
BGL: GPU-Efficient GNN Training by Optimizing Graph Data I/O and
Preprocessing

Tianfeng Liu∗1,4,3, Yangrui Chen∗2,3, Dan Li1,4, Chuan Wu2, Yibo Zhu3, Jun He3,
Yanghua Peng3, Hongzheng Chen3,5, Hongzhi Chen3, Chuanxiong Guo3

1Tsinghua University, 2The University of Hong Kong, 3ByteDance,
4Zhongguancun Laboratory, 5Cornell University,

Abstract
Graph neural networks (GNNs) have extended the success of
deep neural networks (DNNs) to non-Euclidean graph data,
achieving ground-breaking performance on various tasks such
as node classification and graph property prediction. Nonethe-
less, existing systems are inefficient to train large graphs with
billions of nodes and edges with GPUs. The main bottle-
necks are the process of preparing data for GPUs – subgraph
sampling and feature retrieving. This paper proposes BGL,
a distributed GNN training system designed to address the
bottlenecks with a few key ideas. First, we propose a dy-
namic cache engine to minimize feature retrieving traffic. By
co-designing caching policy and the order of sampling, we
find a sweet spot of low overhead and a high cache hit ratio.
Second, we improve the graph partition algorithm to reduce
cross-partition communication during subgraph sampling. Fi-
nally, careful resource isolation reduces contention between
different data preprocessing stages. Extensive experiments on
various GNN models and large graph datasets show that BGL
significantly outperforms existing GNN training systems by
1.9x on average.

1 Introduction
Graphs, such as social networks [23, 36], molecular net-
works [19], knowledge graphs [21], and academic net-
works [47], provide a natural way to model a set of objects and
their relationships. Recently, there is increasing interest in ex-
tending deep learning methods for graph data. Graph Neural
Networks (GNNs) [22,36,46] have been proposed and shown
to outperform traditional graph learning methods [50, 57, 59]
in various applications such as node classification [36], link
prediction [56] and graph property prediction [51].

Real-world graphs can be massive. For example, the user-
to-item graph on Pinterest contains over 2 billion entities
and 17 billion edges with 18 TB data size [53]. As a major
online service provider, we also observe over 100 TB size of

*Tianfeng Liu and Yangrui Chen contributed equally to this work as first
authors.

graph data, which consists of 2 billion nodes and 2 trillion
edges. Such large sizes make it impossible to load the entire
graph into GPU memory (at tens of GB) or CPU memory (at
hundreds of GB), hence turning down proposals that adopt
full graph training on GPUs [55]. Recent works [23, 28, 53]
have resorted to mini-batch sampling-based GNN training,
aggregating neighborhood information on sampled subgraphs.

Distributed systems [2, 17, 48] for this training typically in-
clude distributed graph store servers to store partitioned large-
scale graphs and worker machines where each worker has one
GPU for model training. Each training iteration contains three
stages: (1) sampling subgraphs stored in distributed graph
store servers, (2) feature retrieving for the subgraphs from
graph store servers to workers, and (3) forward and backward
computation of the GNN model.

The first two stages, which we refer to as data I/O and
preprocessing, are often the performance bottlenecks in such
sampling-based GNN training. After analyzing popular GNN
training frameworks (e.g., DGL [48], PyG [17], and Euler [2]),
we made two key observations. (1) High data traffic for retriev-
ing training samples: when the sampled subgraph is stored
across multiple graph store servers, there can be frequent
cross-partition communication for sampling; retrieving cor-
responding features from the storage to worker machines
also incurs large network transmission workload. (2) Modern
GPUs can perform the computation of state-of-the-art GNN
models [22, 36, 46] quite fast, leading to high demand for
data input. To mitigate these problems, Euler adopts parallel
feature retrieval; DGL and PyG prefetch the sampling results.
Unfortunately, none of them fully resolves the I/O bottleneck.
For example, we observe only around 10% GPU utilization
in a typical DGL training job on a large graph (§2 and §5),
which means around 90% of GPU cycles are wasted.

In this paper, we propose BGL, a GPU-efficient GNN train-
ing system for large graph learning, to accelerate training and
achieve high GPU utilization (near 100%). Focusing on elim-
inating data I/O and preprocessing bottlenecks, we identify
three key challenges in the existing frameworks, namely: (1)
very heavy network traffic for retrieving features, (2) large

cross-partition communication overhead during sampling, and
(3) resource contention between different training stages. We
address those challenges, respectively.

The biggest bottleneck of distributed GNN training systems
often lies in retrieving large features (§2.3). PaGraph [38], a
state-of-the-art cache design for GNN training, uses a static
cache (no replacement during training) and explicitly avoids
dynamic caching policy (replacing some cached features at
runtime) because of high overhead. However, we find that
static cache has low hit ratios when the graphs are so large
that only a small fraction of nodes can be cached. Hence, we
co-design a dynamic cache policy and the sampling order of
nodes. We show that a FIFO policy has acceptable overhead
and high hit ratios combined with our proximity-aware order-
ing. The key idea is to leverage temporal locality – in nearby
mini-batches, we always attempt to visit the neighboring train-
ing nodes in the graph. This approach largely increases the
cache hit ratio of FIFO policy. We will further explain the
details of how we ensure the consistency of our multi-GPU
cache engine and GNN convergence in §3.2.

After optimizing feature retrieval, the cross-partition com-
munication for subgraph sampling could become the major
performance bottleneck. Existing algorithms either do not
scale to large graphs or ignore multi-hop neighbor connec-
tivity inside each partition. It leads to heavy cross-partition
communication because, in GNN training, the sampling algo-
rithm usually requests multi-hop neighbors from a given node.
Hence, we design a graph partition algorithm tailored for the
typical GNN sampling algorithms. Our algorithm (in §3.3.2)
strives to maintain multi-hop connectivity in each partition,
while maintaining load balance partitions and scaling to giant
graphs.

Finally, data preprocessing in GNN training takes multiple
stages and is much more complex than that in traditional DNN
training. Execution of some stages may compete for CPU and
bandwidth resources, throttling the performance. Existing
frameworks largely ignore it and let the preprocessing stages
freely compete with each other. Unfortunately, some stages
do not scale well with more resources. They may acquire
more resources than they need, leading to blocking other
stages. Hence, we optimize the resource allocation of data
preprocessing by profiling-based resource isolation. Our key
idea is to formulate the resource allocation problem as an
optimization problem, use profiling to find out the resource
demands of each stage, and isolate resources for each stage.

We implement BGL, including the above design points,
and replace the data I/O and preprocessing part of DGL with
it. The design of BGL is generic – e.g., BGL can also be used
with Euler’s computation backend. However, our evaluation
focuses on using BGL with the DGL GPU backend because
it is more mature and performant. We conduct extensive ex-
periments using multiple representative GNN models with
various graph datasets, including the largest publicly available
dataset and an internal billion-node dataset. We demonstrate

that BGL outperforms existing frameworks, and the geomet-
ric mean of speedups over PaGraph, PyG, DGL, and Euler is
1.91x, 3.02x, 7.04x, and 20.68x, respectively. With the same
GPU backend as DGL, BGL can push the V100 GPU uti-
lization to 99% even when graphs are stored remotely and
distributedly, higher than existing frameworks. It also scales
well with the size of graphs and the number of GPUs.

2 Background and Motivation
2.1 Sampling-based GNN Training
We start by explaining sampling-based GNN training.
Graph. The most popular GNN tasks 1 are to train on graphs
with node features, G = (V ,E ,F), where V and E denote
the node set and edge set of the graph, and F denotes the
set of feature vectors assigned to each node. For example,
in the graph Ogbn-papers [47], each node (i.e., paper) has a
128-dimensional feature vector representing the embeddings
of the paper title and abstract. We assume graph structures
and node features are immutable in this paper.
Graph neural networks (GNNs). Graph neural networks
are neural networks learned from graphs. The basic idea is col-
lectively aggregating information following the graph struc-
ture and performing various feature transformations. For in-
stance, the Graph Convolution Network (GCN) [36] general-
izes the convolution operation to graphs. For each node, GCN
aggregates the features of its neighbors using a weighted av-
erage function and feeds the result into a neural network. For
another example, GraphSAGE [23] is a graph learning model
that uses neighbor sampling to learn different aggregation
functions on different numbers of hops.

Real-world graphs, such as e-commerce and social net-
works [13, 53, 55], are often large. The Pinterest graph [53]
consists of 2B nodes and 17B edges, and requires at least 18
TB memory during training. Even performing simple oper-
ations for all nodes would require significant computation
power, not to mention the notoriously computation-intensive
neural networks. Similar to other DNN training tasks, it is
appealing to use GPUs to accelerate GNN training.
Sampling-based GNN training. There are two camps of
training algorithms adopted in existing GNN systems: full-
batch training and mini-batch training. Full-batch training
loads the entire graph into GPUs for training [36], like Neu-
Graph [40] and ROC [31]. Unfortunately, for very large
graphs like Pinterest’s, such an approach would face the limi-
tation of GPU memory capacity.

Thus, we focus on the other approach, mini-batch train-
ing, or often called sampling-based GNN training. In each
iteration, this approach samples a subgraph from the large
original graph to construct a mini-batch as the input to neural
networks. Mini-batch training is more popular and adopted by
literature [11, 23, 54] and popular GNN training frameworks
like DGL [48], PyG [18] and Euler [2].

