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Abstract—The fundamental advantage of peer-to-peer (P2P)
multimedia streaming applications is to leverage peer upload
capacities to minimize bandwidth costs on dedicated streaming
servers. The available bandwidth among peers is of pivotal
importance to P2P streaming applications, especially as the
number of peers in the streaming session reaches a very large
scale. In this paper, we utilize more than 230 GB of traces
collected from a commercial P2P streaming system, UUSee, over
a four-month period of time. With such traces, we seek to thor-
oughly understand and characterize the achievable bandwidth of
streaming flows among peers in large-scale real-world P2P live
streaming sessions, in order to derive useful insights towards
the improvement of current-generation P2P streaming protocols,
such as peer selection. Using continuous traces over a long
period of time, we explore evolutionary properties of inter-peer
bandwidth. Focusing on representative snapshots of the entire
topology at specific times, we investigate distributions of inter-
peer bandwidth in various peer ISP/area/type categories, and
statistically test and model the deciding factors that cause the
variance of such inter-peer bandwidth. Our original discoveries
in this study include: (1) The ISPs that peers belong to are
more correlated to inter-peer bandwidth than their geographic
locations; (2) There exist excellent linear correlations between
peer last-mile bandwidth availability and inter-peer bandwidth
within the same ISP, and between a subset of ISPs as well;
and (3) The evolution of inter-peer bandwidth between two
ISPs exhibits daily variation patterns. Based on these insights,
we design a throughput expectation index that facilitates high-
bandwidth peer selection without performing any measurements.

Index Terms—Peer-to-Peer Streaming, Flow Characterization,
Measurements.

I. I NTRODUCTION

The fundamental advantage of peer-to-peer (P2P) live mul-
timedia streaming is to allow peers to contribute their up-
load bandwidth, such that bandwidth costs may be saved on
dedicated streaming servers. Server bandwidth cost savings
are more substantial when participating peers contribute more
bandwidth. It is therefore of pivotal importance for a peer
to select other peers with highinter-peerbandwidth (i.e., the
available bandwidth between two peers) during a live stream-
ing session, such that the media content can be timely retrieved
to meet its playback deadline. As TCP is widely employed in
P2P live streaming applications to guarantee reliability and to
transverse NATs, the achievable TCP throughput is an essential
metric when evaluating available inter-peer bandwidth.

Due to the inherent dynamic nature of peer arrivals and
departures in a typical P2P streaming session, it is a daunting
challenge to evaluate TCP throughput between two peers
before data transmission begins. One may start a probing
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TCP connection to directly measure TCP throughput, but the
time it takes for TCP to saturate available bandwidth leads to
intrusive and expensive bandwidth usage, that can otherwise
be available to stream actual media. A better approach would
be to calculate TCP throughput based on flow sizes, maximum
sender/receiver windows, and path characteristics such as
delay and loss rate [1], [2], [3]. However, such calculations
require the knowledge of TCP parameters or path characteris-
tics, which may not be available without probing or new TCP
connections, when a peer attempts to select high-bandwidth
neighbors from a list of candidates. Yet another alternative
may be to summarize historical TCP throughput using time
series models, which may be utilized to forecast future TCP
throughput [4], [5], [6]. Unfortunately, it is common for
peers to come across neighbors with whom no historical TCP
connections ever exist.

Though it is almost impossible to accurately predict TCP
throughput between arbitrary peers without some probing or
historical data, practical experiences show that it ishelpful in
the design of a peer selection protocol if the peer has only a
“rough idea” about the available bandwidth between itself and
a possible candidate, and such a “rough idea” can be used to
rank the candidates based on available bandwidths. This paper
represents the first step towards this objective, as we conduct
a comprehensive statistical study of TCP throughputs, based
on 230 GB of traces,100 million unique IP addresses, and
370 million live streaming flows, collected as continuous-time
snapshots over a four-month period in the entire network of
a commercial P2P streaming system, operated by UUSee Inc.
Backed by major venture capital investments, UUSee Inc. is
a leading provider in mainland China for P2P live streaming
solutions.

Our focus in this study is to statistically characterize
TCP throughput distributions, investigate its application-layer
deciding factors, and explore the correlation between these
factors and TCP throughput, so as to derive useful in-
sights towards the design of practical peer selection protocols
based on inter-peer bandwidth availability. Unlike existing
TCP throughput characterization which focuses on “micro-
scopic” characteristics such as window sizes and delay, we
explore “macroscopic” factors which we classify into two
categories: (1) end-host characteristics, including peerlast-
mile upload/download capacity and the number of contin-
gent sending/receiving TCP connections; and (2) membership
factors, such as ISPs the peers reside in and geographic
areas the peers locate at. We not only investigate evolutionary
properties of TCP throughputs in the temporal dimension over
a long period of time, but also zoom into snapshots at specific
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times, including both a representative regular time and special
scenarios such as flash crowds. Our objective is to quantify
the correlation between TCP throughput and its influential
factors by modeling them into statistical regression models,
and use such models to achieve practical peer selection based
on available bandwidths.

Our original discoveries in this study include: (1) The
ISPs that peers belong to are more correlated to inter-peer
bandwidth than their geographic locations; (2) Inter-ISP peer-
ing does not always constitute bandwidth bottlenecks, which
is ISP specific; (3) There exist excellent linear correlations
between peer last-mile bandwidth availability and inter-peer
bandwidth within the same ISP, and between a subset of ISPs
as well; (4) The evolution of inter-peer bandwidth between
two ISPs exhibits a daily variation pattern, although the level
of throughput values shifts from time to time; (5) During a
flash crowd scenario, the inter-peer bandwidth characteristics
do not represent significant differences from those at regular
times.

Based on these insights, we design athroughput expectation
index that facilitates high-bandwidth peer selection without
performing measurements. This index computes the relative
rankof candidate peers based on the bandwidth availability be-
tween them and the receiver peer. We show that peers selected
with this index are consistent with those with actual highest
throughput values, based on cross-validation experimentsover
the trace period.

The remainder of this paper is organized as follows. In
Sec. II, we briefly review existing work in flow rate charac-
terization and measurements of P2P systems. In Sec. III, we
outline trace collection methodologies in the UUSee streaming
platform, and present the scale of our measurements. In
Sec. IV, we investigate distributions of TCP throughput in
different scenarios, within and across ISPs and areas, and for
different peer types. We then zoom into a one-time snapshot
of the entire network in Sec. V, and statistically characterize
the correlation between TCP throughput and a number of
influential factors. Next, in Sec. VI, evolutionary properties
of inter-peer bandwidth availability are discovered over along
period of time. We develop the throughput expectation index
to assist peer selection in Sec. VII. Finally, we conclude the
paper in Sec. VIII.

