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Abstract

In this thesis, we study the problems of deformation and motion in computer

graphics. The studies begin a geometry problem on sweeping surface generation

named rotation minimizing frame(RMF). We introduce a fourth-order approxi-

mate RMF algorithm named double reflection method. This solution can widely

be used in strip object construction and realtime animation due to its precision,

efficiency and robustness. We compare the new method with classical algorithms,

and present further properties and extensions of the double reflection method for

various application scenarios. Finally, we discuss the variational principles in de-

sign moving frames with boundary conditions, based on the RMF.

Then we discuss another problem in vector field deformation. A mesh surface

in a vector field will receive force and perform deformation. Under a particular

vector field construction, the deformation in the vector field will be automatically

volume-preserving and non-intersecting. There are many interesting application

due to these features. We extend the cross-product algorithm in [52] from a spher-

ical field construction to a strip field construction. Moreover, we introduce a new

curl vector field construction which is simpler and more efficient in vector field

construction and realtime deformation. Compared with other vector field designs,

this approach provides an easier and more intuitive construction for free-form ob-

jects.
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Chapter 1

Introduction I: RMF

1.1 Background

Let x(u) = (x(u), y(u), z(u))T be a C1 regular curve in E3, the 3D Euclidean

space. Denote x′(u) = dx(u)/du and t(u) = x′(u)/||x′(u)||, which is the unit

tangent vector of the curve x(u). We define a moving frame associated with x(u)

to be a right-handed orthonormal system composed of an ordered triple of vectors

U(u) = (r(u), s(u), t(u)) satisfying r(u) × s(u) = t(u). The curve x(u) in this

context will be called a spine curve. Since t(u) is known and s(u) = t(u) × r(u),

a moving frame is uniquely determined by the unit normal vector r(u). Thus r is

called the reference vector of a moving frame.

From the differential geometry point of view, a readily available moving frame of

a curve in 3D is the Frenet frame, whose three orthogonal axis vectors are defined

as

t =
x′(u)

‖x′(u)‖ , s =
x′(u) × x′′(u)

‖x′(u) × x′′(u)‖ , r = s× t.

Although the Frenet frame can easily be computed, its rotation about the tangent

of a general spine curve often leads to undesirable twist in motion design or sweep

surface modeling. Moreover, the Frenet frame is not continuously defined for a C1

spine curve, and even for a C2 spine curve the Frenet frame becomes undefined at
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1.1. BACKGROUND 2

(a) The Frenet frame of a spine curve. Only the
normal vector is shown.

(b) A rotation minimizing frame (RMF) of the
same curve in (a). Only the reference vector is
shown.

(c) A snake modeled using the RMF in (b).

Figure 1.1: An example of using the RMF in shape modeling.
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1.1. BACKGROUND 3

an inflection point (i.e., curvature κ = 0), thus causing unacceptable discontinuity

when used for sweep surface modeling [9].

A moving frame that does not rotate about the instantaneous tangent of the

curve x(u) is called a rotation minimizing frame of x(u), or RMF, for short. It

can be shown that the RMF is defined continuously for any C1 regular spine

curve. Because of its minimal-twist property and stable behavior in the presence

of inflection points, the RMF is preferred to the Frenet frame in many applications

in computer graphics, including free-form deformation with curve constraints [6,

39, 33, 35, 34], sweep surface modeling [10, 41, 46, 53], modeling of generalized

cylinders and tree branches [45, 8, 13, 44], visualization of streamlines and tubes [3,

23, 21], simulation of ropes and strings [5], and motion design and control [28].

Discussion of the RMF and its applications can be found in the recent book by

Hanson [22], where the RMF is treated using a parallel transport approach.

A typical application of RMF in shape modeling is shown in Figure 1.1. Here a

canonical snake surface model is first defined along a straight line axis possessing

an RMF generated by translation along the line. Then a new axis curve (i.e., a

spine curve) is designed to produce a novel pose of the snake. For comparison,

both Frenet frame and RMF of this same axis curve are shown in Figures 1.1(a)

and 1.1(b). The RMF determines a mapping from the space of the canonical

model of the snake to the space around the new axis curve in Figure 1.1(b); this

mapping produces the snake in Figure 1.1(c). Note that the Frenet frame in this

case exhibits excessive rotation compared with the RMF, so it is less appropriate

for shape modeling.

Next consider moving frames of a deforming spine curve x(u; t), as frequently en-

countered in computer animation (see Figure 1.2). While the Frenet frame does

not always experience abrupt twist for a given static spine curve, the Frenet frame
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of the deforming spine curve often suddenly exhibits a radical twist at an instant

during deformation, especially when the spine curve has a nearly curvature van-

ishing point (i.e., an inflection point). In contrast, the RMF of the deforming

spine curve x(u; t) always varies smoothly and stably over time as well as along

the spine curve. The different behaviors of these two moving frames are illustrated

in Figure 1.2, visualized as sweep surfaces, through a sequence of snapshots of a

deforming spine curve. Here by continuous deformation we mean that the rate

of change in both position (i.e., ∂x(u; t)/∂t) and unit tangent (i.e., ∂t(u; t)/∂t)

are bounded for any (u, t) in their finite intervals of definition. Note that, this

assumption is reasonable in practical application but does not imply that the nor-

mal vector of x(u; t) changes continuously with respect to time t, thus explaining

the potential instability of the Frenet frame.

Computation of the RMF is more involved than that of the Frenet frame. The

RMF is first proposed and formulated as the solution of an ordinary differential

equation in [7] and later in [45, 31]. Exact (i.e., closed form) RMF computation

is either impossible or very involved for a general spine curve. Hence, a num-

ber of approximation methods have been proposed for RMF computation. These

methods fall under three categories: 1) discrete approximation; 2) spine curve ap-

proximation; and 3) numerical integration. The discrete approximation approach

is versatile for various applications in computer graphics and computer anima-

tion, even when only a sequence of points on a path (i.e., spine curve) is available,

while the approach based on spine curve approximation is useful for surface mod-

eling in CAGD applications. We will see that direct numerical integration of the

defining ODE of RMF is relatively inefficient and therefore not well suited for

RMF computation. The new method we are going to propose is based on discrete

approximation.

Studies on Motion and Deformation in Graphics



1.1. BACKGROUND 5

Figure 1.2: Sweep surfaces showing moving frames of a deforming curve:the Frenet
frames in the first and the third rows and the RMF in the second and the forth
rows.
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1.2. PROBLEM FORMULATION 6

1.2 Problem formulation

The RMF computation problem as solved by the discrete approximation approach

is formulated as follows. Let U(u) denote an exact RMF of a C1 regular spine

curve x(u) in 3D, u ∈ [0, L], with the initial condition U(0) = U0, which is some

fixed orthonormal frame at the initial point x(0). Suppose that a sequence of

points xi = x(ui) and the unit tangent vectors ti at xi are sampled on the curve

x(u), with ui = i ∗ h, i = 0, 1, . . . , n, where h = L/n is called the step size. The

goal of discrete approximation is to compute a sequence of orthonormal frames Ui

at xi that approximates the exact RMF frame U(u) at the sampled points, i.e.,

each Ui is an an approximation to U(ui), i = 0, 1, 2 . . . , n.

Error measurement is needed to evaluate and compare different approximation

schemes. Suppose that the exact RMF U(u) has the same initial frame as the

approximating frame sequence at x(u0), i.e., U(0) = U0. Then the approximation

error between U1 and U(h) is called the one-step error. The approximation errors

at intermediate sampled points are normally accumulated to give a large error at

the end of the spine curve. However, due to error fluctuation, the maximum error

may not always occur at the endpoint x(L). Therefore, we define the global error

Eg to be the maximum error of frame approximation over all the sampled points

x(ui), i.e.,

Eg =
n

max
i=0

{‖Ui − U(ui)‖}, (1.1)

where ‖Ui − U(ui)‖ is measured by the L2 distance between the reference vectors

ri and r(ui) of Ui and U(ui).

We shall present a new discrete approximation method, called double reflection

method, for RMF computation. The main idea is based on the observation that

the rigid transformation between two consecutive frames for RMF approximation
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can be realized by two reflections, each being a reflection in a plane. The resulting

method is simple, fast, and highly accurate – its global approximation error is of

order O(h4), where h = L/n is the step size. This compares favorably with the

second order (i.e., O(h2)) approximation error of two prevailing discrete approx-

imation methods, i.e., the rotation method [9] and the projection method [31].

The accuracy of the double reflection method matches that of using the standard

4-th order Runge-Kutta method to integrate the defining differential equation of

RMF, but is much simpler and faster than the latter.

In the following we will first review related works in Section 3 and present neces-

sary preliminaries in 4. The double reflection method is presented and analyzed

in Section 5. Then we present experimental verifications in Section 6, discuss

extensions in Section 7 and conclude the paper in Section 8.

Readers interested only in implementation may skip to Section 5.1 for a simple

description of the double reflection method; the pseudo code is given in Table 5.1

in Section 5.
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Chapter 2

Summary of previous methods

Before we introduce our algorithm, for your briefing, we will discuss some relative

sweeping algorithms first in this section.

2.1 Frenet frame

2.1.1 general definition

A Frenet frame is a reference frame system moving along given curves. It consists

of n orthogonal vectors which usually represents a local coordinate system in n

dimension space. Frenet frame contains many local properties such as curvature,

torsion etc and it is more flexible in a local representation, so it is more widely used

in differential geometric computing than global coordinate system like Euclidean

coordinates.

In Rn space, the Frenet frame for a given Cn+1 curve c(t) is a set of of orthonormal

vectors e1(t),e2(t)...en(t) We call them Frenet vectors and construct them from the

derivatives of curve c(t) using the Gram-Schmidt orthogonalization algorithm:

e1(t) = c′(t)
||c′(t)||

ej(t) =
ej(t)

||ej(t)||
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2.1. FRENET FRAME 9

Figure 2.1: Frenet frame is a local coordinate reference system along curves. In
3-dimensions space, it contains three orthogonal unit vectors, e1(t),e2(t) and e3(t),
which are also the tangent, normal and binormal on every point of curves.

ej(t) = c(j)(t) −
∑

< c(j)(t), ei(t) > ei(t)

We call the real value function xi(t) generalized curvatures. It is a differential

geometric property of the curve c(t). Frenet frame and the generalized curvatures

are invariant under reparametrization.

xi(t) = <e′(t),ei+1(t)>
||c′(t)||

2.1.2 Tangent vector, normal vector, binormal vector, cur-

vature and torsion

In three-dimensional space, the first three Frenet vectors have particular names

and construct current Frenet frame.

Mathematically, we define tangent vector as the instantaneous velocity at every

point P (t)|t=t0 for a parameterized C1 curve c(t). Usually the curve represents the
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2.1. FRENET FRAME 10

path of a particle:

c′(t0) = d
dt
c(t)|t=t0

The first Frenet vector e1(t) is the unit tangent vector defined at each regular

point of c(t):

e1(t) = c′(t)
||c′(t)||

If t = s is the natural parameter then the tangent vector has unit length, so that

the formula simplifies:

e1(t) = c′(s)

The unit tangent vector determines the orientation of the curve, or the forward

direction, corresponding to the increasing values of the parameter.

The Normal vector which is also called curvature vector indicates the deviance

of the curve c(t):

e2(t) = c′′(t)− < c′′(t), e1(t) > e1(t)

After normalization, we get the second Frenet vector:

e2(t) = e2(t)
||e2(t)||

Osculating plane are defined by the tangent and normal vectors.