1We focus on node classification tasks in this work.

Subgraph Sampling

Graph Store
Graph Structure Features

Worker

Sampler

Model
Computation

GNN

Feature
Retrieving

1

2

3

Subgraph

Mini-batch

Figure 1: Sampling-based GNN training process.

The process of sampling-based GNN training is shown in
Figure 1. The fixed graph data (including the graph structure
and node features) are partitioned and stored in a distributed
graph store. Multiple workers run on worker machines, with
each worker equipped with one GPU. Each training iteration
consists of three stages: 1 Subgraph sampling: Samplers
sample a subgraph from the original graph and send it to
workers. 2 Feature retrieving: After workers receive the
subgraph, the features of its nodes are further retrieved from
the graph store server and placed in GPU memory. 3 Model
computation: Like typical DNN training, workers on GPU
forward-propagate the prepared mini-batch through the GNN
model, calculate the loss function, and then compute gradients
in backward propagation. Then model parameters are updated
using optimizers (e.g., SGD [61], Adam [35]).

In the rest of this paper, we refer to the first two stages as
Data I/O and Preprocessing.

2.2 Data I/O and Preprocessing Bottlenecks
Unfortunately, existing GNN training frameworks suffer from
data I/O and preprocessing bottlenecks, especially when run-
ning model computation on GPUs. Here, we test two rep-
resentative frameworks, DGL [48] and Euler [2]. We train
GraphSAGE [23] model with one GPU worker. Using the par-
tition algorithms of DGL and Euler, we split the Ogbn-papers
graph [47] into four partitions and store them on four servers
as a distributed graph store. More configuration details and
the other framework results are in §5.

Figure 2 shows the training time of one mini-batch and the
time breakdown of each stage. 87% and 82% of the training
time were spent in data I/O and preprocessing by Euler and
DGL, respectively. Long data preprocessing time leads to not
only poor training performance but also low GPU utilization.
The maximum GPU utilization of DGL and Euler is 15% and
5%, respectively, as shown in Figure 3.

In GNN training, such a bottleneck is much more severe
than in DNN training like computer vision (CV) or natural
language processing (NLP) for two main reasons.

First, due to the neighbor explosion problem [12, 54], the
size of mini-batch data required by each training iteration
is very large. For example, if we sample a three-hop sub-
graph from Ogbn-products with batch size 1,000 and fan out
{15,10,5}, each mini-batch consists of 5MB subgraph struc-

Figure 2: Training time per mini-
batch of DGL and Euler.

0 20 40 60 80 100 120
Time (s)

0

5

10

15

GP
U

Ut
iliz

at
io

n
(%

)

DGL Euler

Figure 3: GPU utilization of
DGL and Euler.

ture (roughly 400,000 nodes) and 195 MB node features. As-
suming that we use a common training GPU server like AWS
p3dn.24xlarge [4] (8x NVIDIA V100 GPUs and 100Gbps
NIC) as the worker, and that we could saturate the 100Gbps
NIC pulling such data, we can only pull 60 mini-batches of
data in every second.

Second, the model sizes and required FLOPS of GNN are
much smaller than classic DNN models like BERT [15] or
ResNet [25]. V100 needs only 100MB and 20ms to com-
pute a mini-batch of popular GNN models like GraphSAGE.
P3dn.24xlarge can compute 400 mini-batches per second.

There is clearly a huge gap between the data I/O and pre-
processing speed, and GPU computation speed. Consequently,
though frameworks like DGL and Euler adopt pipelining, the
data I/O and preprocessing bottlenecks can only be hidden by
a small fraction and dominate the end-to-end training speed.

Some recent work [20, 29, 38] also observed this problem
and made promising progress. Unfortunately, it still falls short
in performance (§5) and cannot handle giant graphs well.
Next, we will elaborate on the main challenges existing GNN
training frameworks face.

2.3 Challenges in Removing the Bottlenecks
We identify three main challenges. Two are on large commu-
nication traffic for feature retrieving and subgraph sampling
(as shown in Figure 1 and 2). The other is about resource
contention when running all the stages together.
Challenge 1: Ineffective caching for node feature retriev-
ing. As shown in Figure 2, due to the large volume of data
being pulled to workers, node feature retrieval renders the
biggest bottleneck. A natural idea to minimize such com-
munication traffic is to leverage the power-law degree distri-
bution [16] of real-life graphs. For example, PaGraph [38]
adopted a static (no replacement at runtime) cache that stores
the predicted hottest node features locally. Upon cache hit,
the traffic of feature retrieving can be saved. Unfortunately,
on giants graphs like Pinterest graph [53], such a static cache
may only be able to store a small fraction of nodes due to
memory constraints. We find, when only 10% of nodes can
be cached, the static cache only yields <40% cache hit ratios.

Why not use dynamic (replacing some caches at runtime)
cache policies? It is challenging because it would incur large
searching and updating overhead, pointed out in [38]. Over-
heads become even larger when the cache is large (tens of
GB) and stored on GPU. Our best-effort implementation

Table 1: Qualitative comparison of graph partition algorithms.

Partition
Algorithms

Scalability to
Giant Graphs

Balanced
Training Nodes

Multi-hop
Connectivity

Random [2, 30] 3 3 7

METIS [32] &
ParMETIS [33]

7 3 3

GMiner [10] 3 7 7

PaGraph [38] 7 3 3

echos [42, 44] – we also find that popular policies like LRU
and LFU lead to a near 80-millisecond overhead for updating.

Nevertheless, we will show in §3.2 that it is still possible
to achieve a good trade-off between cache hit ratios and dy-
namic cache overhead by exploiting the characteristics of
GNN training and carefully designing the cache engine.
Challenge 2: Need for a graph partition algorithm that
is scalable and friendly to subgraph sampling. Beyond
node feature retrieving, communication overhead of subgraph
sampling renders another major bottleneck.

The partition algorithms affect the sampling overheads
in two ways. First, they determine cross-partition commu-
nication overhead. GNN sampling algorithms construct a
subgraph by sampling from a training node’s multi-hop neigh-
bors. If the neighbors are hosted on the same graph store
server, the sampler colocated with graph store servers can
finish sampling locally. Otherwise, it must request data from
other servers, incurring a high communication overhead. Like
random partitioning2 [2, 30], naive algorithms are agnostic
to the graph structure. Most state-of-the-art (SOTA) parti-
tion algorithms on graph processing and graph mining, like
GMiner [10] and CuSP [26], only consider one-hop connec-
tivity instead of multi-hop connectivity, which is suboptimal.

Second, partition algorithms determine the load balance
across graph store servers and sampler processes. In a train-
ing epoch, one must iterate all training nodes and sample
subgraphs based on them. For good load balance, one should
balance the training nodes across partitions. However, SOTA
graph partition algorithms only consider balancing all the
nodes, of which only 10% [27, 47] are training nodes. Be-
cause they focus on maintaining neighborhood connectivity,
they may produce less balanced partitions than the pure ran-
dom algorithm, especially imbalanced for the training nodes.

Since we aim for GNN training on giant graphs, the parti-
tion algorithm must be scalable to giant graphs as well. Like
the METIS [32, 33] used by DGL, some partition algorithms
rely on maximal matching to coarsen the graph, which is not
friendly to giant graphs due to high memory complexity [24].
Some other algorithms, such as PaGraph [38], have high time
complexity and are not friendly to giant graphs.

Ideally, we need a partition algorithm that works on giant

2Also including Lux [30], which is a random partition algorithm that
frequently re-partitions the graph for load balancing.

Graph Partition Module

Distributed Graph
 Data Files

Worker Machine

Graph Store Server Graph Store Server
Graph Store

Sampler

Graph Store

Sampler

Worker

Remote
Features

Sampled
Subgraphs

Worker

Feature Cache Engine

GPU GPU

CPU

Worker Machine

Worker Worker

Feature Cache Engine

GPU GPU

CPU

Parameter
Synchronization

Cross-Partition
Communication

Graph Partition

SamplerSampler

NVLINK NVLINK

Figure 4: The architecture of BGL.

graphs and simultaneously minimizes the cross-partition com-
munication and load imbalance during sampling. As shown
in Table 1, none of the existing partition algorithms satisfies
our needs, which motivates our algorithm (§3.3).
Challenge 3: Different data preprocessing stages contend
for resources. When running all stages together, we further
identify a unique problem of GNN training – the preprocess-
ing is much more complex than traditional DNN training.
The subgraph sampling, subgraph structure serialization and
de-serialization, node feature retrieving, and cache engine
all consume CPU and memory/PCIe/network bandwidth re-
sources. We observe that if all the processes freely compete
for resources, the resource contention may lead to poor perfor-
mance. Some operations may try to acquire more resources
than what they need and hence block other operations, while
they do not scale well with more resources.

Existing GNN training frameworks largely ignore this prob-
lem. DGL, PyG, and Euler either blindly let all processes
freely compete or leave the scheduling to underlying frame-
works like TensorFlow and PyTorch. The low-level frame-
works are agnostic to the specifics in GNN training, and thus
are also naive and suboptimal. Our answer to this challenge
is a carefully designed resource isolation scheme (§3.4).

3 Design
We design BGL to address the challenges presented in §2.3.

3.1 Architecture and Workflow
The overall architecture of BGL is shown in Figure 4. A
training job has the following stages.
Pre-training preparation: graph partition. The graph par-
tition module loads the graph data stored in the distributed
storage system (e.g., HDFS), and shards the whole graph into
several partitions. Graph partitioning is a one-time cost, and
the results can be saved in storage and used by other GNN
training tasks later. Then, each partition is loaded into a graph
store server’s memory, ready for subgraph sampling.