II. RELATED WORK

Significant research attention has been devoted to the
characterization and prediction of TCP throughput. Existing
research derives TCP throughput using either aformula-based
approach in terms of key metrics such as window size, RTT
or loss rate [1], [2], [3], or ahistory-basedapproach, based
on historical throughput measurements on the same link, using
standard time series forecasting techniques,e.g., MA, EWMA,
AR, ARMA, ARIMA [4], [5], [6], [7].

With respect to measurement based TCP throughput char-
acterization, Balakrishnanet al. [8] suggested that end-to-end
throughput, from an Olympic games website, can be modeled
as a log-normal distribution. Zhanget al. [9] also exhibited a
log-normal rate distribution of Internet flows between several

sites on an ISP backbone. Compared to their study of unicast
flow throughputs from a single web site or between a limited
number of sites, our discoveries are more comprehensive
and also original in the sense that we investigate various
characteristics of flows between millions of pairs of peers that
lie in a wide range of geographical regions and ISPs.

Little work exists for flow rate characterization in P2P
networks. In their performance study of broadband hosts,
Lakshminarayananet al. [10] pointed out that the gener-
ally assumed inverse relationship between RTT and TCP
throughput is masked by the wide range in last-hop peer
bandwidth for broadband peers. In order to investigate the
serving/downloading power of participating peers, Senet al.
[11] and Saroiuet al. [12] characterized upload and download
bandwidth bottlenecks at the peers in P2P file sharing systems.
Other than characterizing the overall upload/download capac-
ities at each peer, our study investigates inter-peer available
bandwidths, which take into consideration both the last-mile
bandwidths at the end hosts and intermediate bandwidth
bottleneck along the P2P links.

There have recently been a number of measurement studies
on various P2P live streaming systems,e.g., PPLive [13],
[14], TVants [15], [16], and SOPCast [14], [16]. In terms of
throughput, they studied the total upload/download throughput
at peers in order to investigate network bandwidth utilization,
but have not investigated the inter-peer bandwidths along P2P
links.

With respect to general measurements on P2P file sharing
and VoIP applications, a number of work have emerged in
recent years, towards Kazza overlay [17], [18], Gnutella [19],
[20], BitTorrent [21], [22], [23], andSkype, a P2P VoIP
application [24], [25], [26]. However, none of them have
systematically studied inter-peer bandwidth availability in the
applications.

To the best of our knowledge, this paper represents the first
comprehensive study on flow characterization in large-scale
P2P applications, towards the goal of better and practical peer
selection protocol design, using a macroscopic approach. Nev-
ertheless, when applicable, we will compare our forthcoming
discoveries with the existing results.

III. SCALE OF TRACES

We first present our methodology of trace collection, and
then show the scale of the traces that this work is based on.

A. Collection methodology

Throughout this paper, we analyze traces from live P2P
streaming sessions of a commercial P2P streaming company,
UUSee Inc. [27], which is a leading P2P streaming solution
provider in mainland China, with exclusive and legal rights
to channels of CCTV, the official Chinese television network.
With a large collection of streaming servers around the world,
it simultaneously sustains over800 channels, mostly encoded
to 400 Kbps streams. Similar to all current-generation P2P
streaming protocols, UUSee’s streaming protocol design is
based on the “pull-based” design principle of allowing peers
to serve each other by exchanging blocks of data in asliding
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window of the media channel. After a new peer joins the
channel in UUSee, the initial set of a number ofpartners is
supplied by one of the tracking servers. The peer establishes
TCP connections with these partners, and buffer maps are
periodically exchanged.

To inspect the real-world bandwidth availability in UUSee
P2P streaming, we have implemented related measurement
and reporting capabilities within its P2P client application.
Each peer in UUSee estimates its total download and upload
bandwidth capacities. For each active partner with which ithas
a live TCP connection, it measures the maximum achievable
sending or receiving throughput of the TCP connection every5
minutes, and reports all measurements to a central trace server
via UDP.

The download capacity of each peer is measured at the
initial buffering stage of the peer, upon its first joining a
streaming channel in the UUSee network. During this stage,
the peer has no available blocks in its playback buffer, and
can concurrently download from many supplying peers. In this
case, its download bandwidth is largely saturated. Therefore,
the download capacity of the peer is estimated as its maximum
aggregate download rate at this initial buffering stage.

The upload capacity at each peer is measured upon its
joining before the actual streaming starts, by setting up a
temporary upload TCP connection with one of the nearest
streaming servers. As we know, the upload bandwidth at
each streaming server is mostly saturated due to its main
upload functions, while the download bandwidth is largely
idle. Therefore, we utilize the spare download capacity of
the streaming servers, and have each peer send a randomly
generated probing flow to a streaming server that is nearest
to itself. The duration of the flow should be long enough for
its TCP throughput to become stable, usually in seconds. The
streaming server measures the stabilized TCP throughput on
this connection, which is then estimated as the upload capacity
of the respective peer.

The reported maximum throughput along a live TCP con-
nection is measured in the following fashion: The time is
divided into 30-second intervals. In each interval, the time
that is actually used to transmit media blocks is summarized,
excluding the idle TCP periods. An average throughput is cal-
culated with the number of bytes sent in the block transmission
time divided by the length of this duration. The maximum
throughput is then derived as the maximum of all such average
throughputs within5 minutes. Taking the average transmission
throughput within30 seconds, we smooth out the periods of
very bursty TCP throughput; deriving the maximum of all
such30-second measurements, we aim to obtain the maximally
achievable TCP throughput on the link between two peers.

We further note that by only counting the time of actual
block transmissions, our maximum throughput measurements
essentially reflect the maximum availability of network band-
widths, eliminating any possible impact of media block avail-
ability. Therefore, such throughputs can be much larger than
the streaming rate of the media channels, which is constrained
by the block availability. We believe the investigation of such
inter-peer bandwidth availability is important for any P2Plive
streaming protocol, as it is desirable to maximally download

media blocks from the peers with large throughputs, in order
to achieve timely delivery of the media streams before the
playback deadline.

Each peer reports a collection of these measurements to
the trace server every5 minutes. Each report includes the
IP address of the peer, its total download and upload band-
width capacities, as well as a list of all its partners, with
their corresponding IP addresses, TCP/UDP ports, number of
segments sent to or received from each partner, and the current
maximum sending/receiving throughput on each connection.