The third Frenet vector e3(t) is binormal vector which is always orthogonal to

the unit tangent and normal vectors:

e3(t) = c′′′(t)− < c′′′(t), e1(t) > e1(t)− < c′′′(t), e2(t) > e2(t)

e3(t) = e3(t)
||e3(t)||

Particularly, in 3-dimensional space the equation simplifies to

e3(t) = e2(t) × e1(t)

Curvature is the first generalized curvature χ1(t) and measures the deviance of
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2.2. LEAST ROTATION FRAME 11

c(t) from being a straight line:

κ(t) = χ1(t) =
<e′1(t),e2(t)>

||c′(t)||

Torsion is the second generalized curvature χ2(t) and measures the deviance of

from being a plane curve:

γ(t) = χ2(t) =
<e′

2
(t),e3(t)>

||c′(t)||

2.1.3 Frenet-Serret formulas

The Frenet-Serret formulas are constructed by ordinary differential equations of

Frenet vectors and the generalized curvature functions χi

2-dimensions
[
e′1(t)
e′2(t)

]

=

[
0 κ(t)

−κ(t) 0

] [
e1(t)
e2(t)

]

3-dimensions




e′1(t)
e′2(t)
e′3(t)



 =





0 κ(t) 0
−κ(t) 0 τ(t)

0 −τ(t) 0









e1(t)
e2(t)
e3(t)





n-dimensions





e′1(t)
...
e′n(t)



 =







0 χ1(t) ... 0
−χ1(t) 0 ... ...

0 ... 0 χn−1(t)
0 ... χn−1(t) 0











e1(t)
...
en(t)





2.2 Least rotation frame

2.2.1 Disadvantage of Frenet frame

Let’s focus on the problem in 3-dimensions space. For curve c(s) parameterizing

by arc length s from Parametric Equation c(u), we denote the Frenet frame as

̥ = (N(s), B(s), T (s))

T (s) = c′(s), N(s) = T ′(s)
||T ′(s)||

, B(s) = T (s) ×N(s)
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2.2. LEAST ROTATION FRAME 12

Figure 2.2: The main process of least rotation frame on each point: For a point
pi+1, The first frame vector Ti+1 is the tangent of the curve. The second frame
vector Ni+1 is defined by the cross product of Ti and Ti+1. If Ti and Ti+1 have the
same direction, Ni+1 will be defined as the same as Ni.

A computable Frenet frame required C2 property. This definition is not available

when a curve is less than C2. Another important disadvantage is that Frenet

frame contains intrinsically unnatural twist. We can measure it by torsion τ(s) =

(dN/ds) ·B:

N ′(s) = ( c′′(s)
||c′′(s)||

)′ = − ||c′′(s)||c′′′(s)−||a′′(s)||′a′′(s)
||a′′(s)||2

In the bad case ||a′′(s)|| vanishes to give a point of inflection then the signs of

both N and B change at the same time, the weird twist behavior happens. So

Frenet frame is an unsatisfactory choice in geometric modeling though it is the

most popular one.
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2.2.2 parallel transport and least rotation frame

Least rotation frame is a quadratically convergent algorithm which can avoid

the unnecessary twist created by the Frenet frame. The idea is that the tangent

plane PT (s) should rotate by the minimum necessary to remain in it. This feature

is supported by the process of parallel transport of tangent vectors of curves in

Rn. Mathematically, parallel transport means, for a vector ν perpendicular to

the tangent plane PT (s) on the conditions (I)v · T = 0 and (II)v′ ⊥ P(s), we can

substitute it in (ν · T )′ = 0 from ρ = −T ′ · ν/T · T ≡ −T ′ · ν/1, then we have

ν(u) = −(T ′(u) · ν(u))T (u)

Generally speaking, given ̥ = (N1, B1, T 1) and next tangent vector T 2, the N2

and B2 in next frame can be defined as N 2 = T 1 × T 2 and B2 = N2 × T 2. The

normal vector is constructed by the cross-product of two tangent vectors in order

to keep rotation remain possible minimum. If the two tangent vectors point to

the same direction that T1 = T2, Then next normal vector is defined as N2 = N1,

which means the previous normal vector is used directly as current normal vector.

No rotation happens in this condition.

2.2.3 Computing the least rotation frame

Numerical solution for the least rotation frame computing form T (u) to T (u+∆u)

is given as follows. In this equation, (a, b, c) = T (u)×T (u+∆u) and cosα = T (u)·

T (u+∆u). Especially, if ∆u = (u1−u0)/(n+1), we will have Rn = Πn
i=0Ru0+i∆u,∆u

for a multiple rotation combination.

Ru,∆u =





cosα −c b
c cosα −a
−b a cosα



 + 1−cosα
a2+b2+c2





a2 ab ac
ab b2 bc
ac bc c2





Studies on Motion and Deformation in Graphics



2.3. PROJECTION METHOD 14

Figure 2.3: In projection method, current normal frame vector Ni is from the
projection of previous normal frame vector Ni−1, which is projected to the plane
passing current point pi and the bisector of angle ∠pi−1pipi+1, orthogonal to the
plane pi−1pipi+1.

2.3 Projection method

The projection method which is also named rotation minimizing sweeps for

sweeping frame was presented by Klok in 1986. It also requires the trajectory

curve c(s) is a regular curve(||c′(s) 6= 0||) as well as a non-restrictive assumption

that c is arc-length parameterized(||c′(s) ≡ 1||). Compared to Frenet frame, the

projection method can choose the normal vector of frame at c(0), when the normal

vector of Frenet frame is determined by c′′

Let’s define the orthogonal frame (t(s), f(s), g(s)) along c(s) with t(0) = t0, f(0) =

f0, g(0) = g0. t(s) = c′(s) which denotes the tangent vector. Curve c is regular

and s ∈ [0, L]. We also define a simple 2D contour w(u), u ∈ [0,M ], which is

sweeping along curve c(s). So the sweeping surface can be defined as
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Λ(s, u) = c(s) + w1(u)f(s) + w2(u)g(s)

f(s) and g(s) is are the solution of the linear differential equation in ν: ν(s) =

−(c′′(s)·ν(s))c′(s)/||c′(s)||2 with initial conditions f(0) = f0, g(0) = g0. Moreover,

the trajectory curve have a little more restriction for this algorithm. It must be

regular and C2 continuously differentiable with non-vanishing curvature.

Klok gave a construction of the approximation of this algorithm. This approxi-

mation has a main process of vector projection and it is the reason we name it

projection method. First, we approximate the trajectory curve c(s) by linear

segments p0, p1..., pm. p0, p1..., pm are the points on curve c(s). We create a pro-

jection planes V0, V1, ..., Vm on each point p)i for projection process. fi and gi of

orthogonal frame on pi is on the projection plane Vi. Projection plane V0 goes

through p0 and perpendicular to p0p1; projection plane Vm goes through pm and

perpendicular to pm−1pm; projection plane Vi|i6=1,m goes through pi containing the

bisector of angle ∠pi−1pipi+1 and orthogonal to the plane pi−1pipi+1. For the first

frame vector t(s), t0 is the same direction as p0p1, when tm is the same direction as

pm−1pm. ti|i6=1,m locates on the plane pi−1pipi+1 and perpendicular to the bisector

of ∠pi−1pipi+1. If we use curve c(s) directly, t(s) = c′(s). For the second frame

vector f(s), we choose f0 freely. When we define fi in vector sequence f0, f1, ..., fm,

we project it to next projection plane Vi+1 and get the project vector fi. Then fi+1

is defined as a unit vector and has the same direction as fi. This is the projection

process. After all, we define gi = fi× ti. So the orthogonal frame for each point pi

is constructed. Based on these orthogonal frames, translational sweepings is able

to be created.
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2.4 Rotation minimizing frame

For twice differentiable curve c(s), we call the orthogonal frame (t(s), f(s), g(s))

to be rotation minimizing frame: t(s) denotes the tangent vector of curve c(t);

f(s) and g(s) is are the solution of the linear differential equation in ν, which has

initial conditions t(0) = t0, f(0) = f0, g(0) = g0 :

ν(s) = −(c′′(s) · ν(s))c′(s)/||c′(s)||2

Rotation minimizing frame is a good solution for sweeping problems. In the fol-

lowing rotation minimizing frame will be referred to RMF. Actually, projection

method is C2 approximation of RMF method.

RMF method can also be approximately computed by integral formula. For a

trajectory curve c(u), we define the RMF as (X(u), Y (u), Z(u)), in which Z(u) =

c′(u)/||c′(u)||, X(u) and Y ′(u) can be defined as

X(u) = cosθ(u)N(u) + sinθ(u)B(u)

Y (u) = −sinθ(u)N(u) + cosθ(u)B(u)

with

θ(u) − θ0 = −
∫ u

u0
τ(t)||c′(t)||dt

τ(u) is the torsion of curve c(u):

τ(u) = det(c′(u),c′′(u),c′′′(u))
||c′(u)×c′′(u)||2

Torsion represents the twist of curves. So the integrated torsion of curve c(u) is

the same as the amount of twist of the Frenet frame. In this method, we create

RMF by apply the additional twist rotation to each Frenet frame. Since integral

formula is not easy to computed directly, we use numerical integration to compute

approximate θ(u). In the equation of torsion τ(u), c′(u) × c′′(u is unstable when

c′(u) = 0 or c′′(u) = 0. RMF is rotated from Frenet frame in this approximated
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2.5. THE CLASSICAL FOURTH-ORDER RUNGE-KUTTA METHOD 17

method, so it has the same unrobust twist problem as Frenet frame.

2.5 The classical fourth-order Runge-Kutta method

We use the classical fourth-order Runge-Kutta method to do the numerical com-

puting for rotation minimizing frame method in the thesis. Runge-Kutta methods

are developed by German mathematicians C.Runge and M.W.Kutta around 1900.

They are an important set of implicit and explicit iterative methods for the ap-

proximation of solutions of ordinary differential equations. Runge-Kutta method

family contains classical Runge-Kutta methods, explicit Runge-Kutta methods,

adaptive Runge-Kutta methods, implicit Runge-Kutta methods, etc. classcical

Runge-Kutta methods, especially the classical fourth-order Runge-Kutta method

is the most popular one and commonly used in numerical analysis.

First lets specify an initial value problem as follows:

y′ = f(t, y), y(t0) = y0

Then the classical fourth-order Runge-Kutta method for the problem is given by

the equations:

yn+1 = yn + h
6
(k1 + 2k2 + 2k3 + k4)

tn+1 = tn + h

The four parameters are specified as






k1 = f(tn, yn)
k2 = f(tn + h

2
, yn + h

2
k1)

k3 = f(tn + h
2
, yn + h

2
k2)

k4 = f(tn + h, yn + hk3)

k1 is the slope at the beginning of the interval and k4 is the slope at the end.

k2 and k3 are both the slope at the midpoint tn + h
2

using Euler’s method but

determined by different ki.
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The error per step of classical fourth-order Runge-Kutta method has order h5,

while the total accumulated error have order h4.
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Chapter 3

Related Work

3.1 Discrete approximation

In discrete approximation an RMF is approximated by a sequence of orthogonal

frames located at sampled points xi on the spine curve x(u). The projection

method, as originally proposed in [31], computes an approximate RMF for model-

ing a sweep surface. Suppose that the the sampled points xi and the unit tangent

vectors ti of x(u) at the sampled points xi are provided as input. For RMF com-

putation, the projection method projects, along the direction x1 − x0, an initial

reference vector r0 in the normal plane of the spine curve at x0 to the next reference

vector r1 on the normal plane at x1. Then this step is repeated to generate on the

subsequent normal planes a sequence of reference vectors ri, which, together with

the tangent vectors ti, define a sequence of orthonormal frames that approximate

an exact RMF. The projection method is empirically demonstrated to have the

second order of approximation error [15]. Note that the above projection between

normal planes is not length preserving. Therefore the reference vectors ri need to

be normalized to give unit vectors.

