedron with integral vertices (integral binary vectors for a). Further, if based on the relaxed op-

timization, a bidder j receives fractions of a block k from different sellers (e.g., both a
(k)
ij and a

(k)
hj are

non-zero), bidding prices for block k to the sellers must be the same (p
(k)
ij = p

(k)
hj ). Consequently, if a frac-

tional solution a satisfies (12), there must exist an integral solution satisfying it too. We then conclude
that (11), the relaxation of (5) for any given binary vector z, always has integral optimal solutions.

(ii) Introducing Lagrangian multiplier vectors [Boyd 2004] λ, β, µ and τ for constraints (12)-(15)
respectively, we obtain the KKT conditions for (11) at every VoD peer j ∈ N , which can be aggregated
into:

KKTlocal

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

P

i∈Dj

P

k∈Kij
p
(k)
ij a

(k)
ij ≤ êj , ∀j ∈ N

P

i∈Dj
a
(k)
ij = zk

j , ∀j ∈ N ,∀k ∈ Kij

0 ≤ a
(k)
ij ≤ 1, ∀j ∈ N , ∀i ∈ Dj , ∀k ∈ Kij

λ, µ, τ ≥ 0

λj(
P

i∈Dj

P

k∈Kij
p
(k)
ij a

(k)
ij − êj) = 0, ∀j ∈ N

µk
ija

(k)
ij = 0, ∀j ∈ N ,∀i ∈ Dj , ∀k ∈ Kij

τk
ij(a

(k)
ij − 1) = 0, ∀j ∈ N , ∀i ∈ Dj , ∀k ∈ Kij

P

j∈Di

P

k∈Kij
a
(k)
ij ≤ oi, ∀i ∈ N

−v
(k)
ij (a

(k)
ij ) + p

(k)
ij + λjp

(k)
ij − µk

ij + τk
ij + βk

j = 0,
∀j ∈ N ,∀i ∈ Dj , ∀k ∈ Kij . (17)

Next, the relaxed global maximization problem to (10) is (given fixed zk
j ’s):

Maximize
P

j∈N

P

i∈Dj

P

k∈Kij
v
(k)
ij (a

(k)
ij ) (18)

Subject to: 

Pglobal

0 ≤ a
(k)
ij ≤ 1 ∀j ∈ N , i ∈ Dj , k ∈ Kij

Introducing Lagrangian multiplier vectors λ, ν, β, µ and τ for constraints of (18), we obtain the
following KKT conditions for (18):

KKTglobal

8

>

>

<

>

>

:

KKTlocal

ν ≥ 0

−v
(k)
ij (a

(k)
ij ) + νi + λjp

(k)
ij − µk

ij + τk
ij + βk

j = 0,

∀j ∈ N , ∀i ∈ Dj , ∀k ∈ Kij .

At each seller i, the winning bidding prices from different bidders are all equal to the market price

at equilibrium, i.e., p
(k)
ij = p̃i if a

(k)
ij > 0,∀j ∈ Di, k ∈ Kij . Comparing KKTlocal and (17) with KKTglobal,

we derive νi = p̃i = p
(k)
ij ,∀i ∈ N , j ∈ Di, k ∈ Kij , and the two sets of KKT conditions are equivalent. ⊓⊔
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