B. Trace summary

During a four month period from November 2006 to Febru-
ary 2007, we have collected more than230 GB of traces
with more than100 million unique IP addresses and370
million streaming flows, representing snapshots of the liveP2P
streaming network every five minutes throughout this period.
In what follows, we illustrate the scale of the traces with
respect to the numbers of simultaneous peers and P2P flows in
live streaming sessions. Due to the large volume of the traces,
in our figures, we will only depict results obtained over one
representative regular week, 12:00am December 17th, 2006
(GMT+8) — 11:50pm December 23, 2006 (GMT+8).
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Fig. 1. Daily peer/P2P flow number statistics.

1) Overall number: Fig. 1(A) shows that there are on
average100, 000 concurrent peers and250, 000 active flows
at any time in the UUSee streaming network. Both statistics
show two daily peaks around1pm and10pm. Fig. 1(B) further
summarizes the numbers of distinct IP addresses and P2P
flows that appeared in the traces on a daily basis, which
indicate that the traces contain information of up to10 million
different streaming flows among2 million distinct peers each
day. Such data abundance facilitates our forthcoming statistical
investigations.

Besides the regular daily peer/flow numbers in Fig. 1, we
have also observed a few flash crowd scenarios during the
trace period. For example, a flash crowd scenario was observed
around 23pm, February 17, 2007, caused by the broadcast of
the celebration TV show on Chinese New Year Eve, with
871, 000 peers online in the UUSee streaming network and
2, 271, 000 streaming flows among the peers.

2) Different ISPs:Using a mapping database obtained from
UUSee Inc. that translates ranges of IP addresses to ISPs and
geographic areas, we summarized the average ISP distribution
of peers and P2P flows during the trace period. For each IP
address inside China, the database provides the ISP it belongs
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Fig. 2. Peer/P2P flow number statistics for different ISPs.

to and province the user locates at; for each IP address out
of China, it provides coarse geographic information of the
continent the address lies in, but not detailed ISP information.
Fig. 2(A) depicts the distribution of peers across major China
ISPs and overseas. It exhibits that the two largest nationwide
ISPs in China, Netcom and Telecom, own the largest user
shares in the UUSee P2P network. While the majority of
UUSee users are in China, peers from overseas also take a
significant20%, and their percentage shows a rising trend as
we observed in our investigation. In our current study, we will
mainly focus on streaming flows within China, and believe
our discoveries will also bring useful insights towards global
networks.

In addition, Fig. 2(B) summarizes the average number of
concurrent streaming flows inside each major China ISP, and
Fig. 2(C) illustrates the number of inter-ISP flows for ISP pairs
that have more than1000 concurrent flows in between. Again,
the numbers of flows inside China Netcom and Telecom, and
those for flows to and from these two ISPs dominate their
respective categories.
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Fig. 3. Peer/P2P flow number statistics in two peer type categories.

3) Different peer types:We next categorize peers into two
classes based on their download capacities in the traces, and
the fact that the download bandwidth of the fastest ADSL
connection in China is at most3 Mbps: (1) Ethernet peers,
for those with download capacities higher than384 KBps; (2)
ADSL/cable modem peers, for the remainder. While Fig. 3(A)
exhibits the domination of ADSL/cable modem peer popula-
tion, Fig. 3(B) shows comparable shares of P2P flows in each
category, which demonstrates the contribution of the limited
number of Ethernet peers in uploading to many other peers.

IV. T HROUGHPUT DISTRIBUTIONS

We start our P2P streaming flow characterization by analyz-
ing the distributions of TCP throughput at representative times,

across or within different ISPs/areas, and among different
peer types. We note that in the rest of the paper, all our
flow characterizations are based on the 5-minute maximum
throughput measurements from the traces.

A. Overall throughput distribution at different times

Fig. 4 shows the throughput distribution1 over the entire
network at four representative regular times: Monday morning
(9am 12/18/06), Monday evening (9pm 12/18/06), Friday
morning (9am 12/22/06) and Friday evening (9pm 12/22/06).
With throughput depicted in the log scale, the plots repre-
sent the shapes of normal distributions, corresponding to the
original throughputs having the analytic distributions oflog-
normal [8], [28]. This finding is consistent with existing work
of Balakrishnanet al. [8] and Zhanget al. [9], who also
discovered log-normal rate distributions within their Internet
flow sets.
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Fig. 4. Overall throughput distribution
at different times.
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Fig. 5. Overall throughput distribu-
tion at Chinese New Year Eve.

The throughput distributions at the four times peak at
15KBps, 7KBps, 13KBps, 7KBps, respectively, with an80th
percentile of 280KBps, 96KBps, 275KBps, and 90KBps,
respectively. We observe that the mean throughputs in the
mornings, which are daily off-peak hours for the streaming
application, are2− 3 times higher than those at evening peak
hours, and the variance of the throughputs in the mornings is
larger than that in the evenings as well. For the same time
at different days in a week, however, there does not exist an
apparent throughput difference.

We further validate the above observations statistically using
one-way analysis of variance (ANOVA) [29], [30]. The one-
way ANOVA is used to test the null hypothesis that different
sets of samples for an independent variable have all been
drawn indifferently from the same underlying distribution. In
our case, we use ANOVA to examine whether the throughput
distributions at different times on a same regular day are
statistically equivalent, and whether those at the same time on
different days are significantly different. As the numbers of
throughput samples in the four sets are different, we conduct
ANOVA by using the non-parametric Kruskal-Wallis test [30].
The comparisons and reported p-values are listed in Table I.

In our hypothesis test, if a result p-value is lower than
the significance level of0.05, the difference between the
corresponding distributions is statistically significant, and the
null hypothesis is rejected; otherwise there is insufficient
evidence to reject the null hypothesis. The0 p-values reported

1The bin size used in all our throughput distribution plots inthis section is
1KBps.
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TABLE II

KRUSKAL-WALLIS ANOVA FOR THROUGHPUTS ACROSS DIFFERENTISPS AT 9PM, DEC. 18, 2006

Null Hypothesis Throughput Sets p-value Multiple Comparison Test Result
Throughput sets within an
ISP and from different ISPs
to this ISP have the same dis-
tribution