Another popular discrete approximation method is the rotation method [9, 46,

40]. The rotation method also needs as input the sampled points xi on the spine
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curve and the unit tangent vectors ti of the spine curve at xi. Consider the first

two sampled points x0 and x1. Given the initial frame U0 at x0, suppose that we

need to compute the next frame U1 at x1 from the boundary data (x0, t0;x1, t1).

To minimize the rotation about the tangent of the spine curve, this method rotates

U0 into U1 about an axis b0 perpendicular to t0 and t1, that is, b0 = t0 × t1; the

rotation angle θ is such that the frame vector t0 of U0 is brought into alignment

with the frame vector t1 of U1, i.e., θ = arccos(t0·t1). Here, for frame computation,

we ignore the translational difference between the origins of U0 and U1. The

rotation method has the second order global approximation error [40].

A major problem with the rotation method is its lack of robustness for nearly

collinear data. When the two consecutive tangent vectors t0 and t1 are collinear,

the rotation axis becomes undefined, since b0 = t0×t1 = 0; but, since no rotation

is needed in this case, we just need to set U1 := U0. However, numerical problems

will be experienced when t0 and t1 approach each other, i.e., becoming closer

and closer to being collinear; this happens, for example, when the spine curve is

densely sampled for high accuracy RMF computation. In this case some threshold

value has to be used to avoid the degeneracy of the rotation vector b0 by treating

nearly collinear data as collinear data. But if a spine curve is so densely sampled

that all consecutive data segments are deemed as collinear due to thresholding,

then there will be a large accumulated error in the computed RMF, because the

spine curve will be treated as a straight line and all the frames Ui will be set to be

identical to the initial frame U0. We note that this numerical problem for nearly

collinear data does not exist with the double reflection method we are going to

propose.
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3.2 Methods based on spine curve approxima-

tion

If a spine curve is first approximated by some simple curves whose RMF can be

computed exactly or more accurately, then the RMF of this simple approximating

curve can be taken as an approximation to the RMF of the original spine curve. An

intuitive argument for this idea is that if two spine curves are close to each other,

then their RMFs should also be. This type of intuition lacks rigorous justification

and could be unreliable for moving frames defined by differential properties; recall

that the Frenet frames of two spine curves close to each other can be radically

different. A related result by Poston et al [40] basically states that the RMF of

a spine curve x̃(u) approaches the RMF of another spine x(u) if and only if the

unit tangent vector t̃(u) of x̃(u) approaches the unit tangent vector t(u) of x(u).

Discrete approximation methods, such as the projection method or the rota-

tion method, can be regarded as the simplest methods based on spine curve ap-

proximation, using a polygon to approximate the spine curve. A G1 spline curve

composed of circular arcs is used to approximate an input spine curve in [53]

to compute an approximate RMF for modeling sweep surfaces in NURBS form.

The spine curve is approximated by PH curves using Hermite interpolation in [29]

for generating sweep surfaces in rational representation. Exact description of the

RMF of a PH curve and its rational approximation are provided in [28, 18, 19, 14].

A closely related technique is to approximate the rotation minimizing motions

(RMM) by affine motions (cf. [41]) and rational motions from the point of view of

spherical kinematics [27].
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3.3 Numerical integration

Since the RMF is defined by a vector-valued ODE of the type y′ = f(x,y) [7,

45, 31, 41], naturally one may consider computing the RMF using a numerical

method to directly solve this ODE. Suppose that the classical fourth order Runge-

Kutta method is used. Then the RMF thus computed has the 4-th order global

approximation error, which is the same as that of the double reflection method

that we are to propose. However, this general approach to solving the ODE

does not take into account the special geometric property of the problem of RMF

computation and therefore has severe drawbacks.

Firstly, the Runge-Kutta method requires the spine curve x(u) to be C2, since

the right hand side f of the ODE is a function of the second derivative of x(u)

(cf. Eqn. (4.3) in Section 4). This requirement is unnecessarily restrictive, since

the RMF is continuously defined for any C1 spine curve. Secondly, deriving and

evaluating the second derivative of x(u) can be tedious and costly, rendering the

method inefficient. In the RMF computation problem under consideration, the

sampled points xi and the tangent vectors ti are available as input. But both

first and second derivatives of the spine x(u) are required by the Runge-Kutta

method. This mismatch between the input data of the RMF computation problem

and the data it requires makes the Runge-Kutta method not well suited for RMF

computation.

Another problem is that the Runge-Kutta method does not strictly enforce

the orthogonality between the solved reference vectors ri and the tangent vectors

ti, even though in the initial conditions r0 = r(0) is orthogonal to t0 = t(0).

Therefore each ri has to be projected onto the normal plane of the spine curve to

make it perpendicular to ti; this adds further to the cost of the method.
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Another method is based on the observation that the RMF and the Frenet

frame differ by a rotation determined by the torsion in the normal plane of the

spine curve. Let θ(u) be the angle of this rotation. Let τ(u) be the torsion of the

spine curve x(u). Then θ(u) is given by [20]

θ(u) = −
∫ u

u0

τ(v)‖x′(v)‖dv (3.1)

With this formula, θ(u) may be computed with some quadrature rule and used to

compute the RMF by compensating the rotation of the Frenet frame. However, at

inflection points of a spine curve, the Frenet frame itself becomes discontinuous and

exhibits abrupt change, and the torsion τ(u) becomes ill-defined (i.e., unbounded),

making it difficult to evaluate the integration (3.1) accurately; therefore in this

case the method becomes unstable. This problem is further discussed with an

example in next section.
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X

Y

Z

x(0)

x(½)

x(1)

Figure 3.1: S-shaped sixth order Bézier curve

3.4 The unstable torsion of a planar curve

It is well known that a curve is planar if and only if its torsion is zero everywhere.

However, the torsion has certain peculiar behavior which makes it an “unstable”

characteristic of a planar curve. Below we use an example to show that a nearly

planar curve can have arbitrarily large torsion. This example also serves two

further purposes. First, the numerical integration method in [20] will experience

severe difficulty in computing the RMF for the spine curve in this example. Second,

although the torsion τ is unbounded in this example, we will see that the constant

K in the fifth order error term in Theorem 5.6.1 is still finite, thus showing that

the second part of the proof of Theorem 5.6.1 is warranted (cf. Appendix I).

Consider the S-shaped sixth order Bézier curve x(t; h) in 3D defined by the
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control points P0 = (1, 1, 0)T , P1 = (−1, 1, 0)T , P2 = (−1, 0, h)T , P3 = (1, 0, h)T ,

P4 = (1,−1, 0)T and P5 = (−1,−1, 0)T . The curve has the parametric equation

x(t; h) =





8t5 − 20t4 + 20t2 − 10t+ 1
8t5 − 20t4 + 20t3 − 10t2 + 1

10t4h− 20t3h+ 10t2h



 , t ∈ [0, 1]

We consider the behavior of x(t; h) as h→ 0. When h = 0, x(t; 0) becomes planar

and x(1/2; 0) = (0, 0, 0) is an inflection point.

Let us first check τ0, τ1, κ0, κ1, κ2 at the point x(1/2; h).

τ0 = −12

5h
, τ1 = 0, κ0 =

4

5
|h|, κ1 = 0, κ2 =

192(h4 − 3h2 − 3)

125|h|

Clearly, τ0 and κ2 are not bounded as h→ 0.

Now we check K at x(1/2; h). The four terms of the expression of K in

Eqn. (5.7) are

2κ2
1τ0 = 0, κ2

0τ
3
0 = −27648

3125h
, κ1κ0τ1 = 0, κ2κ0τ0 =

9216(h4 − 3h2 − 3)

3125h

Then

K = 2 κ1
2τ0 + κ0

2τ0
3 + κ1κ0τ1 − κ2κ0τ0 =

9216h(3 − h2)

3125

and lim
h→0

K = 0. Hence, K is finite for all finite values of h in this example.

In this example, numerical integration of (3.1) becomes difficult as the inte-

grand τ(t) becomes unbounded at t = 1/2 for arbitrarily small h. Furthermore,

even if this integration can be done, the Frenet frame of x(t) becomes increasingly

unstable at t = 1/2 as h → 0. All this makes it difficult to apply Eqn. (3.1) to

computing the RMF of x(t).
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Chapter 4

Preliminaries

4.1 Definition by differential equations

First we introduce the rotation minimizing frame under weak assumptions on a

spine curve, using differential equations. These results will later be connected to

the classical results from differential geometry. Generally, we assume the spine

curve x(u) to be a C1 regular curve, i.e., x′(u) 6= 0 in its domain of definition, but

higher differentiability is needed for analysis of approximation orders. Again we

use t(u) = x′(u)/||x′(u)|| to denote the unit tangent vector.

Consider a one-parameter family of unit vectors f(u) perpendicular to the

tangent vector t(u). Such a vector function f(u) is said to exhibit the minimal

rotation, and therefore called a rotation minimizing vector, if it is a solution to

the following system of differential–algebraic equations (DAE)

f ′(u) − φ(u) t(u) = 0
f(u) · t(u) = 0

}

(4.1)

for the functions f(u) = (f1(u), f2(u), f3(u))
⊤ and some function φ(u). Here the

first equation (in vector form) constrains the evolution of f(u) to be parallel to

the tangent, and the second equation serves to preserve orthogonality.

A rotation minimizing vector f(u) is not necessarily differentiable for a C1
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spine curve x(u); (e.g., consider the case of a C1 curve composed of a circular arc

and a straight line segment). In view of this, one may adopt the following weak

form of the DAE (4.1)

f(u) −
∫ u

0

φ(v) t(v) dv = 0

f(u) · t(u) = 0






(4.2)

which does not involve any derivative of f(u).

If the spine curve is of the C2 class, then the above DAE is equivalent to the

ODE

f ′(u) = [t(u) × t′(u)] × f(u) (4.3)

since

φ t = (f ′ · t)t = (−f · t′)t = [t(u) × t′(u)] × f(u) (4.4)

A rotation minimizing frame (RMF) is determined by a rotation minimizing

vector. Specifically, we have

Definition 1: [Rotation minimizing frame] Given a C1 curve x(u) ⊂ E3, u ∈

[0, L], a moving orthonormal frame U(u) = (r(u), s(u), t(u)), where r(u)× s(u) =

t(u), is called a rotation minimizing frame (RMF) of x(u) if t(u) = x′(u)/||x′(u)||

and r(u) is a solution of Eqn. (4.2) (or Eqn.(4.1) if x(u) is C2) for some initial

condition U(0) = U0. Here r(u) is called the reference vector of the RMF U(u).

Since the frame vector t(u) of U(u) is always constrained to be the unit tangent

vector of x(u), U(u) is uniquely determined by its reference vector r(u), which is a

rotation minimizing vector. The third frame vector is given by s(u) = t(u)×r(u).

The evolution defined by DAE (4.1) preserves the inner product of two vectors.

Indeed, if vectors f(u) and g(u) both satisfy Eqn.(4.1) with associated functions

φ(u) and ψ(u), then

d

dt
(f · g) = f ′ · g + f · g′ = (φ t) · g + f · (ψ t) = 0 (4.5)
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Hence, the inner product (f · g) is a constant. From this we have the following

observations:

Corollary 4.1.1 If two vectors f1(u) and f2(u) satisfy Eqn. (4.1) and the three

vectors f1(0), f2(0) and t(0) form a right–handed orthonormal frame, then f1(u),

f2(u) and t(u) define an RMF of the spine curve x(u).