To address Challenge 2 in §2.3, BGL’s graph partition mod-
ule first uses multi-source BFS to merge nodes into several
blocks for reducing the graph size. Optimal graph partitioning
is NP-hard [7]. Hence, we propose a partition heuristic con-
sidering both multi-hop connectivity of blocks and training
workload balancing to maximize the partition locality, thus
minimizing the cross-partition sampling time.
Subgraph sampling at each training step. Samplers run on
the CPUs of graph store servers. They select several training
nodes and sample their multi-hop neighbors by iteratively
sampling next-hop neighbors several times. If all the next-
hop neighbors are stored in the current graph store server,
samplers can get the list locally; otherwise, they need to send
network requests to other graph store servers.
Training GNN using the sampled subgraphs. Each worker
in BGL runs on 1 GPU. It receives sampled subgraphs from
samplers and retrieves features of subgraph nodes from graph
store servers, with a local feature cache engine to improve the
retrieving efficiency.

To address Challenge 1 in §2.3, BGL’s feature cache engine
adopts an algorithm-system co-design. We leverage the tem-
poral locality — in nearby mini-batches, we always attempt
to train nodes with close distance in the graph. Combined
with a FIFO policy, BGL achieves high cache hit ratios and
low cache overheads. Increasing the temporal locality of train-
ing nodes may influence the convergence of GNN models.
We show BGL can preserve the SOTA training accuracy by
carefully introducing randomness in ordering training nodes.
On the system side, we exploit high-bandwidth GPU-to-GPU
communication with NVLinks, and design a multi-GPU cache
supporting dynamic caching strategies.

Finally, BGL uses a fine-grained pipeline, allowing par-
allel and asynchronous execution of each stage. To address
Challenge 3 in §2.3, BGL adopts resource isolation when
assigning resources to each pipeline stage. Specifically, BGL
formulates an optimization problem and assigns isolated re-
sources accordingly to minimize the execution time of each
pipeline stage under resource constraints (§3.4).

3.2 Feature Cache Engine
Feature retrieving contributes to the majority of communica-
tion overheads. We propose a feature cache engine, which
uses system-algorithm co-design to minimize this overhead.

3.2.1 Dynamic Cache Policy
The first question is, which dynamic caching policy should we
choose? PaGraph [38] indicates that dynamic policies have
too high overheads. Based on our best-effort implementation3,
we compare popular caching policies, including LRU, LFU
and FIFO in Figure 5a. Since cache queries arrive in batches,
we define the cache hit ratio as the percentage of hit nodes
in total number of nodes in a batch. The cache overhead is

3We implement LFU and LRU with O(1) time complexity and use a
contiguous 1D array as a HashMap to speed up key searching.

(a) Trade-off between hit ratios and
overhead (10% cache size).

2.5 5 10 20 40 80
Cache Size (%)

0

20

40

60

80

100

Ca
ch

e
Hi

t R
at

io
 (%

)

PO+FIFO(BGL)
Static(PaGraph)
FIFO

(b) Cache hit ratios with different
cache sizes.

Figure 5: We test the cache hit ratios and overhead on Ogbn-papers
with different cache sizes. PO is short for proximity-aware ordering,
which is proposed in §3.2.2.

the amortized time, including cache lookup on all nodes and
cache update upon cache misses. Hence, a higher cache hit
ratio, representing less frequent cache updates for dynamic
caching, can help reduce the amortized overhead.

LRU [42] and LFU [44] indeed have intolerable cache over-
head. FIFO’s overhead (<20ms per batch) meets the through-
put requirement for GNN training – as mentioned in §2, an it-
eration of typical GNN model computation on GPU is around
20ms. In an asynchronous pipeline with cache as a part of
data prefetching, FIFO cache will not become the bottleneck.

However, FIFO’s cache hit ratio is unimpressive – it is even
lower than static policy’s (Figure 5b). The reason is that FIFO
does not leverage the distribution of node features. Regardless
of how hot the node feature is, it is evicted as frequently as
other colder node features.

3.2.2 Proximity-Aware Ordering
To address the above problem, we propose proximity-aware
ordering – in nearby mini-batches, we always attempt to
visit the neighboring training nodes in the graph. Figure 5b
shows that FIFO combined with proximity-aware ordering
can achieve the highest cache hit ratio among all candidate
cache policies while maintaining low cache overhead.

We observe that each node may appear more than once
among different training batches (e.g., node 9 in Figure 6a
appears three times in sampled subgraphs). This gives us
an opportunity for data reuse by caching node features in
nearby mini-batches (a.k.a., temporal locality). With random
training nodes sampling, the chances of a node in nearby
training batches are low. In order to increase the probability,
we propose to select training nodes in a BFS order. BFS
preserves the graph connectivity in terms of number of hops.
Hence, nearby training nodes in graphs are more likely to
be selected in consecutive batches. As a result, this ordering
increases the probability that each node appears in consecutive
batches and improves the cache hit ratio.

For example, in Figure 6a, starting from a BFS root node
17 , we can generate a BFS sequence of training nodes. Ran-
dom ordering (Figure 6b) results in no cache hits in the first
three batches. On the contrary, with proximity-aware order-
ing (Figure 6c), the second batch and the third batch contain
nodes that exist in the previous batches (i.e., { 17 , 9 , 3 }

1
7

4

2 3

5

9

10

11

16

13

8

15

6
14

17
18

19

20

Other NodesTraining Nodes

(b) Cache using Random
Ordering { }

17 9 3 10

17 9 3 10 7 18 8 13 5 2

7 18 8 13 5 2 11 4 10 16

5 2 11 4 10 16 1 3 6 9

4 10 16 1 3 6 9 8 17 2

16 1 3 6 9 8 17 2 15 14

17 9 3 10

17 9 3 10 1 8 2

17 9 3 10 1 8 2 4 5 6

3 10 1 8 2 4 5 6 11 16

8 2 4 5 6 11 16 7 18 13

4 5 6 11 16 7 18 13 15 14

17

7

11

1

9

15

17

7

11

1

9

15

1-hop Subgraph Cache Miss Cache Hit

(a) A Sample Graph with
6 Training Nodes

(c) Cache using Proximity-aware
Ordering { }17 7 11 1 9 15 17 71119 15

Figure 6: Compared to random ordering, using proximity-aware
ordering improves hit ratios of FIFO cache.

in the second batch and { 9 , 3 , 1 , 2 } in the third batch).
Consequently, FIFO cache hits are improved from 8 to 14.

However, there is a trade-off between improving the tempo-
ral locality and ensuring model convergence. Traversal-based
ordering improves the temporal locality but violates the i.i.d.
requirement of SGD, leading to different label distributions of
batches and slowing model convergence. On the other hand,
random ordering, such as random shuffling, achieves state-of-
the-art model accuracy by selecting random training nodes,
with the cost of poor temporal locality.

Our proximity-aware ordering needs to balance the above
trade-off. The key idea is that SGD is robust enough, and
slightly relaxing the i.i.d. requirement does not influence the
convergence rate. Theorem 3.15 in [41] shows that if there is
little difference between the output distribution of one order-
ing algorithm A and the uniform distribution, A will not cause
accuracy degradation. Hence, in BGL, samplers still select
training nodes based on BFS traversal, while we carefully
introduce randomness to reduce the difference.

We introduce the following randomness. First, we use sev-
eral different BFS sequences, instead of only one, and each
of them is generated by selecting random BFS roots. To form
a training batch, we select training nodes from different se-
quences in a round-robin manner. Second, we circularly shift
each BFS sequence by a random position. Since giant graphs
have lots of small connected components [37], they are more
likely to be traversed at last and appended at the end of each
BFS sequence in our implementation. This deterministic be-
havior harms the model accuracy. Shifting by a random posi-
tion minimizes its impact to the model, and circular shifting
preserves the order of consecutive nodes in BFS sequences.

How many BFS sequences should we select? We find, as
long as the model convergence is guaranteed, we should use
the minimum number of sequences to maximize the tempo-
ral locality. Meng et al. [41] define the difference ε, named
shuffling error, as the total variation distance between the two
distributions, and proves that, if ε 6

√
bM/n, the convergence

is not influenced, where b is the batch size, M is the number
of workers and n is the size of training data.

Based on the above theorem, we determine the number of
sequences as follows. We use the label distribution to calculate
the shuffling error. The label distribution of proximity-aware
ordering is estimated as the probability of each label appear-
ing in each mini-batch. Before training, BGL firstly generates

CPU

GPU 0 GPU 1 GPU 2

CPU
Cache Buffer

CPU
Cache Map

GPU 0
Cache Map

NVLink

GPU
Cache
Buffer

PCIe Network

Worker
Machine

Remote
Graph Store

Dispatching
Thread 0

Dispatching
Thread 1

Dispatching
Thread 2

Processing
Thread 0

Processing
Thread 1

Processing
Thread 2

GPU
Cache
Buffer

GPU
Cache
Buffer

Cache Query
Queue

②
③

④

⑤

Remote
Graph Store

⑥
Subgraphs
of Worker 0

Subgraphs
of Worker 1

Subgraphs
of Worker 2

①

GPU 1
Cache Map

GPU 2
Cache Map

Figure 7: Structure and workflow of feature cache engine.

hundreds of BFS sequences. After that, it gradually increases
the number of BFS sequences from one until the shuffling er-
ror is smaller than the requirement of convergence (

√
bM/n).