(1) TC→TC, NC→TC, UC→TC,
TT→TC, EDU→TC

0 Throughput
TC→TC

≈ Throughput
UC→TC

≈
Throughput

EDU→TC
> Throughput

TT→TC
>

Throughput
NC→TC

(2) NC→NC, TC→NC, UC→NC,
TT→NC, EDU→NC

0 Throughput
NC→NC

≈ Throughput
UC→NC

≈
Throughput

TT→NC
> Throughput

EDU→NC
≈

Throughput
TC→NC

(3) UC→UC, TC→UC, NC→UC,
TT→UC, EDU→UC

0.062

(4) TT→TT, TC→TT, NC→TT,
UC→TT, EDU→TT

0.081

Throughput set from ISP1 (1) TC→NC, NC→TC 0.032 Throughput
TC→NC

> Throughput
NC→TC

to ISP2 and throughput set (2) TC→UC, UC→TC 0.023 Throughput
UC→TC

> Throughput
TC→UC

from ISP2 to ISP1 have (3) NC→TT, TT→NC 0.029 Throughput
TT→NC

> Throughput
NC→TT

the same distribution (4) UC→TT, TT→UC 0.396
(5) EDU→UC, UC→EDU 0.153

TABLE I
KRUSKAL-WALLIS ANOVA FOR THROUGHPUTS AT DIFFERENT TIMES

Null Hypothesis Throughput Sets p-value
The two sets of 9am Mon. vs. 9am Fri. 0.8699
throughputs have 9pm Mon. vs. 9pm Fri. 0.0684
the same distribution 9am Mon. vs. 9pm Mon. 0

9am Fri. vs. 9pm Fri. 0

for the latter two tests strongly suggest the difference between
throughputs at different times of a day, while the other large
p-values validate the large similarity among morning/evening
throughput sets on different days.

While the above observations generally apply for throughput
sets on regular days, we have also investigated throughput dis-
tributions during a flash crowd scenario on Chinese New Year
Eve (Feb. 17th, 2007), as shown in Fig. 5. Four representative
snapshots are plotted: 7pm on the Eve, before the celebration
TV broadcast started; 9pm, when the flash crowd started to
gather as more and more viewers tuned in to the channel;
11pm, when the flash crowd reached its largest size as the
Chinese New Year approached; and 1am on the next morning,
when the crowd dismissed itself after the show ended. With
ANOVA tests, we detected that the distributions are statis-
tically different, with throughputs at 7pm statistically larger
than those at 1am, followed by those around 9pm, and then
those at 11pm. This reflects that inter-peer bandwidths became
tight as the size of flash crowd increased and turned loose
again when the crowd dismissed. Nevertheless, there does not
exist a “crash” scenario with abrupt drop of throughput over
the network, and the throughputs follow similar log-normal
distributions as those at the same time on a regular day.

B. Intra/inter ISP throughput distribution

We next categorize the P2P streaming flows into two classes
and investigate their respective throughput distributions: (1)
intra-ISP flows, for which the sender and receiver are in
the same ISP, and (2) inter-ISP flows, where they belong to
different ISPs. Fig. 6 exhibits that, while they still follow log-
normal distributions in each category, intra-ISP throughputs
are generally larger than their inter-ISP counterparts measured
at the same time: the former have peaks at60KBps (9am) and
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Fig. 6. Intra/inter ISP throughput distribution on Dec. 18,2006.

13KBps (9pm), while those of the latter are20KBps (9am)
and7KBps (9pm), respectively. Also observed is that intra-ISP
throughputs at peak hours are generally smaller than inter-ISP
throughputs at off-peak hours on the same day. Within each
intra-ISP or inter-ISP category, the throughput distributions
show a similar diurnal pattern as that revealed by the overall
throughput distributions in the previous section: both themean
and variance of the throughput distributions in the mornings
are larger than those in the evenings.

While these observations meet our general expectation that
bandwidth is more abundant within each ISP, we also notice
many large inter-ISP throughput values and the large span
for both inter-ISP and intra-ISP throughputs. This inspires
us to further investigate: Are throughputs for flows within
an ISP always statistically larger than those for flows to and
from this ISP? Is there significant throughput difference across
different pairs of ISPs? To answer these questions, we again
conduct Kruskal-Wallis ANOVA tests to various throughput
sets categorized based on contingent ISPs of the flows. If3
or more throughput sets are compared in one test and signif-
icant difference is reported, we further perform themultiple
comparison test (or procedure)[29], [30] to investigate the
difference between each pair of sets. The representative tests
and their results are given in Table II2.

2To conserve space, we use the following abbreviations for ISPs: TC
(Telecom), NC (Netcom), UC (Unicom), TT (Tietong), Edu (Education
Network).
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TABLE III
KRUSKAL-WALLIS ANOVA FOR INTER/INTRA AREA THROUGHPUTS BETWEEN DIFFERENTISPS AT 9PM, DEC. 18, 2006

Null Hypothesis Throughput Sets p-value
Inside the same ISP, intra-area throughput (1) intra-TC: intra-area set v.s. inter-area set 0.2396
set and inter-area throughput set have the (2) intra-NC: intra-area set v.s. inter-area set 0.0701
same distribution (3) intra-TT: intra-area set v.s. inter-area set 0.6228

(4) intra-UC: intra-area set v.s. inter-area set 0.5751
Across two different ISPs, intra-area (1) TC→NC: intra-area set v.s. inter-area set 0.117
throughput set and inter-area throughput (2) NC→TC: intra-area set v.s. inter-area set 0.179
set have the same distribution (3) NC→TT: intra-area set v.s. inter-area set 0.3105

(4) UC→TT: intra-area set v.s. inter-area set 0.4575
Inside the same area, throughput sets within (1) TC→TC, NC→TC, UC→TC, TT→TC, EDU→TC 0.0015
one ISP and from different ISPs to this (2) NC→NC, TC→NC, UC→NC, TT→NC, EDU→NC 0.0448
ISP have the same distribution (3) UC→UC, TC→UC, NC→UC, TT→UC, EDU→UC 0.5846

(4) TT→TT, TC→TT, NC→TT, UC→TT, EDU→TT 0.5511
Across two different areas, throughput sets (1) TC→TC, NC→TC, UC→TC, TT→TC, EDU→TC 0
within one ISP and from different ISPs (2) NC→NC, TC→NC, UC→NC, TT→NC, EDU→NC 0
to this ISP have the same distribution (3) UC→UC, TC→UC, NC→UC, TT→UC, EDU→UC 0.052

(4) TT→TT, TC→TT, NC→TT, UC→TT, EDU→TT 0.2929

Again, taking 0.05 as the p-value threshold to determine
if we should reject the null hypothesis, our discoveries from
the ANOVA are the following.First, inter-ISP throughputs
are not necessarily smaller than their intra-ISP counterparts.
For the two largest China ISPs, Netcom and Telecom, the
throughputs of their inbound flows are generally smaller than
those of their internal flows. Throughputs are especially small
between the two ISPs themselves. For every other ISP, there is
no significant throughput difference among the internal flows
and inbound flows. This validates the fact that there is a
stringent bandwidth constraint between Netcom and Telecom,
as two major ISP competitors in China, while no such caps
exist across the other small ISPs and between those two and
the small ISPs.Second, throughput asymmetry is exhibited
from one direction to the other across the two largest ISPs,
as well as between them and the other ISPs. The observation
that throughput from large ISPs to small ISPs are smaller than
those in the other direction may reveal possible bandwidth caps
placed by large ISPs on such relay traffic.