Corollary 4.1.2 Suppose that r(u) is a rotation minimizing vector of a spine

curve x(u). Then another normal vector r̃(u) of x(u) is a rotation minimizing

vector of x(u) if and only if r̃(u) keeps a constant angle with r(u).

Or, equivalently,

Corollary 4.1.3 Suppose that U(u) = (r(u), s(u), t(u)) is an RMF of a spine

curve x(u). Then another right-handed orthonormal moving frame Ũ(u) = (r̃(u), s̃(u), t(u))

of x(u) is an RMF of x(u) if and only if Ũ(u) keeps a constant angle with U(u).

Finally, we note that the RMF is determined only by the geometry of a spine

curve and independent of any particular parametrization x(u) of it.

4.2 Some differential geometry

In this subsection we shall use the arc-length parametrization x(s) of the spine

curve. Using the Frenet formulas one may express (4.3) as

f ′(s) = κ(s)b(s) × f(s), (4.6)

where κ(s) and b(s) are the curvature and the binormal vector of x(s). The vector

ωRMF(s) = κ(s)b(s) (4.7)
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is the angular velocity of the RMF.

The angular velocity of the Frenet frame is the so–called Darboux vector [32]

ωFrenet(s) = κ(s)b(s) + τ(s)t(s) (4.8)

This shows that, compared to the RMF, the Frenet frame involves an additional

rotation around the tangent, whose speed equals the torsion τ . This observation

explains the integral formula (3.1) for computing the RMF by correcting the “un-

wanted” rotation of the Frenet frame. The Frenet frame coincides with the RMF

for planar curves, for which τ ≡ 0.

The RMF is also closely related to developable surfaces and principal curvature

lines of a surface. Suppose that U(u) = (r(u), s(u), t(u)) is an RMF of a curve

x(u). Then the surface D(u, v) = x(u) + vr(u) is developable. Let g(u) be the

edge of regression of the developable surface D(u, v). Then the spine curve is an

involute of the curve g(u). This observation suggests a natural (but restrictive)

way of modeling a developable ribbon surface along a spine curve using the RMF.

Suppose that x(u) is a principal curvature line of a surface S. Then the

consistent unit normal vector of S along the curve x(u) is a rotation minimizing

vector of x(u), thus determining an RMF of x(u). This follows from the well

known fact that the normals of S along x(u) form developable surface if and only

if x(u) is a principal curvature line of S. It therefore also follows that the spine

curve x(u) is a principal curvature line of the developable D(u, v) defined in the

last paragraph.

Another important property of the RMF is its preservation under conformal

transformation of E3 [30]. This means that, given a spine curve x(u) ⊂ E3 and

a conformal mapping C of E3, the RMF of x(u) is mapped by C to the RMF of

the transformed spine curve C(x(u)). In other words, the operation of computing
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RMF of a curve and a conformal transformation commute. This property will be

needed later in the analysis of the approximation order of our new method for

computing the RMF.

Note that the group of conformal mappings in 3D is exactly the group gener-

ated by translations, rotations, uniform scalings and sphere inversions (reflections

with respect to spheres). Since a straight line is mapped to a circle by a sphere

inversion, in the above the transform of a unit vector v is defined by the unit

tangent vector of the circle which is the image of the straight line associated with

v.
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Chapter 5

Double reflection method

In this section we will first give an outline of the double reflection method, and,

through a study of the RMF of a spherical curve, explain why the method works

well. Then we will give a procedural description of the method that has an op-

timized number of arithmetic operations, and finally present an analysis of the

approximation order of the method. The double reflection method is straightfor-

ward and can very easily be described; however, its justification takes interesting

geometric arguments that do not appear to be trivial.

5.1 Outline of method

Given boundary data (x0, t0;x1, t1) and an initial right-handed orthonormal frame

U0 = (r0, s0, t0) at x0, the next frame U1 = (r1, s1, t1) at x1 for RMF approxima-

tion is computed by the double reflection method in the following two steps.

Step 1 : Let R1 denote the reflection in the bisecting plane of the points x0 and

x1 (see Figure 5.1). Use R1 to map U0 to a left-handed orthonormal frame

UL
0 = (rL

0 , s
L, tL

0 ).

Step 2 : Let R2 denote the reflection in the bisecting plane of the points x1+tL
0 and
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x1 + t1 (see Figure 5.2). Use R2 to map UL
0 to a right-handed orthonormal

frame U1 = (r1, s1, t1). Output U1.

An efficient implementation of the above steps is given by the pseudo code in

Table 5.1.
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r0

t0

x0

rL
0

tL
0 x1

R1

Figure 5.1: The first reflection R1 of the double reflection method.

r0

t0

x0

rL
0

tL
0 x1

r1

t1

R2

Figure 5.2: The second reflection R2 of the double reflection method.
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Figure 5.3: The projection of curve on sphere.

Figure 5.4: An RMF of a spherical curve.
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5.2 Geometric interpretation

In the following we are going to provide an explanation for why the double reflec-

tion method described above computes an accurate approximation of an RMF,

based on two key observations: 1) the double reflection method computes an ex-

act RMF of any spherical curve; and 2) a spine curve x(u) with boundary data

(x0, t0;x1, t1) is well approximated by a spherical curve x̂(u) interpolating the

same boundary data.

First consider the RMF of a spherical curve. The next lemma indicates that

there is a simple explicit characterization of the RMF of a spherical curve. (We

will treat a planar curve as special case of a spherical curve where the radius is

infinite. )

Lemma 5.2.1 Let x(u), u ∈ [0, h], be a curve segment lying on a sphere S or a

plane P (see Figure ??). Let n(u) be the outward unit normal vector of the sphere

S along the curve x(u) or a unit (constant) normal vector of the plane P . Then

an RMF of x(u) is given by Ū1 = (r̄, s̄, t1), where

r̄(u) = n(u) and s̄(u) = t(u) × n(u). (5.1)

Proof. First consider the case of x(u) being on a sphere. Without loss of

generality, suppose that the sphere S is centered at the origin and has radius r.

It is clear that r(u) = n(u), s(u) = t(u) × n(u) and t(u) form a right-handed

orthonormal moving frame. Since n(u) = 1
r
x(u), r′ = n′ = 1

r
x′, which is parallel

to t(u). Therefore, r satisfies Eqn. (4.1), i.e., it is a rotational minimizing vector.

Hence, by Definition 1, U(u) = (r, s, t) is an RMF of x(u).

The proof is similar when x(u) is a plane curve. �.

Lemma 5.2.1 suggests that, given the initial frame U0 at x0, the RMF U1 of a
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spherical curve x(u) at the point x1 does not depend on the in-between shape of

x(u), but depends only on the boundary data (x0, t0;x1, t1). This will be referred

to as the path independence property, as stated below.

Lemma 5.2.2 [Path independence property] 1 Let x(u) and y(v) be two curve

segments, u ∈ [0, h1] and v ∈ [0, h2], on a sphere (or a plane) sharing the same

boundary data (x0, t0;x1, t1). Let U(u) and V (v) denote the RMFs of x(u) and

y(v), having the same initial frame U0, i.e., U(0) = V (0) = U0. Then U(h1) =

V (h2).

Proof. We will only consider the case of x(u) and y(u) being on a sphere S;

the case of their being on a plane can be proved in a similar way. First suppose

that the initial frame U0 is the special frame Ū0 = (r̄0, s̄0, t0) where r̄0 is the

unit outward normal vector of the sphere S at x0 and s̄0 = t0 × r̄0. Then, by

Lemma 5.2.1, the RMFs Ū1 and V̄1 of x(u) and y(u) at x1 are the same, i.e.,

Ū1 = V̄1 = (r̄1, s̄1, t1), where r̄1 is the unit outward normal vector n1 of the sphere

S at x1 and s̄1 = t1 × r̄1.

Now suppose that the initial frame U0 = (r0, s0, t0) is arbitrary. Let α0 be the

angle between U0 and Ū0. Then, by Corollary 4.1.3, U(h1) and Ū1, as two RMFs

of x(u) at the endpoint x1, keep the same angle α0. Similarly, the angle between

the V (h2) and V̄1, as two RMFs of y(v) at the endpoint x1, is also α0. It follows

that U(h1) = V (h2), since Ū1 = V̄1 . �.

Next we show that the double reflection method yields the exact RMF for a

spherical curve.

Theorem 5.2.3 Let x(u) be a curve segment, u ∈ [0, h], on a sphere or a plane

with boundary data (x0, t0;x1, t1). Let U(u) be an RMF of x(u). Let U0 = U(0)

1This property is equivalent to the fact that the integral
∫

b

a
τ(s)ds vanishes for closed spherical

curves [32].
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and U1 = U(h). Then, given boundary data (x0, t0;x1, t1) and the initial frame

U0, the double reflection method produces the frame U1.

Proof. Again we will only consider the case of the curve x(u) being on a

sphere S; the case of a plane can be proved similarly. First consider the special

case of U0 = Ū0 = (r̄0, s̄0, t0), as defined in the proof of Lemma 5.2.2. Then, by

Lemma 5.2.1, U1 = Ū1 = (r̄1, s̄1, t1). Here, r̄0 and r̄1 are unit outward normal

vectors of the sphere S at x0 and x1, respectively. Recall that in the double

reflection method (cf. Section 5.1) the first reflection R1 is in the bisecting plane

(denoted as H1) of x0 and x1, and R1 maps Ū0 to a left-handed frame ŪL
0 =

(r̄L
0 , s̄

L
0 , t

L
0 ). Because the two normals r̄0 and r̄1 of S at x0 and x1 are symmetric

about the plane H1, we have r̄L
0 = r̄1.

Let H2 denote the bisecting plane of the two points x1+tL
0 and x1+t1. Clearly,

r̄L
0 (or r̄1) is contained in H2. Since the second reflection R2 is in the plane H2, it

preserves r̄L
0 = r̄1. Furthermore, by its construction, R2 maps tL

0 to t1. Therefore,

R2 maps ŪL
0 to Ū1 = (r̄1, s̄1, t1). Hence, the theorem holds in the special case of

U0 = Ū0.

Now consider an arbitrary initial frame U0 = (r0, s0, t0). Let α0 denote the

angle between U0 and Ū0. Let R denote the composition of R1 and R2, i.e., the

total rotation effected by the double reflection method. Clearly, R maps U0 to a

right-handed orthonormal frame Û1 = (r̂1, ŝ1, t̂1) such that t̂1 = t1. Therefore, Û1

and Ū1 differ by a rotation in the normal plane of x(u) at x1. Furthermore, since

the rotation R is angle-preserving, the angle between Û1 and Ū1 is also α0, since

R maps Ū0 to Ū1, and U0 to Û1. On the other hand, by Corollary 4.1.3, the angle

between U1 = U(h) and Ū1 is also α0. It follows that Û1 = U1, i.e., the exact RMF

U1 of the curve x(u) at x1 is generated by the double reflection method. �.

Not only the RMF of a spherical or plane curve x(u) is computed exactly by the

Studies on Motion and Deformation in Graphics



5.3. PROCEDURAL DESCRIPTION 38

double reflection method, but also this computation does not refer to the sphere

or the plane containing x(u). That is possible because of the path independence

property of the RMF of a spherical curve (cf. Lemma 5.2.2). Note that when the

curve segment x(u) is C1 regular and parameterizes a line segment, since x(u) is

a plane curve, its RMF is computed exactly by the double reflection method, with

no need of threshold as in the projection method to avoid numerical instability.