During training, BGL constructs each training batch by intro-
ducing randomness and reusing generated sequences. This
procedure incurs negligible overheads (<1% training time).

3.2.3 Maximizing Cache Size
Based on the observation that GNN models are typically small
(§2.3) and large GPU and CPU memory are unused, in BGL,
we jointly use the memory of multiple GPUs (if the training
job uses multiple GPUs) and CPU memory to build a two-
level cache, which can enlarge the cache size and increase the
cache hit ratio. The detailed structure and cache workflow of
our feature cache engine is shown in Figure 7.
Multi-GPU Cache. We create one cache map and one cache
buffer for each GPU. Cache map is a HashMap with node
IDs as keys and the pointers to buffer slots in cache buffer
as values. Cache buffer contains buffer slots, storing node
features. Each GPU cache map manages its own cache buffer.

To avoid wasting precious GPU memory, we ensure no
duplicated entries among all GPU cache buffers by assign-
ing different and disjoint node IDs to each GPU cache map
(mod by the number of workers). A GPU can fetch node fea-
tures from another GPU via P2P GPU memory copy using
NVLinks. As mentioned in §2.2, transferring 60 mini-batches
can saturate the 100Gbps NIC and PCIe 3.0 x16 bandwidth.
Hence, using NVLinks not only provides high bandwidth and
low latency for inter-GPU communication, but it also allevi-
ates heavy communication in the network and PCIe links.

Since CPU memory is much larger than GPU memory,
BGL also adds a CPU cache on top of the multi-GPU cache to
further increase the cache size and reduce the communication
traffic to graph store servers. The CPU cache uses the same
cache policy as the GPU cache, so we omit the details.
Cache Workflow that Guarantees Consistency. As shown
in Figure 7, the workflow of the cache engine goes as follows.

After receiving sampled subgraphs (1), dispatching threads
split the subgraph nodes by mod operation into multiple cache
queries4 and send them to cache query queues (2). Each
processing thread is assigned to one GPU cache buffer and
processes all cache queries on this buffer (3). It first looks up
the subgraph nodes in the GPU cache map and then gathers
cached features of those nodes from GPU cache buffers (4).
In case of GPU cache misses, it looks up the CPU cache map
for uncached nodes, gathers cached feature tensors from CPU
cache buffer, and sends them to the GPU (5). The remainders
are requested from graph store servers and sent to GPUs once
received (6). Finally, the cache map and the cache buffer are
updated according to our FIFO caching policy.

Though node features are immutable (§2), cache buffers
are still mutable. The cache buffer and the cache map may be
inconsistent when some buffer slots are read and written by
different GPU workers simultaneously (which occurs when
different nodes are assigned to the same buffer slot). To ensure
the consistency between the cache buffer and the cache map,
a naive solution is to use locks for each buffer slot. But, this
locking means synchronization in CUDA APIs for GPUs,
leading to large overhead. Our solution is to queue all the
operations towards a given GPU cache, including queries and
updates. Only one processing thread polls the queue and then
reads or writes the corresponding GPU cache buffer. This
reduces the overhead by 8x compared with using locks while
avoiding racing.

3.3 Graph Partition Module
3.3.1 Partition Workflow

Graph partitioning largely impacts the cross-partition commu-
nication when sampling subgraphs. As described in §2.3, a
good partition algorithm should have the following properties:
(1) scalability to billion-node graphs, ensuring (2) multi-hop
connectivity, and (3) training load balance.

Our algorithm exploits two types of processes: block gener-
ators and a block assigner. Block generators generate blocks,
each of which is a connected subgraph and treated as one node
in the coarsened graph. The block assigner collects blocks of
the coarsened graph from block generators and assigns each
block to one partition. We outline the three major steps of our
partition algorithm in Figure 8.
(1) Multi-level Coarsening: Each block generator loads dis-
joint graph data from HDFS and generates blocks on the
loaded graph.

Different from merging procedures used in other partition
algorithms (e.g., maximal matching in METIS), we use multi-
source BFS to generate blocks, which can preserve multi-
hop connectivity in the original graph. The block generator
randomly chooses a few nodes as the BFS source nodes. Each
source node is assigned a unique block ID and broadcasts the

4A cache query contains all nodes which are assigned to one GPU cache
buffer by mod operation in a sampled subgraph.

Block
Generator 0

Block
Generator 1

Block
Assigner

Multi-level
Coarsening

Blocks Collection
& Assignment Uncoarsening

Graph Data in HDFS

1

2

3

Figure 8: The partition workflow. Node colors denote different
blocks in the coarsened graph (step 2), or the nodes belonging
to different blocks (steps 1 and 3).

block ID to its neighbors. Once the block size (i.e., the number
of nodes with the same block ID) exceeds a threshold (e.g.,
100K), or there are no unvisited neighbors in BFS, a block is
generated. When all nodes are visited, the block generating
procedure stops. At the same time, block generators maintain
a mapping from the node ID to block ID, and synchronize it
among them for uncoarsening.

However, we find billion-node graphs have numerous con-
nected components [37]. After one round of coarsening, the
coarsened graph still contains a large quantity of nodes, which
results in large partition complexity. Hence, we further de-
ploy a multi-level coarsening strategy. First, for small blocks
connecting to large blocks5, we merge them to their large
block neighbors. Second, other small blocks without large
block neighbors are randomly merged. By considering neigh-
borhood relationship, this approach not only speeds up the
partition process but also preserve the multi-hop connectivity.
(2) Block Collection & Assignment: The block assigner
collects the blocks of the multi-level coarsened graph from
block generators. It applies a greedy assignment heuristic
for each block, targeting both multi-hop locality and train-
ing node balancing. The block assigner then broadcasts the
block partitions to the generators. We leave the details of the
assignment heuristics in §3.3.2.
(3) Uncoarsening: Upon receiving the block assignment
results from the block assigner, the block generators start
mapping back the blocks to the nodes in the original graph,
i.e., uncoarsening. The partition results are then saved to the
HDFS file (step 3 of Figure 8).

As a result, our partition algorithm has low time complexity
and is friendly to giant graphs. Let E1 be the set of edges in the
coarsened block graph after BFS. E2 denotes the set of edges
in the graph for assignment after multi-level block merging,
and j denotes the number of hops to maintain connectivity.
We reduce the time complexity of the assignment to O(|E2| j),
much lower than SOTA O(|E | j) [38], where |E2| � |E |. The
total partitioning complexity is O(|E |+ |E1|+ |E2| j).

5Empirically, we set blocks with top 10% sizes as large blocks.

3.3.2 Assignment Heuristic
Since optimal graph partitioning is NP-hard [7], we propose a
new heuristic for assigning blocks to partitions by considering
the special requirements of GNN training.

Our heuristic is to derive the block assignments by solving
the following maximization problem:

max
i∈[k]

{(
∑

j

∣∣P(i)∩Γ
j(B)

∣∣) ·(1− |T (i)|
CT

)
·
(

1− |P(i)|
C

)}
where k is the number of partitions; each partition is referred
by its index P(i). Based on this heuristic, each block B is
assigned to the partition with the maximum value.

The first term in the heuristic is the multi-hop block neigh-
bor term, ∑ j |P(i)∩Γ j(B)|, which counts the intersection be-
tween the set of j-hop neighbor blocks of B, Γ j(B), and the
current partition P(i). Using this term, we tend to assign the
current block to a partition with the maximum number of
neighbors and preserve the multi-hop connectivity. Second,
we introduce the training node penalty term, (1−|T (i)|/CT),
where T (i) denotes the set of training nodes that have been
assigned to the ith partition, and CT = |T |/k denotes the train-
ing node capacity constraint on each partition. By maximizing
this term, each partition is enforced with the same number
of training nodes. Third, we introduce the node penalty term,
(1−|P(i)|/C), where C = |V |/k is the capacity constraint on
each partition. This term is commonly used in existing par-
tition algorithms to balance the number of nodes among the
partitions. Finally, we multiply the three terms to maximize
them simultaneously.

3.4 Resource Isolation For Contending Stages
To improve resource utilization and training speed, we di-
vide GNN training into 8 asynchronous pipeline stages (see
Figure 9) with careful consideration of data dependency and
resource allocation. This is more complex than traditional
DNN training. Some of the stages contend for CPU, Net-
work, and PCIe bandwidth resources: (i) Processing sampling
requests and constructing subgraphs compete for CPUs on
graph store servers. (ii) Subgraph processing (e.g., convert-
ing graph format) and executing cache workflow compete
for CPUs in the worker machine. (iii) Moving subgraphs and
copying features to GPUs compete for PCIe bandwidth.

However, we find that if all the processes freely compete
for resources, the resource contention may lead to poor per-
formance. A key reason is that some operators may acquire
more resources than what they actually need and block other
stages, with which they do not scale well.

For example, we observe that for the executing cache work-
flow stage (Stage 4 in Figure 9), when the number of CPU
cores exceeds a threshold (e.g., 40), the performance con-
verges or even degrades with more CPU cores (e.g., more
than 64). This is because of the memory bandwidth limit, syn-
chronization and scheduling overhead in the multi-threading
library like OpenMP [8].