C. Intra/inter area throughput distribution
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Fig. 7. Intra/inter area throughput distribution at 9pm, Dec. 18, 2006.

To characterize the P2P streaming flow at finer granularity
below the ISP level, we next compare throughput distributions
in the cases that the sender and receiver are located within
or not within the same geographic area (intra-area vs. inter-
area). Here, the peers are in the same area if they are in
the same province of China. As we have concluded that
ISP memberships of the peers may significantly affect the

inter-peer bandwidth, we investigate four cases, as shown
in Fig. 7. When ISP memberships are fixed, we observe
no significant difference between the distributions of intra-
area throughputs and inter-area throughputs; in either area
case, intra-ISP throughputs are always larger than inter-ISP
throughputs. To validate these observations, we again perform
ANOVA to test the difference between the intra-area through-
put set and inter-area throughput set for each specific ISP pair,
and the difference among throughput sets from different ISPs
to one ISP in both the intra-area and inter-area cases. The
representative tests and their results are given in Table III.

Comparing the p-values with threshold0.05, we first find
that, in both cases that the sender and receiver do and do
not belong to the same ISP, there does not exist a significant
throughput difference when the sender and receiver are further
in or not in the same area (province). For the two nationwide
ISPs, Telecom and Netcom, considering the fact that they are
organized on the provincial basis, our discovery shows that
within each of them, the inter-province bandwidth constraints
do not have apparent negative impact on inter-province P2P
flow throughputs. In addition, across the two ISPs, a same
provincial locality of two peers does not help in improving
the inter-peer bandwidth. This can be explained by the facts
that the two ISPs have only 4-6 fixed peering points across
China, and even if two peers are in the same province, the
underlying links in between them may well go via a peering
point that is thousands of kilometers away. Second, in both
cases that the sender and receiver are in and not in the same
area (province), the comparisons of throughputs from different
ISPs (including itself) to the same ISP exhibit similar results
as those we have shown in Table II. While area information
is included in the comparisons in Table III but not in Table
II, they both show that, for large ISPs, there exist differences
between their internal throughputs and those from other ISPs
to them; for small ISPs, no difference is identified among the
different throughput sets.

All these results lead to the conclusion that ISP membership
has more significant impact on inter-peer bandwidths, as
compared to geographic locations. In what follows, we mainly
focus on ISP memberships when we discuss deciding factors
that affect bandwidth availability in the middle of a P2P link.
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D. Throughput distribution for different peer types
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Fig. 8. Throughput CDF for different peer types at 9pm, Dec. 18, 2006.

To discover the impact of peer types (i.e., peer last-mile
bandwidths) on inter-peer bandwidth, we further categorize
intra-ISP and inter-ISP flows based on types of their incident
peers, and plot the CDF of throughput in each category in
Fig. 8. The plots and accompanying ANOVA tests exhibit
that: throughputs are significantly larger when the sender is
an Ethernet peer, in both the intra-ISP and inter-ISP cases;for
the same sender type, flows with Ethernet receivers achieve
higher throughput in most cases.

The above results reveal a coarse positive correlation be-
tween inter-peer bandwidth and the last-mile bandwidths atthe
peers. It inspires us to further consider the following questions:
Is the peer last-mile download/upload capacity the key factor
that decides inter-peer bandwidth, both when the peers are
in the same ISP and when they are across any pair of ISPs?
Or is inter-ISP peering the most important factor that affects
throughput between some ISPs? In the following section, we
seek to answer these questions with regression modeling of
the throughputs.

V. THROUGHPUTREGRESSION: FOCUSING ONONE

SNAPSHOT

Focusing on one representative regular snapshot of the
UUSee streaming network at 9pm December 18 2006, we
investigate the impact of the following factors on inter-peer
bandwidths: (1) ISP memberships of the peers, and (2) end-
host characteristics, including upload/download capacities and
the number of contingent sending/receiving TCP connections
at the sender/receiver. We divide our discussions into two
cases, intra-ISP case and inter-ISP case, and perform regres-
sion analysis on TCP throughputs and the respective end-host
characteristics in each case.

A. Intra-ISP throughput regression

With the example of China Netcom, we check the cor-
relation between flow throughputs on its internal P2P links
and various end-host characteristics at the peers. To eliminate
outliers and better capture the correlation, we divide the values
of each capacity factor into small bins with a width of5KBps,
and plot the median throughput of flows falling into each bin at
different levels of capacities in Fig. 9. The calculated Pearson
product-moment correlation coefficient between throughput
and a respective factor,rho, is marked at the upper right corner
in each plot.
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Fig. 9. Correlation of throughput with end-host characteristics for intra-
Netcom flows at 9pm, Dec. 18, 2006.

Fig. 9(A) exhibits that no significant linear correlation exists
between throughput and the upload capacity at the sender
peer, especially when the latter is large,i.e., the Ethernet peer
case. On the other hand, throughput and download capacity at
the receiver peer is better correlated, as shown in Fig. 9(B).
Nevertheless, there exist many cases in which the through-
put is small when the capacity is large. Such unsatisfactory
correlations inspire us to consider: Is the number of contin-
gent upload/download flows high when the upload/download
capacity is large, such that the bandwidth share for each flow
is small? To answer this question, Fig. 9(C) shows a positive
correlation between the upload capacity at the senders and the
number of their concurrent upload flows, while no significant
correlation is exhibited between receiver download capacities
and their numbers of concurrent download flows in Fig. 9(D).
The positive correlation in the former case can be explained
by the UUSee streaming protocol design, which maximally
utilizes upload capacity at each peer to serve more neighbors.

Naturally, we then investigate the correlation between
throughput and per-flow upload/download bandwidth availabil-
ity at the sender/receiver, defined as:

per-flow sender capacity=
sender upload capacity

no. of concurrent upload flows
,

per-flow receiver capacity=
receiver download capacity

no. of concurrent download flows
.

Fig. 9(E) and (F) exhibit that these two characteristics
constitute better explanatory variables towards the throughput
regression.