Now consider applying the double reflection method to computing the RMF of

a general spine curve x(u) ⊂ E3, u ∈ [0, h], which has boundary data (x0, t0;x1, t1)

and is not necessarily spherical or planar. In general, there is a unique sphere S

such that x0 and x1 are on S and t0 and t1 are tangent to S at x0 and x1. Let

x̂(u) denote the projection of the curve x(u) onto the sphere S through the cen-

ter of S. Then it is easy to see that the curve x̂(u) shares the same boundary

data (x0, t0;x1, t1) with x(u) and that x̂(u) approximates x(u) with an approx-

imation error of order O(h4). Since x(u) is well approximated by x̂(u) and the

double reflection method computes an exact RMF of the spherical curve x̂(u), it

is reasonable to believe that the double reflection method computes an accurate

approximation to the RMF of the original spine curve x(u).

Note that the above argument does not constitute a formal analysis of the

approximation accuracy of the double reflection method; it merely provides a geo-

metric and intuitive understanding of why the method is expected to work well for

RMF computation. It will be proved in Section 5.6 that the global approximation

error of the double reflection method has the order O(h4).

5.3 Procedural description

The description of the double reflection method in Section 5.1, though simple

in geometric terms, is not for efficient implementation. In this section we will
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give a procedural description of the method, aiming at minimizing the number of

arithmetic operations required.

Since only transformation of vectors matters in RMF computation, we may

just use the linear parts, denoted by matrices R1 and R2, of the two reflections

R1 and R2. Since R1 is a reflection in a plane with normal vector v1 ≡ x1 − x0,

it can be shown that its linear part is

R1 = I − 2(v1v
T
1 )/(vT

1 v1), (5.2)

where I is the 3 × 3 identity matrix. We will call v1 the reflection vector of R1.

(Note that R1 is none other than the Householder transform used for QR matrix

decomposition. )

The reflection R2 has the reflection vector v2 ≡ (x1 +t1)−(x1 +tL
0 ) = t1−tL

0 .

So its linear part is

R2 = I − 2(v2v
T
2 )/(vT

2 v2). (5.3)

Let r0 be the reference vector of U0. Then r1 = R2R1r0 is the reference vector r1

of the next frame U1. With the known tangent vector t1, the remaining vector s1

of U1 = (r1, s1, t1) is given by s1 = t1 × r1.

The procedure of the double reflection method is given in Table 5.1. For a

given sequence of sampled points xi and associated unit tangent vectors ti, with

an initial frame U0 defined at x0, one just needs to apply the two reflections R1

and R2 to successively generate the approximate RMF Ui at xi. In each step, from

the current frame Ui, we form the first reflection R1 following Eqn.( 5.2) and use

R1 to map the reference vector ri to rL
i , and also the tangent vector ti to tL

i . Then

we use tL
i and ti+1 to form the second reflection R2 following Eqn. (5.3) and use

R2 to map rL
i to the reference vector ri+1 of the next frame Ui+1.

Studies on Motion and Deformation in Graphics



5.3. PROCEDURAL DESCRIPTION 40

Table 5.1: Algorithm — Double Reflection

Input: Points xi and associated unit tangent vectors ti, i = 0, 1, . . . , n.
An initial frame U0 = (r0, s0, t0).

Output: Ui = (ri, si, ti), i = 0, 1, 2, . . . , n, as approximate RMF.

Begin

for i = 0 to n− 1 do

Begin

1) v1 := xi+1 − xi; /*compute reflection vector of R1.

*/

2) c1 := v1 · v1;

3) rL
i := ri − (2/c1) ∗ (v1 · ri) ∗ v1; /*compute rL

i = R1ri. */

4) tL
i := ti − (2/c1) ∗ (v1 · ti) ∗ v1; /*compute tL

i = R1ti. */

5) v2 := ti+1 − tL
i ; /*compute reflection vector of R2.

*/

6) c2 := v2 · v2;

7) ri+1 := rL
i − (2/c2) ∗ (v2 · rL

i ) ∗ v2; /*compute ri+1 = R2r
L
i . */

8) si+1 := ti+1 × ri+1; /*compute vector si+1 of Ui+1. */

9) Ui+1 := (ri+1, si+1, ti+1);
End

End
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5.4 Degenerate cases and symmetry

By degeneracy we mean that either of the reflections R1 and R2 becomes unde-

fined. Clearly, R1 is undefined if and only if x1 − x0 = 0, and R2 is undefined if

and only if x1 +tL
0 = x1 +t1, i.e., the two points x0 +t0 and x1 +t1 are symmetric

about the bisecting plane of x0 and x1; this is equivalent to (x1−x0) · (t1+t0) = 0

and (x1 − x0) × (t1 − t0) = 0. Hence, for proper application of the double reflec-

tion method, we need to ensure that the following two conditions are satisfied: (1)

x1 − x0 6= 0; and (2) (x1 − x0) · (t1 + t0) 6= 0 or (x1 − x0) × (t1 − t0) 6= 0. Both

conditions are simple to test and can easily be satisfied provided that the spine

curve is sufficiently subdivided or sampled.

The double reflection method is symmetric in the following sense. Given a

sequence of sampled points xi, i = 0, 1, . . . , n, on a spine curve x(u), suppose that

the Ui are the frames computed by the double reflection method applied to x(u)

with U0 as the initial frame. Then the same sequence of frames in the reversed

order, i.e., Un−i, i = 0, 1, . . . , n, will be generated by applying the double reflection

method starting from xn, using Un as the initial frame. This symmetry property

can be proved by examining the basic steps of the double reflection method, but we

will skip the proof. The projection method and the rotation method also possess

this symmetry property, while the Runge–Kutta method does not.

5.5 Invariance under conformal mappings

We have seen that conformal mappings in 3D preserve the RMF of a space curve

(cf. Section 4.2). It turns out that the approximate RMF computed with the dou-

ble reflection method is also preserved by conformal mappings, in the following

sense. Suppose that the sampled points xi of a spine curve x(u) are used to com-
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pute the approximate RMF Ui of x(u). Then the images of Ui under a conformal

mapping C are the same as the approximate RMF of the curve C(x(u)) that are

computed by the double reflection method using the sampled points C(xi).

This property follows easily from the fact that the basic step of the double

reflection method is performed on the sphere Si touching the two ends of the data

(xi, ti;xi+1, ti+1) and this sphere is preserved by any conformal mapping C (which

are a sequence of sphere inversions), i.e., the image C(Si) is the sphere touching

the transformed data (C(xi), C(ti); C(xi+1), C(ti+1)).

Since both exact RMF and approximate RMF computed with the double re-

flection method are preserved by conformal mappings, and the conformal mapping

is angle preserving, we conclude that the approximation error of the double reflec-

tion method is invariant under conformal mappings.

The double reflection method is an ideal method from the viewpoint of discrete

differential geometry. Because the exact RMF of a smooth curve is preserved

by conformal mappings, we naturally expect that a good method acting on a

discretization of the curve for computing its approximate RMF is invariant under

the same group of transformations. The double reflection method indeed satisfies

this property. We note that the projection method, the rotation method and the

Runge–Kutta method do not possess this property.

5.6 Order of approximation

First consider an analytic curve segment with the arc length parametrization x(s),

s ∈ [0, h], of length h. Suppose that the initial frame U(0) = U0 ≡ (r0, s0,y0) of

an RMF U(s) of x(s) is given. We approximate the frame U(h) at x1 = x(h) by

the frame U1 computed with the the double reflection method.
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Theorem 5.6.1 The one-step error U(h) − U1 in RMF computation introduced

by the double reflection method has the order of O(h5). Specifically,

‖r(h) − r1‖ = 1
720
Kh5 + O(h6). (5.4)

Here K = 2 κ1
2τ0 + κ0

2τ0
3 + κ1κ0τ1 − κ2κ0τ0 is a bounded constant for a smooth

curve, where κi = (d/ds)iκ(s)|s=0, τi = (d/ds)iτ(s)|s=0 are the curvature, torsion

and their respective derivatives at s = 0.

The proof of Theorem 5.6.1 is given in next section. The constant K in

Eqn.(5.4) has an interesting geometric interpretation. A spherical curve x(s) is

characterized by the differential equation [32]

τ

κ
− d

ds

{
κ′

κ2τ

}

= 0.

It is easy to verify that the numerator of this equation is

K(s) = 2 κ1(s)
2τ0(s) + κ0(s)

2τ0(s)
3 + κ1(s)κ0(s)τ1(s) − κ2(s)κ0(s)τ0(s).

Therefore, K(s) = 0 if and only if x(s) is a spherical curve. Hence, intuitively

speaking, K = K(0) measures how close x(s) is to a spherical curve at s = 0.

As an obvious corollary of Theorem 5.6.1, we have the next theorem that the

RMF computation by the double reflection method applied to a general regularly

parameterized spine curve has the fourth order global approximation error.

Theorem 5.6.2 Given a regularly parameterized spine curve x(u), u ∈ [0,M ],

let xi = x(ui), i = 0, 1, . . . , n, be points sampled on x(u) with equally spaced

parameter values, i.e., ui = i ∗ h and h = M/n. Then the global error of the

approximate RMF of x(u) computed by the double reflection method applied to the

sequence {xi} has the order O(h4).
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5.7 Proof of Theorem 5.6.1

There are two parts in this proof. In the first part we derive an expression of the

order O(h5) term of the one-step error. In the second part we show that coefficient

of this error term is bounded for a regular curve, thus yielding the claimed order

of magnitude.

We will obtain the error expression using the canonical Taylor expansion of

the curve x(s) at x(0), which can be derived from the Frenet formulas [32]. In a

neighborhood of x(0), x(s) is approximated by the series

x(s) =





s −1
6
κ2

0s
3 −1

8
κ0κ1s

4 + · · ·
1
2
κ0s

2 +1
6
κ1s

3 + 1
24

(κ2 − κ3
0 − τ 2

0κ0)s
4 + · · ·

+1
6
κ0τ0s

3 + 1
24

(κ0τ1 + 2κ1τ0)s
4 + · · ·



 , (5.5)

where the Frenet frame at s = 0 is aligned with the axes of the Cartesian coordi-

nates, and κi = (d/ds)iκ(s)|s=0, τi = (d/ds)iτ(s)|s=0. With the help of computer

algebra tools, we generate Taylor series for all quantities needed for computing

the variables listed in the procedure of the double reflection method (Table 5.1).

Due to space limitation, only an outline of the derivation will be given.

Consider a segment of x(s) of length h starting at the origin, i.e.,

(0, 0, 0)⊤ = x0 = x(0), x1 = x(h), (1, 0, 0)⊤ = t0 = ẋ(0), t1 = ẋ(h). (5.6)

Let r0 = (0, C, S), where C2 + S2 = 1, be the reference vector of U0 at x0. We

compute the new reference vector r1 using steps from (1) to (7) of the algorithm
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Double Reflection (see Table 5.1):

v1 = (h+ O(h3), 1
2
κ0h

2 + O(h3), O(h3))⊤

c1 = h2 − 1
12
κ0

2h4 + O(h5)

rL
0 = (−Cκ0h− 1

3
(Cκ1 + κ0τ0S)h2 + O(h3), C − 1

2
κ0

2Ch2 + O(h3), S + O(h3))⊤

tL
0 = (−1 + 1

2
κ0

2h2 + O(h3),−κ0h− 1
3
κ1h

2 + O(h3),−1
3
κ0τ0h

2 + O(h3))⊤

v2 = (2 − κ0
2h2 + O(h3), 2κ0h+ 5

6
κ1h

2 + O(h3), 5
6
κ0τ0h

2 + O(h3))⊤

c2 = 4 − 1
36

(τ0
2κ0

2 + κ1
2)h4 + O(h5)

r1 = (−Cκ0h− 1
2
(Cκ1 + κ0τ0S)h2 + O(h3), C − 1

2
κ0

2Ch2 + O(h3), S + O(h3))⊤

On the other hand, using the angular velocity of the RMF (Eqn. (4.7)) we generate

the Taylor expansion of the reference vector r(h) of the exact RMF U(h),

r(h) = r(s)

∣
∣
∣
∣
∣
s=0

+ κ(s)b(s) × r(s)
︸ ︷︷ ︸

=r′(0)

∣
∣
∣
∣
∣
s=0

h+
d

ds
(κ(s)b(s) × r(s))

︸ ︷︷ ︸

=r′′(0)

∣
∣
∣
∣
∣
s=0

h2

2
+ . . .