2. Construct
Subgraphs

Send
Subgraphs

Receive
Subgraphs

3. Process
Subgraphs

4. Execute
Cache

Workflow

Compute
GNN Model

1. Process
Sampling
Requests

CPU GPU Network PCIe

I. Move
Subgraphs

to GPU

Graph
Store

Worker
Machine

II. Copy
Features
to GPU

Figure 9: GNN training pipeline in BGL.

To solve the above problem, we propose a profiling-based
resource allocation to assign isolated resources to different
pipeline stages. We first profile the execution time of each
stage and then adjust resource allocation to balance the exe-
cution time of each stage. We formulate the following opti-
mization problem to compute the best resource allocation in
a given GNN training task:

min max
{

T1

c1
,

T2

c2
,Tnet ,

T3

c3
,

DI

bI
, f (c4),

DII

bII
,Tgpu

}
s.t. c1 + c2 6Cgs, c3 + c4 6Cwm, bI +bII 6 Bpcie

The objective is to minimize the maximal completion time
of all pipeline stages. The constraints are resource capacity
constraints for CPU on graph store servers, CPU on worker
machines, and PCIe bandwidth. The main decision variables
are ci (i∈{1,2,3,4}), the number of CPUs required for the ith
stage; and bi (i∈ {I, II}), PCIe bandwidth of the ith stage. All
the other quantities are profiled by our system, including the
time of the ith stage Ti, the data size of processed subgraphs
DI , and the average data size of missed features DII when the
cache is stable. Cgs and Cwm denote the number of CPU cores
on graph store servers and worker machines, respectively,
and Bpcie is the PCIe bandwidth of the worker machines. We
assume linear acceleration of CPU execution, except on pro-
cessing caching operation (Stage 4 in Figure 9). We introduce
a fitting function f (c4) = a/c4 +d to output the completion
time of caching stage with a certain number of CPU cores c4,
where a and d are approximated by pre-running.

We use brute-force search to find the optimal resource al-
location. To reduce the search space, we add integer assump-
tions on bandwidth variables bI and bII . The time complexity
is O(C2

gs +C2
wm +B2

pcie) in the worst case. On average, our
method spends less than 20ms on searching for the best re-
source allocation strategy for GNN training pipeline.

4 Implementation
We implement BGL with over 4,400 lines of C++ code and
3,300 lines of Python code. We reused the graph store module
and GPU backend of the open-sourced Deep Graph Library
(DGL v0.5 [1, 48]), and utilized the graph processing module
of GMiner [10] for partitioning. Our design can be applied to
other GNN frameworks with little change. We are collaborat-
ing with the DGL team to upstream our implementation.
Requirement. BGL exploits NVLinks/NVSwitches for high-
bandwidth low-latency cross-GPU communication for multi-
GPU cache. Our measurement shows that without NVLinks,
the feature cache engine retrieves cached features from other

Table 2: Datasets used in evaluation.

Ogbn- Ogbn- User-Itemproducts papers

Nodes 2.44M 111M 1.2B
Edges 123M 1.61B 13.7B
Feature Dimension 100 128 96
Classes 47 172 2
Training Set 196K 1.20M 200M
Validation Set 393K 125K 10M
Test Set 2.21M 214K 10M

GPUs via PCIe with much lower bandwidth, which could
decrease throughput of BGL by 50%.
Feature Cache Engine. Cache workflow in feature cache en-
gine contains several GPU operations, such as copying tensor
from CPU memory to GPU memory and launching kernels to
copy tensor from/to other GPUs. To make cache processing
asynchronous, we enqueue all cache GPU operations into
a dedicated CUDA stream, and pre-allocate dedicated CPU
memory as buffers and pin these memory. Our cache en-
gine uses CUDA Unified Virtual Addressing and enables fast
GPU P2P communication on each cache processing thread.
The cache processing thread enqueues a lightweight CUDA
callback function into the CUDA stream, which counts the
number of finished cache queries and notifies workers.

To further expedite FIFO performance, BGL uses multiple
OpenMP threads to execute FIFO concurrently. We maintain
an atomic tail shared by all threads to record the next col-
umn index of the GPU cache buffer for insertion or eviction.
When inserting a new node, each thread finds the next po-
sition by atomically increasing tail, and the real position
is (tail+1)%buffer_size. If this position has an old node,
it evicts the old node from the GPU cache map. Since we
assume node features are immutable during training, old node
features are implicitly evicted by inserting new node features.
Inter-Process Communication. We use separate processes
for sampling, feature retrieving, and GNN computation stages.
To minimize the IPC overhead, we use shared memory to
avoid unnecessary memory copy among different processes.
Specifically, we use Linux Shared Memory and CUDA IPC to
avoid unnecessary CPU and GPU memory copy, respectively.

5 Evaluation

5.1 Methodology

Testbed. We evaluate BGL on a heterogeneous cluster with
4 GPU servers and 32 CPU servers. The GPU server has 8
Tesla V100-SMX2-32GB GPUs (connected by NVLink v2),
96 vCPU cores, and 356GB memory. Each CPU server has
96 vCPU cores and 480GB memory. All servers are inter-
connected with 100Gbps Mellanox CX-5 NICs. The graph
datasets are stored in HDFS.
Datasets. As shown in Table 2, we train GNNs on three
datasets with different sizes, including two public graph

datasets: Ogbn-products [27] and Ogbn-papers [47], as well
as a proprietary web-scale graph dataset: User-Item.
GNN Models. We evaluate BGL with three representative
GNN models: GCN (Graph Convolution Network) [36],
GAT (Graph Attention Network) [46] and GraphSAGE [23].
We use the same model hyper-parameters as OGB leader-
boards [3], e.g., 3 layers and 128 hidden neurons per layer.
Mini-batch Sampling Algorithms. In our experiments, we
use Neighbor Sampling [23], which is shown to achieve com-
parable model performance with full-batch graph training.6

Except for the experiment in §5.7, we set the mini-batch size
to 1000, i.e., each mini-batch contains 1000 sampled sub-
graphs and each subgraph contains one training node and its
three-hop neighbors with fanout {15,10,5}.
Baselines. We use four open-sourced and widely-used GNN
training frameworks as baselines for comparison7.
• Euler [2]: Euler (v1.0) is a distributed graph learning

system built atop TensorFlow [5]. We use TensorFlow’s GPU
backend for acceleration.
• DGL [1]: DGL is a deep learning library for graphs,

compatible with multiple deep learning frameworks. We use
the DGL v0.5 release (DistDGL [58]).
• PyG [17]: PyG (v1.6.0) extends PyTorch for deep learn-

ing on graphs. It contains a mini-batch loader for multi-GPU
support in a single machine.
• PaGraph [38]: PaGraph is a sampling-based GNN frame-

work with a static cache strategy on GPU, which supports
multi-GPU in a single server.

Specifically, PyG co-locates graph store servers and work-
ers and allows graph sampling on the same machine only,
making it unable to process large graph datasets (i.e., Ogbn-
papers and User-Item) due to memory limit. Hence, we only
compare BGL with PyG on Ogbn-products dataset. When
training on User-Item dataset with DGL and PaGraph, we
separate the graph store servers from the workers since our
GPU servers do not have enough memory to load the graph
partitions. To evaluate the performance boundary, we use 4, 8
and 32 CPU-based graph store servers for all frameworks on
Ogbn-products, Ogbn-papers and User-Item respectively.
Graph Partitioning. DGL uses METIS partitioning for small
graphs (i.e., Ogbn-products), and Random partitioning for
large graphs that cannot be fitted into a single machine (i.e.,
Ogbn-papers and User-Item). Euler uses random partitioning
for all graphs, and BGL uses the proposed algorithm in §3.3,
where we set j = 2, i.e., searching two-hop neighbors.

5.2 Overall Performance
Figure 10, 11 and 12 show the training speed of baselines
and BGL in log scale when training the three GNN models

6BGL can also be applied to other vertex-centric GNN sampling algo-
rithms, e.g., layer-wise sampling [11] and random walk sampling [53]. We
omit the evaluation of other sampling algorithms since it is beyond our scope.

7We omit P3 [20] because it is not open-sourced.

(a) GraphSAGE (1.38x - 45.98x) (b) GCN (1.49x - 41.33x) (c) GAT (1.14x - 40.60x)
Figure 10: Throughput of 3 GNN models on Ogbn-products in log scale. Numbers above bars are speedups of BGL over other systems.

(a) GraphSAGE (1.86x - 39.62x) (b) GCN (1.84x - 32.11x) (c) GAT (1.28x - 68.97x)
Figure 11: Training throughput of 3 GNN models on Ogbn-papers in log scale. Numbers above bars are speedups of BGL over other systems.