When we take the minimum of per-flow sender capacity and
per-flow receiver capacity, we obtain the best deciding factor
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Fig. 10. Correlation of throughput with per-flow end capacity for intra-
Netcom flows at 9pm, Dec. 18, 2006.

of throughput, referred to asper-flow end capacity (PEC):

PEC= min(per-flow sender capacity, per-flow receiver capacity).

Its excellent positive correlation with throughput, with a
correlation coefficient of0.81, is plotted in Fig. 10. We next
fit PEC and throughput into a linear regression model:

Throughput= β0 + β1 × PEC+ ǫ, (1)

where PEC is the explanatory variable,Throughput is the
response variable, y-interceptβ0 and slopeβ1 are regression
coefficients to be estimated, andǫ denotes the error term.

The basic assumption for least-squares based linear re-
gression analysis is that the response variable is normally
distributed. However, as we have shown in Sec. IV, through-
puts follow approximate log-normal distributions, in which
the few large tail values tend to have a strong influence on
the regression model. Therefore, we employrobust linear
regression[31], [32], which uses an iteratively re-weighted
least-squares algorithm and is less sensitive to outliers by
giving them lower weights. The derived regression statistics
are given in Table IV.

TABLE IV
ROBUST LINEAR REGRESSION STATISTICS FOR INTRA-NETCOM

THROUGHPUTS AT9PM, DEC. 18, 2006

β0 (y-
intercept)

β1

(slope)
p-value for testing
significance ofβ0

p-value for testing
significance ofβ1

20.4228 1.1499 0 0

The two p-values are results from tests of the following
two null hypotheses, respectively: (1) the y-intercept is “0”
(i.e., the y-intercept is non-significant), and (2) the slope is
“0” ( i.e., the slope is non-significant). As a0 p-value rejects
a corresponding null hypothesis and confirms the significance
of regression, the statistics in Table IV further establishthe
linear correlation between PEC and throughput on intra-ISP
flows. In addition, theoretically we expect the regression line
to pass through the origin and the slope to be approximately at
45◦, and these are validated by the small y-intercept value (as
compared to peer last-mile capacities) and near-1 slope value.

We have conducted the same regression analysis to through-
puts within other ISPs and observed similar correlations.
Therefore, we may conclude that, within each ISP, inter-
peer bandwidth bottleneck mainly lies at the end hosts,
decided by peer last-mile capacities and their concurrent
upload/download load: if the capacity bottleneck occurs at

the upstream peer,i.e., sender upload capacity
no. of concurrent upload flows<

receiver download capacity
no. of concurrent download flows, the throughput is limited
by the per-flow sender capacity; otherwise, the throughput is
decided by the per-flow receiver capacity.

B. Inter-ISP throughput regression

When it comes to the inter-ISP case, we are interested to
explore whether per-flow end capacity still poses a significant
impact on inter-peer bandwidth, or it is shadowed by the inter-
ISP peering bandwidth bottlenecks. We find the answer is
different towards different ISP pairs.
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Fig. 11. Correlation of throughput with per-flow end capacity for inter-ISP
flows at 9pm, Dec. 18, 2006.

Fig. 11(A) exhibits that no significant correlation exists
between PEC and throughput for flows from Netcom to
Telecom. This is further confirmed by its robust regression
analysis statistics in Table V: a p-value of0.6932 reveals the
non-significance of the slope at the value of0.0005. Never-
theless, when we investigate streaming flows from Netcom
to Tietong, Fig. 11(B) shows a different result: throughput
is linearly correlated with PEC with a slope of0.4355, and
a corresponding p-value of0 indicates its significance. The
regression statistics for representative flow groups between
other ISPs are also listed in Table V.

TABLE V
ROBUST LINEAR REGRESSION STATISTICS FOR INTER-ISP THROUGHPUTS

AT 9PM, DEC. 18, 2006

Throughput
Set

β0 (y-
intercept)

β1

(slope)
p-value for
testing sig-
nificance of
β0

p-value for
testing sig-
nificance of
β1

NC→TC 9.9526 0.0005 0 0.6932

TC→NC 20.4998 −0.0023 0 0.6585

NC→TT 30.5784 0.4355 0 0

TT→NC 39.094 0.316 0 0

TC→TT 24.1774 0.1109 0 0.0480

TT→TC 27.3144 0.5421 0 0

UC→Edu 20.2793 0.7098 0 0

Edu→UC 25.0535 0.4576 0 0

The statistics in Table V exhibit that: between the two
largest ISPs, Netcom and Telecom, throughput is not con-
tingent upon PEC, but limited by their peering bandwidth
bottleneck; across other small ISPs and between other ISPs and
the two, flow throughput is more or less decided by the peer
last-mile bandwidth availability. In addition, in the latter cases,
the regression slopes are generally smaller than those obtained
for intra-ISP flows, revealing impact of inter-ISP peering.The
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Fig. 13. Mean throughput evolution for intra-Netcom flows: (1) Taiwan earthquake, (2) Chinese New Year Eve.
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Fig. 12. Evolution of regression coefficients for intra-Netcom flows in the
week of Dec. 17 — 23, 2006.

unexpected discovery, that no apparent bandwidth limitations
exist between the large and small ISPs, is quite interesting,
especially if we consider the fact that large ISPs levy expensive
bandwidth charges on small ones for relaying their traffic in
both directions. This may be explained by that small regional
ISPs have to rely on the large nationwide ISPs to deliver both
their outbound and inbound traffic to and from the Internet.

Before we conclude this section, we add that besides
regression study on the above snapshot on a regular day, we
have also conducted regression analysis on snapshots during
the Chinese New Year flash crowd scenario, and have observed
similar correlations.

VI. T HROUGHPUTEVOLUTION : TIME SERIES

CHARACTERIZATION

With the one-time regression model derived, we now switch
our focus to evolutionary characteristics of inter-peer band-
width over time. Such an evolution of bandwidth is due to (1)
the variation of the number of concurrent upload/download
flows at the sender/receiver; and (2) the dynamics of cross
traffic over the P2P links. Here, we are more concerned about
the inter-peer bandwidth evolution caused by the latter. Based
on the regression model we summarized in Sec. V, we are
able to separate effects of the two causes, as the variation
of coefficients in the linear models reflects the evolution of
bandwidth availability over the P2P links when the per-flow
end capacity is kept the same.

A. Intra-ISP throughput evolution

We now inspect the evolution of bandwidth availability
over the internal P2P links of each ISP, by first studying the
evolution of coefficients in the linear models, summarized
with each of the continuous-time snapshots. Fig. 12 plots
the evolution of regression coefficients during the week of
December 17 — 23, 2006, again with the example of intra-
Netcom flows.