Using the Frenet formulas and the fact that the derivatives of r(s) are given by the

previously generated terms of the Taylor expansion, r(h) can be expressed solely

by using derivatives of curvature and torsion at s = 0, and by the initial value

r(0) = (0, C, S)⊤. Finally, we compare the Taylor expansions of r(h) and r1 to

obtain

r(h) − r1 = (O(h6),− 1
720

S K h5 + O(h6), 1
720

C K h5 + O(h6))⊤,

where

K = 2 κ1
2τ0 + κ0

2τ0
3 + κ1κ0τ1 − κ2κ0τ0 (5.7)

Hence,

‖r(h) − r1‖ =
1

720
Kh5 + O(h6)

Next, we need to show that the coefficient K in the O(h5) term above is finite

for a regular smooth curve. This is a concern because the torsion τ0 appearing
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in K (Eqn. (5.7)) and τ0 can become unbounded for a regular curve; such an

example is given in Appendix II. Note that only the curvature κ0, torsion τ0 and

their derivatives are present in K. Sincec

κ(s) = ‖ẍ(s)‖, τ(0) =
‖(ẋ(s) × ẍ(s)) · ...x (s)‖

‖ẍ(s)‖3

it is easy to see that, if a spine curve has non-vanishing curvature, then κ0 = κ(0)

is bounded from zero, and τ0 = τ(0) and its derivative are finite; consequently, K

will be finite in this case.

We will use a conformal mapping to turn an arbitrary curve segment x(s),

s ∈ [0, h], possibly with vanishing curvature, into another curve segment with

curvature bounded from zero. First take the osculating plane of x(s) at s = 0.

With a rigid motion we take this plane to be the x-y plane and have the point

x(0) positioned at the origin (0, 0, 0). Let Cs denote the inversion with respect to

the sphere S1 of radius 1 and centered at (0, 0, 1). Then the plane x-y is mapped

by Cs to the sphere S2 of radius 1/2 and centered at (0, 0, 1/2). Clearly, Cs is

conformal, and the point x(0) = (0, 0, 0) is fixed by Cs.

Let κ0 be the curvature of x(s) at s = 0. Let xc(s) denote the transformed

curve Cs(x(s)). With a bit abuse of notation, we use xc(t), t ∈ [0, hc], to denote

arclength parametrization of the segment xc(s). At t = 0, the curve xc(t) has

the normal curvature equal to 2, which is the reciprocal of the radius of S2, and

the geodesic curvature equal to κ0, which is the curvature of x(s) at s = 0. (The

curve xc(s) has the same normal curvature and geodesic curvature at xc(0) as any

spherical curve on S2 that has the second order contact with xc(s) at xc(0). ) It

follows that the curvature of xc(u) at xc(0) is κc = (κ2
0 + 4)1/2.

Clearly, κc is bounded away from zero. Hence, if we apply the double reflection

method to the transformed curve segment xc(t), t ∈ [0, hc], according to the

preceding analysis, the fifth order term of the approximation error takes the form
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1
720
Kch

5
c ; here Kc is finite, since κc is bounded away from zero. On the other

hand, because the approximation error produced by the double reflection method

is invariant under a conformal mapping (cf. Section 5.5), in the limit we have

K

720
h5 =

Kc

720
h5

c

When h is sufficiently small, due to the regular nature of the mapping Cs in the

neighborhood of x(0), there exists a constant d > 0 such that hc < dh. It follows

that

K =
h5

c

h5
Kc < d5Kc

Hence, K is also finite. This completes the proof that the local one-step error of

the double reflection method is of the order of O(h5). �
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Chapter 6

Comparison and Experiments

6.1 Computational cost

We need to count the numbers of operations in order to compare the efficiency of

different methods for RMF computation. First consider the operation cost of the

double reflection method for computing each new frame Ui+1 from Ui, following the

procedure in Table 5.1. We will count a subtraction as equivalent to an addition.

Step (1) uses 3 adds. Step (2) uses 2 adds, 3 mults. After evaluating c1 with 1

div, step (3) can be completed using 5 adds, 7 mults and 1 div. Similarly, step (4)

can be done using, 5 adds, 7 mults and 1 div. Step (5) uses only 3 adds. Step (6)

uses 2 adds, and 3 mults. Step (7) uses 5 adds, 6 mults and 1 div. Finally, step (8)

uses 3 adds and 6 mults. Hence, in total, the per frame computation of the double

reflection method costs, 28 additions, 32 multiplications and 2 divisions.

As comparison, we next give the operation counts of the projection method

and the rotation method. In the projection method [31], the new reference vector

r1 can be computed from r0 by

r1 = r0 −
r0 · t1

(x1 − x0) · t1
(x1 − x0).

This evaluation takes 9 mults and 1 div. Since r1 thus derived is in general not a

unit vector, 6 mults, 1 div and one square root are needed to normalize r1. Then
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another 6 mults are needed to compute the third frame vector s1 = t1×r1. Hence,

in total, the projection method needs 15 additions, 21 multiplications, 2 divisions

and 1 square root to compute a new frame. This is less than, but comparable to,

the cost of the double reflection method.

A procedure of the rotation method is given in [40]. Given the two consecutive

unit tangent vectors t0 and t1, the rotation axis is computed as (a, b, c) = t0 × t1

and the cosine of rotation angle is cosα = t0 · t1. Then the rotation matrix is

given by

R =





cosα −c b
c cosα −a
−b a cosα



 +
1 − cosα

a2 + b2 + c2





a2 ab ac
ab b2 bc
ac bc c2



 .

Therefore, 21 mults and 1 div are needed to obtain R from t0 and t1; (note that

27 mults are claimed in [40]). In addition, 9 mults are needed for computing

the next reference vector r1 = Rr0, and 6 mults for computing the remaining

vector s1 = t1 × r1. Hence, in total, the rotation method needs 26 additions, 36

multiplications and 1 division.

The number of operations for the three methods are listed in Table 6.1. The

three methods have similar computational costs, as our tests show that a sqrt or

a division is is about six times more time consuming than a multiplication. The

actual timing comparison will be given in the next subsection.

It is worth mentioning that another procedure of the rotation method is given

in [9], which uses 19 mults and a square root to compute the rotation matrix R

after using 6 mults to get the rotation axis t0 × t1. Hence, that version of the

rotation method requires in total 40 multiplications and a square root to compute

a new frame, assuming that the ti are unit tangent vectors. In the subsequent

experimental comparisons involving the rotation method we will refer to the faster

implementation in [40].
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Method # of adds # of mults # of divs # of sqrt
Projection 15 21 2 1
Rotation 26 36 1 0

Double reflection 28 32 2 0

Table 6.1: The operations counts of the three methods.

6.2 Experimental results

We will use two examples to compare the double reflection method with the follow-

ing existing methods: the projection method, the rotation method and the 4-th

order Runge-Kutta method, in terms of efficiency and accuracy. All test cases

were run on a PC with Intel Xeon 2.66 GHz CPU and 2.00 GB RAM.

Example 1: In the first example we use the four methods to compute the

RMF of the spine curve, which is a torus knot, given by

x(u) = [(0.6+0.3 cos(7u)) cos(2u), (0.6+0.3 cos(7u)) sin(2u), 0.3 sin(7u)]T , u ∈ [0, L]

(6.1)

We compute the RMF using different step sizes h = 0.01 ∗ 2−k, k = 0, 1, . . . ; that

is, for each fixed step size h, the sampled points are x(i ∗ h), i = 0, 1, . . . , L/h.

The timings of computing the sequence of frames by the four methods are

shown in Figures 6.1 and 6.2. We see that the projection method, the rotation

method and the double reflection method have similar time costs. The Runge-

Kutta method costs much more time than the double reflection method, since it

needs more function evaluations in each step than the other three methods.

To observe approximation errors, we need an exact RMF of the spine curve or

an approximate RMF of very high accuracy against which the computed approx-

imate RMF by the four methods can be compared. Since the exact RMF of the

torus knot given by Eqn.(6.1) is difficult to obtain, we use the integration function

provided in Maple to get an approximate RMF of x(u) whose approximation error
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Figure 6.1: Timings of the double reflection method, the projection method and
the rotation method.
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Figure 6.2: Timings of Runge-Kutta method and the double reflection method.
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is known to be less than 10−16. This highly accurate RMF is used in place of an

exact RMF to measure the global approximation error Eg defined in (1.1).

The global approximation errors ek of the four methods are shown in Figure 6.3

and also in Tables 6.2 and 6.3, where ek is the error of using 2k segments, k =

6, 7, . . . , 11. These data confirm that the projection method and the rotation

method have the second order of global approximation error O(h2), and the Runge-

Kutta method and the double reflection method have the fourth order of global

approximation error O(h4). We use the computed sequences of frames by the four

methods to generate ribbon-like sweep surfaces with the torus knot x(u) as the

spine curve, and show the four surfaces in Figures 6.5 through 6.8 using color

coding to indicate the magnitude of the approximation errors.
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Figure 6.3: Global errors of the four methods for the torus knot in Example 1.
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Figure 6.4: Global errors of the four methods for the PH curve in Example 2.
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Double reflection Runge-Kutta
# of segments error ek, ratio ek/ek−1 error ek, ratio ek/ek−1

26 5.10E−3, N.A. 3.58E−2, N.A.
27 3.24E−4, 0.063577 2.32E−3, 0.064846
28 2.03E−5, 0.062776 1.46E−4, 0.062737
29 1.27E−6, 0.062571 9.10E−6, 0.062408
210 7.95E−8, 0.062578 5.68E−7, 0.062422
211 4.97E−9, 0.062575 3.55E−8, 0.062438

Table 6.2: Global approximation errors ek of the double reflection method and by
using the 4-th order Runge-Kutta method for the torus knot in Example 1. The
error ratios ek/ek−1 show that the approximation orders of these two methods are
both O(h4).

Projection method Rotation method
# of segments error ek, ratio ek/ek−1 error ek, ratio ek/ek−1

26 1.56E−1, N.A. 2.60E−1, N.A.
27 9.03E−2, 0.579295 1.91E−1, 0.736606
28 2.26E−2, 0.249757 4.76E−2, 0.248776
29 5.64E−3, 0.249939 1.19E−2, 0.249668
210 1.41E−3, 0.249983 2.97E−3, 0.249906
211 3.52E−4, 0.249995 7.42E−4, 0.249971

Table 6.3: Global approximation errors ek of the projection method and the rota-
tion method for the torus knot in Example 1. The error ratios ek/ek−1 show that
the approximation orders of these two methods are both O(h2).