(a) GraphSAGE (1.42x - 14.16x) (b) GCN (1.38x - 12.08x) (c) GAT (1.31x - 29.73x)
Figure 12: Training throughput of 3 GNN models on User-Item in log scale. Numbers above bars are speedups of BGL over other systems.

on three graph datasets, with the number of workers rang-
ing from 1 to 8, where each worker has one GPU. We use
samples/sec as the metric to measure the training speed. A
sample is a sampled subgraph of one training node.
Different Frameworks. BGL achieves 1.14x - 69x speedups
over four baselines in all settings. BGL has 69x (the most)
speedup over Euler. This is because Euler’s random sharding
in graph partition has very low data locality, resulting in fre-
quent cross-partition communication in sampling. DGL does
not cache features on GPU, introducing significant feature
retrieving time. Thus, BGL outperforms DGL by up to 30x.
PaGraph performs the best among baselines. It places graph
structure data on each GPU with static caching on node fea-
tures, leading to much faster data preprocessing. Even in this
case, BGL still has up to 3.27x speedup, thanks to dynamic
feature caching and resource isolation for contending pipeline
stages. BGL outperforms all other systems, and the geomet-
ric mean of speedups over PaGraph, PyG, DGL and Euler is
1.91x, 3.02x, 7.04x and 20.68x, respectively.
Different GNN models. The training performance varies sig-
nificantly across different GNN models. We see that BGL
achieves significantly higher performance improvement with
GraphSAGE and GCN models, by up to 30x as compared to
DGL and PyG. With the computation-intensive GAT model,
however, the training speed of PyG and DGL is closer to that
of BGL. Hence the gain for BGL ranges from 14% to 8x.
It is because the GAT model is computation-bound due to
incorporating the attention mechanism into the propagation
step, while its communication is less intensive than the other
two GNN models; the higher ratio of computation over other
stages results in a smaller improvement space for BGL. We

see that Euler performs the worst in GAT, since it does not
optimize the GPU kernels for irregular graph structures.
Scalability. BGL also outperforms other frameworks in
terms of scalability. Without caching features on GPU, the
throughput of baseline frameworks is bounded by PCIe band-
width. For example, DGL has only 3x speedups when in-
creasing the number of GPUs from 1 to 8. BGL reduces the
transmitted data through PCIe bandwidth with efficient GPU
cache, resulting in linear scalability in throughput. Multi-GPU
systems often suffer poor scalability due to synchronization
overhead or resource contention. However, our design and
implementation of multi-GPU memory sharing scales well
with the increased number of GPUs. With extra bandwidth
brought by NVLink, accessing cache entries on other GPUs
introduces negligible overhead. On the contrary, the increased
cache capacity improved the cache hit ratio (Figure 5b) and
reduced overall feature retrieving time (Figure 13).

We observe the relatively lower improvement with the User-
Item dataset. On the billion-node graph dataset, the subgraph
sampling and feature retrieving becomes more time consum-
ing, due to the inconsistent sampling performance of DGL
graph store server and sparse graph structure. Hence, BGL
cannot produce the similar level of overlapping with the un-
changing model computation time.
GPU Utilization. We compare the GPU utilization achieved
by BGL and DGL with the same GPU backend. We run
GraphSAGE and GAT models on Ogbn-products dataset
with 8 GPU. BGL achieves 99% GPU utilization with the
computation-intensive GAT model, while DGL’s utilization is
only 38%. For GraphSAGE model with shallow neural layers,
BGL improves the GPU utilization from 10% to 65%.

1 2 4 8
of GPUs

101

102

Re
tri

ev
in

g
tim

e
(m

s) Euler
DGL

PaGraph
BGL

Figure 13: Retrieving time per
mini-batch on Ogbn-papers.

Figure 14: Graph sampling time
per epoch during training.

Figure 15: BGL reduces ratio of
cross-partition communication.

Figure 16: One-time partitioning
execution time before training.

5.3 Impact of Feature Cache Engine
In §3.2, we have shown the cache hit ratio with different cache
policies and cache sizes. The trend of them is similar on other
datasets. Here, we present the amortized feature retrieving
time with the feature cache engine.

We compare the feature retrieving time of one mini-batch
using different GPUs on Ogbn-papers. We implement Pa-
Graph static caching policy in BGL, which caches the features
of high-degree nodes. Euler and DGL do not have cache, so
the feature retrieving time is the elapsed time of transmitting
features from graph store servers to GPU memory. As shown
in Figure 13, due to high cache hit ratios and low cache over-
head, the feature retrieving time of BGL is the shortest among
all systems. Compared to other systems on 1 GPU worker,
BGL reduces the feature retrieving time by 98%, 88% and
57% for Euler, DGL and PaGraph, respectively.

5.4 Impact of Graph Partition

We compare the graph partition algorithm in BGL with Ran-
dom and GMiner partitioning, since only these two partition
algorithms can scale to Ogbn-papers and User-Item. We eval-
uate the sampling time per epoch and the one-time partition
time (counted from loading the graph data to saving the parti-
tion results to files) under different partition algorithms. Ogbn-
products, Ogbn-papers and User-Item are divided into 2, 4
and 4 partitions, respectively.

Figure 14 shows the graph sampling time (per epoch) under
different partition algorithms. BGL achieves the best perfor-
mance across different graph datasets, reducing the sampling
time by at least 20% over Random partition algorithm. Com-
pared to GMiner, BGL manages to drop the sampling time by
14% and 10% for Ogbn-products and Ogbn-papers, respec-
tively, thanks to its training node balancing and multi-hop
connectivity of partitioning.

Figure 17: Resource isolation im-
proves training throughput.

1(4) 2(8) 3(12) 4(16)
of worker machines (#GPUs)

0

200

400

600

800

Th
ro

ug
hp

ut
 (T

ho
us

an
d

sa
m

pl
es

/s
ec

) Euler DGL BGL

Figure 18: BGL scales well to
multiple worker machines.

(a) BS 1000, 3 hops, FO {10,10,10}. (b) BS 500, 2 hops, FO {10,25}.

Figure 19: Training throughput of GraphSAGE using different hyper
parameters on 4 GPUs. BS and FO stand for ‘batch size’ and ‘fanout’.

The reduction in sampling time mainly comes from the
reduced cross-partition (inter-server) communication during
distributed neighbor sampling. As shown in Figure 15, by
including multi-hop locality when partitioning, BGL reduces
the ratio of cross-partition communication by 25%, 44%, and
33% for Ogbn-products, Ogbn-papers and User-Item, respec-
tively. The cross-communication traffic is only determined by
the number of partitions, but not the number of graph store
servers or worker machines.

Partitioning a large-scale graph is time consuming. Hence,
BGL introduces multi-level coarsening to mitigate the extra
complexity brought by computing multi-hop locality. Fig-
ure 16 shows BGL’s partition algorithm runs as fast as
the well-optimized original GMiner, and is even better than
GMiner on graph User-Item with 20% reduction of time.

5.5 Impact of Resource Isolation
To evaluate the effectiveness of our resource isolation mecha-
nism, we compare BGL with Euler, DGL, PaGraph, and BGL
without resource isolation when training GraphSAGE with
4 GPUs on datasets Ogbn-products and Ogbn-papers. ‘BGL
w/o isolation’ is a naive resource allocation method that shares
all pipeline stages resources. It increases resource utilization
but incurs larger contention and parallel overhead.

As shown in Figure 17 (in log scale), BGL achieves the
highest throughput. Both BGL and ‘BGL w/o isolation’ out-
perform Euler and DGL. Due to the overhead of resource
contention, the performance of ‘BGL w/o isolation’ on Ogbn-
products is even lower than that of PaGraph. BGL uses re-
source isolation method, which mitigates the resource con-
tention among different pipeline stages and incurs a lower
parallel overhead of OpenMP. As a result, BGL speedups the
throughput by up to 2.7x, compared to the naive resource
allocation strategy without isolation and PaGraph.

5.6 Scalability to Multiple Worker Machines
To show the scalability of multiple worker machines, we vary
the number of worker machines from 1 to 4, and each has 4
GPUs. We train GraphSAGE model on graph Ogbn-papers
with Euler, DGL and BGL. The number of graph store servers
remains the same as in §5.2.

As shown in Figure 18, BGL improves throughput from
250K to 769K (76% of linear scalability) when the number
of worker machine increases from 1 to 4. Due to no feature
cache on GPU and bottleneck in PCIe and network bandwidth,
throughput of Euler and DGL cannot scale well when increas-
ing the number of worker machines. Since our GPU servers
only use NVLink v2, the cache engine cannot share GPU
memory across machines, and BGL’s throughput increases
slightly slower than linear scaling.

5.7 Impact of Hyper Parameters
To verify the robustness of BGL, we evaluate training speedup
under different hyperparameters (batch size, number of layers
and fanouts). As shown in Figure 19, we use another two
widely-used training settings in OGB leaderboards [3]. We
train GraphSAGE on graph Ogbn-papers and User-Item with
4 GPUs. BGL outperforms DGL and Euler as well. The geo-
metric mean of speedup of BGL for Euler and DGL is 10.44x
and 7.50x, respectively. The computation of 2-layer Graph-
SAGE is faster than that with 3 layers. Hence, throughput of
three systems in Figure 19b is higher than in Figure 19a.

5.8 Model Accuracy
To verify the correctness of BGL, we evaluate the test accu-
racy on GAT and GraphSAGE with Ogbn-products, Ogbn-
papers and User-Item. Each task is trained with 100 epochs for
convergence. DGL uses RO while BGL uses PO. As shown
in Figure 20, BGL converges to almost the same accuracy as
the original DGL but the convergence of BGL is much faster.