Fig. 12 exhibits an apparent daily evolutionary pattern for
y-intercept, whose value gradually increases at early hours of
a day, peaks around9 − 10 am, and then drops and reaches
the lowest around10 − 11 pm. The value of slope, although
not as apparent, also shows a similar evolutionary pattern.Not
shown in the figures is that p-values for testing the significance
of slopes and y-intercepts are always asymptotically zero,
exhibiting the significance of throughput regression for inter-
Netcom flows at any time.

Though illustrated with the representative week only, the
daily evolutionary pattern of regression coefficients — thus
bandwidth availability on intra-Netcom P2P links — generally
exists during the entire period of the traces. To validate this,
we plot in Fig. 13 the evolution of mean throughput of
intra-Netcom flows over more than10 weeks of time, from
December 10, 2006 to February 21, 2007.3 To eliminate the
effect of varying numbers of concurrent flows at the peers, the
mean throughput at each time is calculated as the average of
those flow throughputs withPEC in the range of50 − 100
KBps at that time. We observe a daily evolutionary pattern
throughout the period, although it is more apparent on some
days than others. Daily pattern aside, we also observe a
few abrupt changes of the mean throughputlevel during this
period: one around December 26, 2006, the date when an
earthquake occurred in the Strait southwest of Taiwan, and
another around January 8th, 2007. As the Taiwan earthquake
damaged several undersea cables and disrupted some major
overseas network connections of China, we conjecture that the
first abrupt downgrade of bandwidth is caused by re-routing of
traffic, which was originally directed towards overseas servers,
to local servers, and the resulting tightness of bandwidthson
local connections. We are not quite sure about the reason for
the increase of throughput level around mid-January, while
we conjecture that it might be caused by ISP upgrades, or
measures taken by the ISP to counter the impact of the earlier
earthquake. In addition, during the flash crowd scenario on
Chinese New Year Eve, we observe no significant throughput
downgrade.

Similar observations have been made during investigations
of throughput evolution inside other ISPs. All these revealthat
although the level of mean throughput may shift, the band-
width availability on internal P2P links of an ISP statistically
evolves following a daily pattern, which persists throughout
the trace period.

3Due to space limit, we are not able to show results obtained throughout
the entire trace period, but choose this sufficiently long period of time which
is representative of several typical scenarios.
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Fig. 14. Evolution of regression coefficients for Netcom→Telecom flows in
the week of Dec. 17 — 23, 2006.
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Fig. 15. Evolution of regression coefficients for Netcom→Tietong flows
in the week of Dec. 17 — 23, 2006.
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Fig. 16. Mean throughput evolution for Netcom→Telecom flows: (1) Taiwan earthquake, (2) Chinese New Year Eve.
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Fig. 17. Mean throughput evolution for Netcom→Tietong flows: (1) Taiwan earthquake, (2) Chinese New Year Eve.

B. Inter-ISP throughput evolution

In the inter-ISP case, we seek to answer the following ques-
tions: First, between Netcom and Telecom, does their inter-
ISP peering always limit their inter-ISP P2P flow throughput?
If so, is the bottleneck bandwidth availability varying at
different times? Second, between the other ISP pairs, how does
the bandwidth availability evolve over their inter-ISP links,
and does per-flow end capacity always critically decide the
throughput at any time?

With the example of the representative week, Fig. 14(A)
reveals that, at most times of a day between Netcom and
Telecom, P2P flow throughput is capped and is not correlated
with per-flow end capacity, with a slope of approximately0
and a corresponding p-value above0.05. However, there does
exist a certain period of time each day when throughputs
are significantly correlated with PEC, usually in the early
mornings, with slope values around1 and corresponding p-
values below0.05. In addition, Fig. 14(B) exhibits daily
evolutionary pattern for the y-intercept, which peaks at the
time when the slope is well above0 on a daily basis.

Based on the estimation algorithm of regression coefficients,
we note that when the slope is non-significant, the y-intercept
represents the mean throughput of the flows between the
two ISPs; when the slope is significant, the throughput is
decided by peer last-mile bandwidth availability, and doesnot
show apparent inter-ISP peering caps. Therefore, the above

observations reveal that: between the two largest ISPs, the
limited bandwidth availability gradually improves at early
times of a day, peaks in the morning when peer last-mile
bandwidths come into play to decide the throughput, then
drops and represents the lowest values in the evening.

Next, we inspect the throughput evolution between large
ISPs and small ISPs. Fig. 15(A) exhibits that, for most of the
time between Netcom and Tietong, the inter-ISP throughputs
are significantly correlated with PEC, with non-zero slopes
and near-zero p-values. Only occasionally at certain moments,
there are observed drops of bandwidth availability, when
the inter-ISP throughputs are limited regardless of the peer
last-mile bandwidth availability. There also exists a daily
evolutionary pattern for both the slope and y-intercept, similar
to those in the previous cases, although not as apparent.

To validate the above observations in a longer period
of time, we again plot the mean throughput evolution for
Netcom→Telecom flows with PEC in the range of10 − 60
KBps in Fig. 16, and that for Netcom→Tietong flows with
PEC in the range of50−100 KBps in Fig. 17. We also observe
the rise of throughput levels in mid-January, but no apparent
bandwidth downgrades around the earthquake scenario or flash
crowd scenario on Chinese New Year Eve. Nevertheless, the
daily evolutionary pattern of throughput persists at all times.

Similar observations have been made in investigations for
other ISP pairs. Besides the daily throughput pattern, these
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observations also reflect that, no apparent inter-ISP bandwidth
bottlenecks exist between a large ISP and a small one, and
across small ISPs at most times. This again confirms that
small ISPs do not usually impose low bandwidth caps at their
peering point with large ISPs, in order to facilitate their traffic
in both directions.

VII. T HROUGHPUTEXPECTATION INDEX: APPLICATION

OF THROUGHPUTCHARACTERISTICS

The throughput characteristics we have derived in previous
sections bring useful insights towards the improvement of
current P2P streaming protocols. As an important application,
we propose aThroughput Expectation Index (TEI), to facilitate
the selection of high-bandwidth serving peers.
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Fig. 18. Daily intercept/slope functions for intra-Telecom flows.