Example 2: In the second example we use the double reflection method

to approximate the RMF of a PH (Pythagorean-hodograph) curve, whose RMF

can be computed exactly by a closed-form formula [18]. Given two points x0 =

(1000, 0, 0)T and x1 = (1000, 2000, 4000)T with associated un-normalized tangent

vectors t̂0 = (1, 5,−1)T , t̂1 = (−3, 2, 5)T , we obtain a cubic PH curve x(u) as the

spine curve using G1 Hermite interpolation, following [29]. Let the Frenet frame

of x(u) at u = 0 be the initial frame U0. Compared with the exact RMF of x(u) at

the endpoint x1 = x(1), we obtain the errors of the approximate RMF computed

by the four methods. These errors are shown in Figure 6.4. The errors of the

double reflection method and the rotation method are also given in Table 6.4 and
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Double reflection Rotation method
# of segments error ek, ratio ek/ek−1 error ek, ratio ek/ek−1

26 9.29E−9, N.A. 1.78E−4, N.A.
27 5.94E−10, 0.063919 4.47E−5, 0.250721
28 3.75E−11, 0.063181 1.12E−5, 0.250321
29 2.36E−12, 0.062926 2.80E−6, 0.250151
210 1.48E−13, 0.062789 7.00E−7, 0.250073
211 9.25E−15, 0.062521 1.75E−7, 0.250036

Table 6.4: Global approximation errors ek of the double reflection method and
the rotation method for the PH curve. The error ratios ek/ek−1 confirm again
the O(h4) approximation order of the double reflection method and the O(h2)
approximation order of the rotation method.

their color coded surface representations in Figure 6.9. These data confirm again

the fourth order approximation error O(h4) of the double reflection method.
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(a) 26 segments. (b) 27 segments.

(c) 28 segments. (d) 29 segments.

(e) 210 segments. (f) 211 segments.

Figure 6.5: Color coded sweep surfaces showing the errors of double reflection
method

(a) Error coding bar
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(b) 26 segments. (c) 27 segments.

(d) 28 segments. (e) 29 segments.

(f) 210 segments. (g) 211 segments.

Figure 6.6: Color coded sweep surfaces showing the errors of 4-th order Runge-
Kutta method

(a) Error coding bar
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(b) 26 segments. (c) 27 segments.

(d) 28 segments. (e) 29 segments.

(f) 210 segments. (g) 211 segments.

Figure 6.7: Color coded sweep surfaces showing the errors of the projection
method.

(a) Error coding bar
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(b) 26 segments. (c) 27 segments.

(d) 28 segments. (e) 29 segments.

(f) 210 segments. (g) 211 segments.

Figure 6.8: Color coded sweep surfaces showing the errors of the rotation method.

(a) Error coding bar
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(b) Double Reflection method

(c) Rotation method

(d) Frame of Double Reflection

(e) Error coding bar

Figure 6.9: The color coded sweep surfaces showing the errors of the double re-
flection method and the rotation method for the PH curve in Example 2, with 256
segments.
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Chapter 7

Extensions

7.1 Spine curve defined by a sequence of points

In some applications a spine curve is specified by a sequence of points xi in 3D,

which we may assume to lie on some unknown regularly parameterized spine curve,

and we need to compute a sequence of frames Ui which has minimal rotation about

the spine curve. In order to apply the double reflection method in this case, we

need to furnish each data point xi with a unit tangent vector ti.

One possible way is to define ti to be unit tangent vector at xi to the circle

passing through the three consecutive points xi−1, xi and xi+1. Denote a =

xi−xi−1 and b = xi+1−xi. It is straightforward to show that ti = w/‖w‖, where

w = ‖b‖a + ‖a‖b. The tangent vectors ti thus defined possess the co-sphere

property that ti and ti+1 at the points xi and xi+1 are tangential to the sphere S

determined by the four consecutive points xi−1, xi, xi+1 and xi+2. This co-sphere

property appears desirable because, by Theorem 5.2.3, the high accuracy of the

double reflection method comes from the very same idea of computing the exact

RMF of a spherical curve on a sphere determined by the data (xi, ti;xi+1, ti+1).

However, assuming that the xi are sampled from an underlying regular curve

x(u) with step size h, it can be shown that the global approximation error of this
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scheme has the order O(h2); this loss of accuracy is due that the above estimated

tangent vectors ti are only O(h2) approximation to the exact unit tangent of x(u)

at xi. So, an alternative is to first obtain better estimates of the unit tangent

vectors ti by using more sample points around xi.

7.2 Using only tangent vectors

According to its defining equation (4.1), the RMF of a spine curve x(u) is entirely

determined by the unit tangent vector t(u). Thus it is natural to consider com-

puting the RMF of x(u) using only the sampled tangent vector ti = ẋ(ui). From a

practical point of view, this treatment is also desirable when the points x(ui) are

overly densely sampled, which may make the first reflection vector v1 = xi+1 − xi

too small and therefore computation of the reflection R1 unstable.

In order to apply the double reflection method in this case, all we need to do

is provide a reflection vector for the first reflection R1. Our analysis shows that

the global approximation order O(h4) to the true RMF of x(u) is preserved if the

first reflection vector is chosen to be

v1 = 13(ti + ti+1) − (ti−1 + ti+2). (7.1)

Then the remaining steps of the double reflection method are the same. This as-

sertion can be proved in a similar way to that of proving Theorem 5.6. Note that

the computation of v1 in Eqn. (7.1) does not involve subtraction between two close

quantities, and therefore is numerically robust. Note, however, a different treat-

ment is needed to compute v0 and vn−1, such that an order O(h4) approximations

to x1 − x0 and xn − xn−1 are achieved. We skip the details here.
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7.3 Variational principles for RMF with bound-

ary conditions

In general, the RMF of a closed smooth spine curve does not form a closed moving

frame. Therefore, when a closed moving frame with least rotation is needed, it

can be generated by adding a gradual rotation to the RMF along the closed spine

curve to make the resulting moving frame closed. Even for an open spine curve, it

is often required that its moving frame meet given end conditions while having a

natural distribution of rotation along the spine curve. So an appropriate additional

rotation to the RMF needs to be computed in this case. We study in this section

how this additional rotation can properly be determined.

More specifically, consider a curve segment x(s), s ∈ [ 0, L ], in arc-length

parametrization. We would like to find a one-parameter family of unit vectors

g(s) orthogonal to the tangent vector t(s) and satisfying the boundary conditions

g(0) = g0 and g(L) = g1 (7.2)

The vector g(s) defines an orthonormal frame M = (t, g, t × g) along the spine

curve.

We compare the frame M with the RMF generated by a vector r(s) satisfying

r(0) = g(0). Let α(s) = ∠(f(s), g(s)) be the angle between the two frames, where

the sign is chosen such that it corresponds to a rotation around the oriented line

determined by the tangent vector t(s). In addition, assume that α(s) is continuous

and satisfies α(0) = 0. We will call M(s) the modified frame, since it is obtained

by adding a rotation of angle α(s) to the RMF. In this sense the RMF serves as

a reference frame with respect to which another moving frame is specified.

The boundary conditions (7.2) imply that

α(0) = 0 and α(L) = ∠(f(L), g1) + 2kπ (7.3)
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for a some fixed integer k. The angular velocity vector of the modified frame M(s)

is

ωmodified(s) = κ(s)b(s) + α′(s)t(s). (7.4)

The function s 7→ α′(s) specifies the angular speed of the rotation of M(s) around

the tangent of the curve x(u). We now consider two possible ways of choosing

α(s).

Minimum total angular speed One may choose α(s) that minimizes the func-

tional
∫ L

0

||ωmodified|| ds =

∫ L

0

√

κ(s)2 + α′(s)2 ds → Min (7.5)

and satisfies the boundary conditions (7.3). Let F (s, α, α′) =
√
κ2 + α′2. Then

we have at hand a functional of the angular function α(s). The moving frame

M(s) corresponds to a curve on the unit quaternion sphere, and minimizing the

functional in (7.5) amounts to minimizing the length of this curve subject to that

g(s) is perpendicular to t(s); this is the computational approach taken in [21].

Here we will analyze this variational problem to give it a simple geometric

interpretation as well as an easy computational method. Solving Euler’s equation

of the functional (7.5) using calculus of variations yields

0 = Fα − d

ds
Fα′ = − κ

(κ2 + α′2)3/2
(κα′′ − α′κ′) = − κ3

(κ2 + α′2)3/2

(
α′

κ

)′

, (7.6)

assuming κ 6= 0. It follows that

α′(s) = Cκ(s) (7.7)

for some constant C, which can be determined from the boundary conditions and

the total curvature. Consequently, the angular speed of the additional rotation

around the tangent is proportional to the curvature of the curve. Hence, minimizing
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(7.5) makes the additional rotation more concentrated on curve segments of higher

curvatures.

The above analysis is only valid for curved segments with κ(s) 6≡ 0. For

straight line segments, the variational problem (7.5) does not have a unique so-

lution. In fact, the integrand in this case simplifies to |α′|, and any monotonic

function α(s) which satisfies the boundary conditions is a solution. Because of

this non-uniqueness of solution, optimization methods as used in [21] for minimiz-

ing (7.5) will experience numerical problems with a spine curve that is close to a

straight line. Based on our analysis, a more efficient method is to compute the

curvatures at sampled points of the spine curve, and then distribute the additional

rotation proportional to the curvatures along the curve, with respect to the RMF.

Minimum total squared angular speed One may also choose α(s) that min-

imizes
∫ L

0

||ωmodified||2ds =

∫ L

0

(κ(s)2 + α′(s)2)ds → Min (7.8)

and satisfies the boundary conditions (7.3). Now, with F = κ2 + α′2, Euler’s

equation gives α′′ = 0, or α(s) = as for some constant a; that is, the rotation of

M is linearly proportional to the arc length parameter s.

This choice of the additional rotation is not only easy to implement, but also

free of the numerical problem with the method based on minimizing (7.5); so it

is recommended over the first one based on minimizing the total angular speed.

Note that this means of applying the additional rotation as proportional to arc-

length has been suggested in the literature (e.g. [9, 53]), but here we have provided

a theoretical justification from the viewpoint of the variational principle through

minimization of the total squared angular speed.

Efficient implementation of the above methods of computing a moving frame
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with boundary conditions is based on angle adjustment to the RMF, either accord-

ing to curvature or arclength. When the RMF is computed approximately, the

resulting solution is only an approximate one. In this regard, the higher accuracy

of the double reflection method makes this solution more accurate than using the

projection method or the rotation method.

One may choose the integer k in (7.3) to minimize the rotation if the least

deviation to the RMF is desired, or choose k to add a moving frame with a specified

amount of total twist along the spine curve. Figure 7.1 shows comparison of the

two methods above for computing frames meeting certain boundary conditions.

The method based on total angular speed minimization (i.e., rotation proportional

to curvature) and the method based in total squared angular speed minimization

(i.e., rotation proportional to arclength) are shown in the first row and the second

row, respectively. In each row, the four figures are for the case of using RMF

computed by the double reflection method with no twist adjustment, the case of

using the minimal twist to close the frame, the case of a twist of 2π, and the case

of a twist of 4π. We see that the twist is more concentrated in high curvature

parts of the spine curve in the first row, while it is distributed more uniformly

along the curve in the second row.

A closed moving frame is useful in visualization of closed space curve, such

as knots. Figures 7.2 and 7.3 show two such examples, where the closed frame is

computed by adjusting an RMF by an additional rotation linearly proportional to

the arclength. The curve in Figure 7.2, a cinquefoil knot, is given by

x(t) = [cos(t)(2−cos(2t/(2a2+1))), sin(t)(2−cos(2t/(2a2+1))),− sin(2t/(2a2+1))]

(7.9)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7.1: Comparison in computing a closed moving frame. Minimization of
total angular speed is shown in column one. Minimization of total squared min-
imization is shown in column two. In each column, from up to down, the four
figures are for the case of RMF computed by the double reflection method, the
case of using the minimal twist to close the frame, the case of an additional twist
of 2π, and the case of an additional twist of 4π.
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The curve in Figures 7.3, a trefoil knot, is given by

x(t) = [41 cos(t) − 18 sin(t) − 83 cos(2t) − 83 sin(2t) − 11 cos(3t) + 27 sin(3t),

36 cos(t) + 27 sin(t) − 113 cos(2t) + 30 sin(2t) + 11 cos(3t) − 27 sin(3t),

45 sin(t) − 30 cos(2t) + 113 sin(2t) − 11 cos(3t) + 27 sin(3t)] (7.10)

Note that in these two examples the Frenet frame exhibits noticeable rotation

about the curves to be visualized.