6 Related Work
Graph Partition Algorithms. Graph partitioning is widely
adopted when processing large graphs. NeuGraph [40] lever-
ages the Kernighan-Lin [34] algorithm to partition graphs
into chunks with different sparsity levels. Cluster-GCN [12]
constructs the training batches based on the METIS [32]
algorithm, together with a stochastic multi-clustering frame-
work to improve model convergence. When dealing with large
graphs in distributed GNN training, partition algorithms, such
as Random [2, 30, 39], Round-Robin, and Linear Determinis-
tic Greedy [6], are often used [2, 48, 55, 60]. They incur low
partitioning overhead while not ensuring partition locality.
GNN Training Frameworks. In recent years, new special-
ized frameworks have been proposed upon existing deep learn-
ing frameworks to provide convenient and efficient graph op-
eration primitives for GNN training [2, 17, 40, 48, 60]. Other
than DGL [48], Euler [2] and PyG [17], NeuGraph [40] trans-
lates graph-aware computation on dataflow and recasts graph

(a) GraphSAGE on Ogbn-products (b) GAT on Ogbn-products

(c) GraphSAGE on Ogbn-papers (d) GAT on Ogbn-papers

(e) GraphSAGE on User-Item (f) GAT on User-Item

Figure 20: BGL achieves the same accuracy as DGL, using 1 GPU.

optimizations to support parallel computation for GNN train-
ing. However, it can only train small graphs on multi-GPUs
in a single machine. AliGraph [60] is a GNN system that
consists of distributed graph storage, optimized sampling op-
erators and runtime to support both existing GNNs and in-
house developed ones for different scenarios. AGL [55] is a
scalable and integrated GNN system implemented on MapRe-
duce [14] that guarantees good system properties. However,
neither Aligraph nor AGL exploits GPU acceleration.
GNN Training Acceleration. Various systems have been
devoted to improving GNN training performance.

Some works [9, 31, 40, 45, 49] target full-batch training.
GNNAdvisor [49] explores the GNN input properties and pro-
poses a 2D workload management and specialized memory
customization for system optimizations. DGCL [9] proposes a
communication planning algorithm to optimize GNN commu-
nication among multiple GPUs with METIS partition. Both
projects assume graphs are stored in a single machine.

Some works [20, 38, 60] target mini-batch training. Pa-
Graph [38] adopts static GPU caching for high-degree nodes.
GNNLab [52] proposes a pre-sampling-based static caching
policy. They assume that a graph can be loaded in a single
machine, making them infeasible for billion-node graphs.

P3 [20] reduces retrieving feature traffic by combining
model parallelism and data parallelism. However, hybrid par-
allelism in P3 incurs extra synchronization overhead. Its per-
formance suffers when hidden dimensions exceed 128 (a com-

mon practice in modern GNNs). Further, P3 overlooked the
subgraph sampling stage, where random hashing partitioning
leads to extensive cross-partition communication.

Some works try to improve graph sampling performance
on GPUs, such as NextDoor [29] and C-SAW [43]. However,
their performance is limited by small GPU memory. Hence,
they are not suitable for giant graphs.

7 Conclusion
We present BGL, a GPU-efficient GNN training system for
large graph learning that focuses on removing the data I/O and
preprocessing bottleneck to achieve high GPU utilization and
accelerate training. To minimize feature retrieving traffic, we
propose a dynamic feature cache engine with proximity-aware
ordering, and find a sweet spot of low overhead and high cache
hit ratio. BGL employs a novel graph partition algorithm tai-
lored for sampling algorithms to minimize cross-partition
communication during sampling. We further optimize the re-
source allocation of data preprocessing using profiling-based
resource isolation. Our extensive experiments demonstrate
that BGL significantly outperforms existing GNN training
systems by 1.91x on average. We will open-source it in the
future and hope to continue evolving it with the community.

Acknowledgement

We are thankful to the anonymous NSDI reviewers and
our shepherd, Ying Zhang, for their constructive feedback.
This work was supported in part by the National Key Re-
search and Development Program of China under Grant
2018YFB1800800, Hong Kong Innovation and Technology
Commission’s Innovation and Technology Fund (Partner-
ship Research Programme with ByteDance Limited, Award
No. PRP/082/20FX), the National Natural Science Founda-
tion of China under Grant U21B2022, Tsinghua University-
China Mobile Communications Group Co.,Ltd. Joint Institute,
and grants from Hong Kong RGC under the contracts HKU
17204619, 17208920 and 17207621.

References

[1] Deep Graph Library (DGL). https://github.com/
dmlc/dgl, 2020.

[2] Euler. https://github.com/alibaba/euler, 2020.

[3] OGB Leaderboards. https://ogb.stanford.edu/
docs/leader_nodeprop/, 2020.

[4] Amazon EC2 Instance Types. https://aws.amazon.
com/ec2/instance-types/, 2021.

[5] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-

junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek Gordon Murray, Benoit Steiner, Paul A.
Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. TensorFlow: A System
for Large-Scale Machine Learning. In Proc. of the 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2016.

[6] Zainab Abbas, Vasiliki Kalavri, Paris Carbone, and
Vladimir Vlassov. Streaming Graph Partitioning: An
Experimental Study. VLDB Endow., 11(11):1590–1603,
2018.

[7] Konstantin Andreev and Harald Räcke. Balanced graph
partitioning. Theory Comput. Syst., 39(6):929–939,
2006.

[8] J Mark Bull. Measuring synchronisation and scheduling
overheads in openmp. In Proc of 1st European Work-
shop on OpenMP, volume 8, page 49. Citeseer, 1999.

[9] Zhenkun Cai, Xiao Yan, Yidi Wu, Kaihao Ma, James
Cheng, and Fan Yu. Dgcl: an efficient communication
library for distributed gnn training. In Proceedings of the
Sixteenth European Conference on Computer Systems,
pages 130–144, 2021.

[10] Hongzhi Chen, Miao Liu, Yunjian Zhao, Xiao Yan,
Da Yan, and James Cheng. G-Miner: An Efficient Task-
Oriented Graph Mining System. In Proc. of the 13th
ACM European Conference on Computer Systems (Eu-
roSys). ACM, 2018.

[11] Jie Chen, Tengfei Ma, and Cao Xiao. FastGCN: Fast
Learning with Graph Convolutional Networks via Im-
portance Sampling. In Proc. of the 6th International
Conference on Learning Representations (ICLR), 2018.

[12] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy
Bengio, and Cho-Jui Hsieh. Cluster-GCN: An Efficient
Algorithm for Training Deep and Large Graph Convolu-
tional Networks. In Proc. of the 25th ACM International
Conference on Knowledge Discovery & Data Mining
(KDD), 2019.

[13] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios
Logothetis, and Sambavi Muthukrishnan. One Trillion
Edges: Graph Processing at Facebook-Scale. In Proc. of
VLDB Endow., 2015.

[14] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Sim-
plified Data Processing on Large Clusters. Communica-
tions of the ACM, 51(1):107–113, 2008.

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

https://github.com/dmlc/dgl
https://github.com/dmlc/dgl
https://github.com/alibaba/euler
https://ogb.stanford.edu/docs/leader_nodeprop/
https://ogb.stanford.edu/docs/leader_nodeprop/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/

[16] Michalis Faloutsos, Petros Faloutsos, and Christos
Faloutsos. On Power-Law Relationships of the Internet
Topology. ACM SIGCOMM computer communication
review, 29(4):251–262, 1999.

[17] Matthias Fey and Jan Eric Lenssen. Fast Graph Rep-
resentation Learning with PyTorch Geometric. CoRR,
abs/1903.02428, 2019.

[18] Matthias Fey and Jan Eric Lenssen. Fast graph represen-
tation learning with pytorch geometric. arXiv preprint
arXiv:1903.02428, 2019.

[19] Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-
Hur. Protein Interface Prediction using Graph Con-
volutional Networks. In Proc. of Advances in Neural
Information Processing Systems (NeurIPS), 2017.

[20] Swapnil Gandhi and Anand Padmanabha Iyer. P3: Dis-
tributed deep graph learning at scale. In 15th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 21), pages 551–568, 2021.

[21] Takuo Hamaguchi, Hidekazu Oiwa, Masashi Shimbo,
and Yuji Matsumoto. Knowledge Transfer for Out-of-
Knowledge-Base Entities : A Graph Neural Network
Approach. In Proc. of the 26th International Joint Con-
ference on Artificial Intelligence (IJCAI), 2017.

[22] William L. Hamilton, Rex Ying, and Jure Leskovec.
Representation learning on graphs: Methods and ap-
plications. IEEE Data Eng. Bull., 40(3):52–74, 2017.

[23] William L. Hamilton, Zhitao Ying, and Jure Leskovec.
Inductive Representation Learning on Large Graphs. In
Proc. of Advances in Neural Information Processing
Systems (NeurIPS), 2017.

[24] Masatoshi Hanai, Toyotaro Suzumura, Wen Jun Tan,
Elvis S. Liu, Georgios Theodoropoulos, and Wentong
Cai. Distributed edge partitioning for trillion-edge
graphs. Proc. VLDB Endow., 12(13):2379–2392, 2019.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[26] Loc Hoang, Roshan Dathathri, Gurbinder Gill, and Ke-
shav Pingali. Cusp: A customizable streaming edge
partitioner for distributed graph analytics. In 2019 IEEE
International Parallel and Distributed Processing Sym-
posium, IPDPS 2019, Rio de Janeiro, Brazil, May 20-24,
2019, pages 439–450. IEEE, 2019.

[27] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong,
Hongyu Ren, Bowen Liu, Michele Catasta, and Jure

Leskovec. Open Graph Benchmark: Datasets for Ma-
chine Learning on Graphs. CoRR, abs/2005.00687,
2020.