For each pair of ISPs, as there exists a daily evolutionary
pattern for each of the regression coefficients in its throughput
model, we summarize a daily intercept function (y-intercept)
and a daily slope function,β0(t) andβ1(t), respectively, where
t represents different times in a day, by taking the average
of coefficient values at the same time on different days. For
example, Fig. 18 depicts the daily intercept and slope functions
for intra-Telecom flows, summarized by averaging coefficients
at the same hour during the week of December 17 — 23, 2006.
We then define the following throughput expectation index:

TEI = β0(t) + β1(t) × PEC(t). (2)

TEI approximates the achievable inter-peer bandwidth be-
tween two peers across two ISPs (including two identical ISPs)
at a specified time of a day. The computation of TEI not only
captures all the deciding factors of inter-peer bandwidth —
upload/download capacities at the upstream/downstream peer,
concurrent upload/download load at the upstream/downstream
peer, and the ISPs both peers belong to — but also considers
the temporal evolution of bandwidth availability at different
times of a day. Therefore, it can be effectively utilized in peer
selection at each peer, byranking the candidate serving peers
based on the computed TEI towards each of them. In more
details, the TEI-assisted peer selection proceeds as follows:

The P2P streaming service provider derives the intercept and
slope functions for each pair of ISPs, using the collected peer
reports over a certain number of days (e.g., one week). Upon
bootstrapping a new peer, the intercept and slope functions
of relevant ISP pairs, from each of the other ISPs to the ISP
the peer belongs to, are loaded onto the peer. During the peer
selection process, the peer obtains the following information
from each of its candidate serving peers: IP address, upload
capacity and the number of current upload flows. Then the

peer calculates the per-flow end capacity of the potential
P2P link from the candidate to itself, decides the intercept
and slope functions to use (from its pre-loaded functions)
by mapping the IP addresses of the candidate and itself to
ISPs, and computes the TEI towards this candidate with y-
intercept and slope values at the current moment. The peer
ranks all candidate peers based on their derived TEIs. Then
when the peer is deciding which media block to download
from which candidate peer based on the exchanged buffer
maps, it maximally retrieves available media blocks from the
peers with the highest ranks.

Similar usage of TEI can be applied at a tracking server
to select the best serving peers for a requesting peer. Note
that such peer selections are performed without any intrusive
measurements. Only a small number of intercept and slope
functions need to be pre-loaded onto the peer, and a limited
amount of information needs to be acquired from neighboring
peers.

We further emphasize that in TEI-assisted peer selection, it
is the relativeranksof peers computed by TEIs that are being
used, instead of the absolute throughput values estimated with
TEIs. This is because throughput levels may vary from day to
day, but the daily throughput pattern persists for each ISP pair,
and therefore the relative rank of peers may persist as well at
a specified time on different days. This allows us to use the
summarized intercept/slope functions and PEC values of end
peers at a specified time to calculate the relative throughput
ranks at the time.

To investigate the accuracy of the proposed TEI, we conduct
a number of cross-validation experiments, by using inter-
cept/slope functions summarized from the representative week
(December 17 — 23, 2006) in TEI-assisted peer selection
throughout the trace period. At each peer that appeared in
the traces, we calculate the TEI towards each of its sending
partners, and then compare their ranks computed by the TEIs
with their true ranksbased on the actual TCP throughput over
the links. The experiments are divided into two parts.

First, we investigate the true rank of the best sending peer
selected with TEI at each peer. Focusing on one snapshot at
9pm, December 18, 2006, Fig. 19(A) shows the distribution of
this true rank at all the existing peers. At70% of the peers, the
TEI best peer coincides with the actual best sending peer with
the largest throughput; at the majority of all peers, the TEI
best peer ranks among top 3. Fig. 19(B) plots the evolution of
the percentages of peers, at which the TEI best peer has a true
rank no larger than 2 or 3, over the10-week period of time.
We observe that the former case achieves a peer percentage
higher than80% at all times, and the latter is consistently
around 93%. During the throughput level shift around the
earthquake scenario and the flash crowd scenario near Chinese
New Year, the percentages represent larger fluctuations, but are
nevertheless quite satisfactory as well.

Next, we compare the sum of throughputs on P2P links
from two peer groups at each receiving peer: (1) the5 top
sending peers selected with TEI, and (2) the true top5 peers
with largest throughputs. Fig. 20(A) shows the distribution
of throughput difference between the two groups, at peers
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Fig. 19. True rank distribution of the best sending peer selected with TEI. (1) Taiwan earthquake, (2) Chinese New Year Eve.
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Fig. 20. Distribution of throughput difference between flows from 5 top peers selected with TEI and flows from true top5 peers. (1) Taiwan earthquake,
(2) Chinese New Year Eve.

that existed at 9pm, December 18, 2006. The TEI selection
achieves less than10 KBps throughput difference at more than
70% peers. Furthermore, the difference is shown to be larger
around the time of the two special scenarios in Fig. 20(B), and
nevertheless, it is minor at most peers at most regular times,
i.e., 75% peers are subjected to a difference less than20 KBps.

The above results exhibit that, while we are using inter-
cept/slope functions summarized from only one week, the peer
ranking mechanism of TEI works quite well throughout the
trace period. This reflects the practical usefulness of TEI in
capturing the persistentrelativeranks of inter-peer bandwidths
at each specific time on different days, without the need of
intensive training using a large amount of historical data.A
more elaborate usage of TEI may involve the retraining of
the intercept/slope functions over time at the P2P streaming
service provider, based on feedbacks from the peers about the
accuracy of the current functions in evaluating high-bandwidth
peers. As our goal is to show one effective application of our
derived P2P streaming flow characteristics, we choose not to
go into details of such practical protocol design.

VIII. C ONCLUDING REMARKS

This paper represents the first attempt to characterize
inter-peer bandwidth availability in modern large-scale
peer-to-peer streaming networks. With abundant traces from
a successful commercial P2P streaming application, UUSee,
and using statistical means, we explore the critical factors
that may determine such achievable bandwidth, from both
the end-host and ISP/area perspectives. In addition, we also
explore the evolution of such bandwidth over time. Among
our many discoveries, we point out that the inter-ISP peering
bandwidth constraints significantly limit the achievable
streaming bandwidth only between the two largest China
ISPs, and are less perceivable across other ISPs. In the latter
case and in the case that both peers are in the same ISP, the

streaming bandwidth is significantly correlated with last-mile
bandwidth availability at the end peers. Another useful
discovery is that inter-peer bandwidth exhibits an excellent
daily evolutionary pattern within or across most ISPs, which
we make use of in designing a throughput expectation index
to achieve efficient peer selection based on bandwidth. We
believe that our findings bring important insights towards a
complete understanding of achievable bandwidth in practical
P2P streaming applications, and will be instrumental towards
further improvements of P2P streaming protocol design
without active and intrusive measurements.
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