[28] Wen-bing Huang, Tong Zhang, Yu Rong, and Junzhou
Huang. Adaptive Sampling Towards Fast Graph Rep-
resentation Learning. In Proc. of Advances in Neural
Information Processing Systems (NeurIPS), 2018.

[29] Abhinav Jangda, Sandeep Polisetty, Arjun Guha, and
Marco Serafini. Accelerating graph sampling for graph
machine learning using gpus. In Antonio Barbalace,
Pramod Bhatotia, Lorenzo Alvisi, and Cristian Cadar,
editors, EuroSys ’21: Sixteenth European Conference
on Computer Systems, Online Event, United Kingdom,
April 26-28, 2021, pages 311–326. ACM, 2021.

[30] Zhihao Jia, Yongkee Kwon, Galen Shipman, Pat Mc-
Cormick, Mattan Erez, and Alex Aiken. A distributed
multi-gpu system for fast graph processing. Proc. of the
VLDB Endowment, 11(3):297–310, 2017.

[31] Zhihao Jia, Sina Lin, Mingyu Gao, Matei Zaharia, and
Alex Aiken. Improving the Accuracy, Scalability, and
Performance of Graph Neural Networks with Roc. In
Proc. of Machine Learning and Systems (MLSys), 2020.

[32] George Karypis and Vipin Kumar. A fast and high qual-
ity multilevel scheme for partitioning irregular graphs.
SIAM Journal on Scientific Computing, 20(1):359–392,
1998.

[33] George Karypis and Vipin Kumar. A parallel algorithm
for multilevel graph partitioning and sparse matrix or-
dering. J. Parallel Distributed Comput., 48(1):71–95,
1998.

[34] Brian W Kernighan and Shen Lin. An Efficient Heuristic
Procedure for Partitioning Graphs. The Bell System
Technical Journal, 49(2):291–307, 1970.

[35] Diederik P. Kingma and Jimmy Ba. Adam: A Method
for Stochastic Optimization. In Proc. of the 3rd Interna-
tional Conference on Learning Representations (ICLR),
2015.

[36] Thomas N. Kipf and Max Welling. Semi-Supervised
Classification with Graph Convolutional Networks. In
Proc. of the 5th International Conference on Learning
Representations ICLR, 2017.

[37] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue
Moon. What is twitter, a social network or a news me-
dia? In Proceedings of the 19th international conference
on World wide web, pages 591–600, 2010.

[38] Zhiqi Lin, Cheng Li, Youshan Miao, Yunxin Liu, and
Yinlong Xu. PaGraph: Scaling GNN Training on Large

Graphs via Computation-Aware Caching. In Proc. of
ACM Symposium on Cloud Computing (SOCC), 2020.

[39] Tianfeng Liu and Dan Li. Endgraph: An efficient dis-
tributed graph preprocessing system. In 42nd IEEE
International Conference on Distributed Computing Sys-
tems, ICDCS 2022, Bologna, Italy, July 10 - 13, 2022.
IEEE, 2022.

[40] Lingxiao Ma, Zhi Yang, Youshan Miao, Jilong Xue,
Ming Wu, Lidong Zhou, and Yafei Dai. NeuGraph:
Parallel Deep Neural Network Computation on Large
Graphs. In Proc. of USENIX Annual Technical Confer-
ence (USENIX ATC), 2019.

[41] Qi Meng, Wei Chen, Yue Wang, Zhi-Ming Ma, and Tie-
Yan Liu. Convergence analysis of distributed stochas-
tic gradient descent with shuffling. Neurocomputing,
337:46–57, 2019.

[42] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard
Weikum. The LRU-K page replacement algorithm for
database disk buffering. In Proc. of the 1993 ACM
SIGMOD International Conference on Management of
Data, Washington, DC, USA, May 26-28, 1993, pages
297–306. ACM Press, 1993.

[43] Santosh Pandey, Lingda Li, Adolfy Hoisie, Xiaoye S. Li,
and Hang Liu. C-SAW: a framework for graph sampling
and random walk on gpus. In Proceedings of the In-
ternational Conference for High Performance Comput-
ing, Networking, Storage and Analysis, SC 2020, Virtual
Event / Atlanta, Georgia, USA, November 9-19, 2020,
page 56. IEEE/ACM, 2020.

[44] Ketan Shah, Anirban Mitra, and Dhruv Matani. An o
(1) algorithm for implementing the lfu cache eviction
scheme. no, 1:1–8, 2010.

[45] John Thorpe, Yifan Qiao, Jonathan Eyolfson, Shen Teng,
Guanzhou Hu, Zhihao Jia, Jinliang Wei, Keval Vora,
Ravi Netravali, Miryung Kim, et al. Dorylus: affordable,
scalable, and accurate gnn training with distributed cpu
servers and serverless threads. In 15th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 21), pages 495–514, 2021.

[46] Petar Velickovic, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph
Attention Networks. In Proc. of the 6th International
Conference on Learning Representations (ICLR), 2018.

[47] Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-
Han Wu, Yuxiao Dong, and Anshul Kanakia. Microsoft
Academic Graph: When Experts Are Not Enough.
Quantitative Science Studies, 1(1):396–413, 2020.

[48] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai,
Zihao Ye, Mufei Li, Jinjing Zhou, Qi Huang, Chao Ma,
Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin Lin,
Junbo Zhao, Jinyang Li, Alexander J. Smola, and Zheng
Zhang. Deep Graph Library: Towards Efficient and Scal-
able Deep Learning on Graphs. CoRR, abs/1909.01315,
2019.

[49] Yuke Wang, Boyuan Feng, Gushu Li, Shuangchen Li,
Lei Deng, Yuan Xie, and Yufei Ding. Gnnadvisor: An
adaptive and efficient runtime system for gnn accelera-
tion on gpus. In 15th {USENIX} Symposium on Operat-
ing Systems Design and Implementation ({OSDI} 21),
pages 515–531, 2021.

[50] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong
Long, Chengqi Zhang, and Philip S. Yu. A Compre-
hensive Survey on Graph Neural Networks. CoRR,
abs/1901.00596, 2019.

[51] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial
Temporal Graph Convolutional Networks for Skeleton-
Based Action Recognition. In Proc. of the 32nd AAAI
Conference on Artificial Intelligence (AAAI), 2018.

[52] Jianbang Yang, Dahai Tang, Xiaoniu Song, Lei Wang,
Qiang Yin, Rong Chen, Wenyuan Yu, and Jingren Zhou.
Gnnlab: a factored system for sample-based GNN train-
ing over gpus. In EuroSys ’22: Seventeenth European
Conference on Computer Systems, Rennes, France, April
5 - 8, 2022, pages 417–434. ACM, 2022.

[53] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombat-
chai, William L. Hamilton, and Jure Leskovec. Graph
Convolutional Neural Networks for Web-Scale Recom-
mender Systems. In Proc. of the 24th ACM International
Conference on Knowledge Discovery & Data Mining
(KDD), 2018.

[54] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Ra-
jgopal Kannan, and Viktor K. Prasanna. GraphSAINT:
Graph Sampling Based Inductive Learning Method. In
Proc. of the 8th International Conference on Learning
Representations (ICLR), 2020.

[55] Dalong Zhang, Xin Huang, Ziqi Liu, Jun Zhou, Zhiyang
Hu, Xianzheng Song, Zhibang Ge, Lin Wang, Zhiqiang
Zhang, and Yuan Qi. AGL: A Scalable System for
Industrial-Purpose Graph Machine Learning. VLDB
Endow., 13(12):3125–3137, 2020.

[56] Muhan Zhang and Yixin Chen. Link Prediction Based
on Graph Neural Networks. In Proc. of Advances in Neu-
ral Information Processing Systems (NeurIPS), 2018.

[57] Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep Learn-
ing on Graphs: A Survey. CoRR, abs/1812.04202, 2018.

[58] Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qi-
dong Su, Xiang Song, Quan Gan, Zheng Zhang, and
George Karypis. Distdgl: Distributed graph neural net-
work training for billion-scale graphs. arXiv preprint
arXiv:2010.05337, 2020.

[59] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang,
Zhiyuan Liu, Lifeng Wang, Changcheng Li, and
Maosong Sun. Graph Neural Networks: A Re-
view of Methods and Applications. arXiv preprint
arXiv:1812.08434, 2018.

[60] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang
Zhou, Baole Ai, Yong Li, and Jingren Zhou. Ali-
Graph: A Comprehensive Graph Neural Network Plat-
form. VLDB Endow., 12(12):2094–2105, 2019.

[61] Martin Zinkevich, Markus Weimer, Alexander J. Smola,
and Lihong Li. Parallelized Stochastic Gradient Descent.
pages 2595–2603. Curran Associates, Inc., 2010.

	Introduction
	Background and Motivation
	Sampling-based GNN Training
	Data I/O and Preprocessing Bottlenecks
	Challenges in Removing the Bottlenecks

	Design
	Architecture and Workflow
	Feature Cache Engine
	Dynamic Cache Policy
	Proximity-Aware Ordering
	Maximizing Cache Size

	Graph Partition Module
	Partition Workflow
	Assignment Heuristic

	Resource Isolation For Contending Stages

	Implementation
	Evaluation
	Methodology
	Overall Performance
	Impact of Feature Cache Engine
	Impact of Graph Partition
	Impact of Resource Isolation
	Scalability to Multiple Worker Machines
	Impact of Hyper Parameters
	Model Accuracy

	Related Work
	Conclusion