We next give two more examples of RMF based moving frame design with

boundary conditions in shape modeling. In Figure 7.4, the main body of a dragon

along a spine curve is modeled with a moving frame meeting user specified bound-

ary conditions. The frame is computed using arclength twist adjustment of the

approximate RMF computed by the double reflection method.

In Figure 7.5, the support structure of a glass table, as a closed sweep surface,

is modeled with a moving frame meeting six conditions to make the surface have

proper contact (i.e., along a line segment) with the table at three locations and

with the ground at three locations. These conditions are met by adjusting an

RMF by a twist linearly proportional to arclength between every two consecutive

contact locations.
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(a)

(b)

(c)

Figure 7.2: (a) A cinquefoil knot, given by Eqn. (7.9), is shown without visualiza-
tion cue; (b) Visualization of the curve x(t) is enhanced by a closed sweep surface
modeled using an adjusted RMF; (c) another sweep surface modeled using the
Frenet frame.
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(a)

(b)

(c)

Figure 7.3: (a) A trefoil knot, given by Eqn. (7.10), is shown without visualization
cue; (b) Visualization of the curve x(t) is enhanced by a closed sweep surface
modeled using an adjusted RMF; (c) another sweep surface modeled using the
Frenet frame.
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(a) RMF based moving frame by boundary con-
dition.
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 Angle difference

Dragon Length

(b) Angle difference between the RMF and the
frame in (a).

(c) A dragon modeled with the moving frame in (a).

Figure 7.4: Modeling of an oriental dragon.
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(a) RMF based moving frame by boundary con-
dition.
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0.7
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(b) Angle difference between the RMF and the
frame in (a).

(c) A table modeled with the moving frame in (a).

Figure 7.5: An RMF based moving frame is used to design the supporting structure
of a glass table as a sweep surfaces
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Chapter 8

Concluding remarks

We have presented a new discrete approximation method for computing the ro-

tation minimizing frame of a space curve. The method uses two reflections in a

plane to compute the next frame from the current frame, and is therefore called

the double reflection method. This method is simple, fast, and more accurate than

the projection method and the rotation method, that are currently often used in

practice. We have shown that the approximation error of the double reflection

method is O(h4), while the errors of the other two methods are O(h2), where h is

the step size used to sample points on a spine curve of fixed length.

The double reflection method is also much superior to direct application of the

standard 4-th order Runge-Kutta method. Although the two methods have the

same order of approximation error, the double reflection method is simpler and

faster, and requires only C1 information of a spine curve, while the Runge-Kutta

method needs C2 information. We have also discussed the applications of RMF

in modeling moving frames meeting boundary conditions.

Based on related research works we reviewed, we conjecture that O(h4) is the

maximum accuracy that can be achieved in RMF computation so far, using only

the sampled positional and tangent data (x0, t0;x1, t1) of a curve segment.
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Chapter 9

Introduction II: vector field

deformation

Shape deformation is one of the most important research fields in computer graph-

ics. Development of this popular aspect of geometry processing diffusely affects

computational geometry, simulation, CAD as well as animation. Based on the

common requests of users, there are mainly two core problems involved in this

key research field: one is non-self-intersecting, the other is volume preserving.

Smoothness-preserving and easy user-interaction are also generally required. To

satisfy these constraints, several advanced algorithms, like the well-known free-

form deformation(FFD) [43], manifold extended method, Laplacian deformation

[48] as well as vector field deformation are developed.

Vector field deformation is not only applied to shape deformation but also to

texture synthesis, non-photorealistic rendering, and fluid simulation [54]. In [17],

Davis introduces an important property of divergence-free vector field: deforma-

tion under divergence-free vector field is volume-preserving. [50] mentions that no

self-intersection occurs in divergence-free vector field since path lines of field have

no intersection with each other in the domain. [52] shows that divergence-free vec-

tor field deformation is C1 continuous, which means smoothness-preserving. Such
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deformation also preserves detailed features. It is obvious that the properties of

divergence-free vector field are quite suitable to be used in deformation.

Figure 9.1: Curl vector field deformation example: when the sphere keeps moving,
curl vector field around the sphere occurs volume-preserving deformation on the
surface in realtime, without GPU speed-up technology.

[52] also provides an innovative algorithm to construct divergence-free vector field

for volume-preserving deformation. The basic idea is that a divergence-free vector

field can be constructed from the cross product of the gradients of two scalar fields:
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v(x, y, z) = ∇p(x, y, z) × ∇q(x, y, z). It provides spherical vector field primitive

for dragging and cylindrical vector field primitive for bending.

The design of vector field primitives in [52] is, however, based on pre-defined shapes

but not related to object geometry. This kind of design may work well on objects

which are spherical or cylindrical but not on free-form objects. Our contribution

is to introduce a new method of divergence-free vector field primitive construction

for general shapes. The spherical vector field primitive in [52] becomes a special

case in our method. The new method is based on distance field rather than pre-

defined shapes so that object’s geometric information will be used in the vector

field design. Figure 9.1 shows a vector field deformation example in our method.
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Chapter 10

Related work II

Shape deformation, especially 3D deformation is a hot research field in computer

graphics. Early surface deformation approaches can be classified by their control

handles. [43] introduces the famous lattice free-form deformation(FFD) technique.

It is extended by [16] by using non-parallelepipedical lattices. Lattice handle is

good at global shape control but has problems with local detail adjustment. New

algorithm based on wire handle or vertex handle are developed to deal with this

problem. [4] and [47] exploited new deformable proxy constructed by wire handle

with domain curves in shape deformation. For accurate manipulation, [25] and [24]

define multi-level boundary representations for modeling primitives and develop

vertex-based controlling algorithm from lattice-based FFD algorithm.

Generally speaking, classical FFD method and their variants usually require com-

plex user-interaction [11]. More advanced deformation method are developed to

simplify controlling process and to satisfy given constraints by designing different

basis functions. [12] uses triharmonic radial basis functions for all kinds of scat-

tered data interpolation problems while [2] defines a new shape deformation tool

named swirling-sweeper on their framework. It is based on blending of several

rotations whose magnitude decreases away from control center.
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Laplacian approach is well developed in shape deformation since Laplacian coor-

dinate represents surface details by local mean [1] [36]. [48] discuss surface editing

over an intrinsic surface representation of a surface. [55] extends the idea to vol-

umetric domain to solve the problem of large deformations. Vector field is widely

used in both 2D/3D shape deformation, as well as fluid simulation [49], visualiza-

tion [51] and texture synthesis [42]. [54] presents a vector field design system to

create a wide variety of vector fields that allow user to control over the vector field

topology. [52] defines a new shape deformation method based on time-dependent

divergence-free vector fields. We call it cross-product construction. The deforma-

tion holds prosperities such as self-intersection-free, volume-preserving, smooth-

ness preserving and feature preserving.

We notice that the cross-product construction only create spherical vector field. it

presents a multiply spherical vector field combination for free-form objects which

has limitations. In our research, we first extend the idea from spherical vector

field to strip vector field construction, then we present a new vector field construc-

tion named curl field construction for free-form shape objects which will be more

flexible in applications.
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Chapter 11

Cross-product vector field

deformation

11.1 Introduction of cross-product vector field

construction

cross-product vector field deformation was first presented by Wolfram Von Funck

in 2006 [52]. We have extend the idea more widely in our research. Before we

discuss the extension of cross-product vector field construction, we would like to

introduce the original cross-product vector field construction first, which is the

core of the approach.

Let px and py denote the partial derivatives ∂p
∂x

and ∂p
∂x

. Then the divergence-free

vector field v can be constructed from the gradients of two scalar fields p(x, y, z)

and q(x, y, z) as

v(x, y, z) = ∇p(x, y, z) ×∇q(x, y, z)

In the cross-product vector field construction, there is three kinds of region: inner

region,outer region and intermediate region. Inner region is a constant or

linear field, describing a simple translation; outer region has a zero deformation;

intermediate region is the blending region between inner region and outer region.
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The different regions are specified by defining a scalar region field r(X) with X =

(x, y, z) and two thresholds ri < ro. If r(X) < ri then point X is in inner region;

if r(X) > ro then point X is in outer region; if r(X) < r(X) < ri then point X is

in inner region.

Let e(x) and f(x) denote two C2 continuous scalar fields. With the definitions

above we can define the scalar fields p and q as

p(X) =







e(X), if r(X) < ri

(1 − b) · e(X) + b · 0, if ri ≤ r(X) < r0
0, if r0 ≤ r(X)

q(X) =







f(X), if r(X) < ri

(1 − b) · f(X) + b · 0, if ri ≤ r(X) < r0
0, if r0 ≤ r(X)

b = b(r(X)) is a blending function given in Bezier representation as follows where

B4
i are the Bernstein polynomials, w0 = w1 = w2 = 0 and w3 = w4 = 1:

b(r) = Σ4
i=0wiB

4
i (

r−ri

ro−ri
)

Figure 11.1: (a) is spherical translation field and (b) is cylinder rotation field
inside the inner region.

For spherical translation field, the linear scalar fields e(X) and f(X) are defined

as follows where u and w are two arbitrary orthogonal vectors

e(X) = u(x− c)T , f(X) = w(x− c)T

For cylinder rotaion field, the linear scalar fields e(X) and f(X) are defined as
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follows where a are the normalized axis direction

e(X) = a(x− c)T , f(X) = (a× (x− c)T )

11.2 Extension of cross-product vector field con-

struction

Generally, vector field deformation contains two kinds of meshes: deforming mesh

and deformed mesh. A deforming mesh is the base of divergence-free vector field.

It provides shape information for vector field construction. Vector field keeps the

same in object space while there is no change at deforming mesh but will follow

the moving of deforming mesh in world space. The deformed mesh is for deforming

effect performance under vector field.

In [52], elements of divergence-free vector field are defined for regular shapes such

as spheres and cylinders. As observed in experiments, we notice that the structure

of spherical divergence-free vector field is closely correlative to the distance from

the pre-defined center which means spherical divergence vector field will have

obvious different speed in surface of extremely non-spherical models. In vector

field, a reasonable requirement is that vector field should have similar speed at

similar altitude of moving direction on object surfaces and offset surfaces. This

property will keep smooth effect in vector field deformation.

The sum of divergence-free vector fields is still a divergence-free vector field. When

we construct a particular divergence-free field for an complicate object, we can first

divide the object into many elements. Each element is covered with an element

divergence-free vector field. After that, the constituent vector fields can be added

together.

The first contribution of this part is the extension of cross-product divergence
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vector field constructions for three object elements: strip, sphere and torus. There

are two kinds of actions for strip type object in deformation: sweeping and sticking.

when head of strip shape object points to face direction, the former action moves

ahead, the latter action moves aside. We provide time-independent vector field

same as that in [52].

11.2.1 Extended spherical divergence free vector field

Figure 11.2: Spherical vector field illustration. Green arrow is moving direction,
red arrows locate inside of object, blue arrows locate outside of object.

In the construction of divergence-free vector field, because scalar attenuation can

effectively control the shape of the vector fields, we use cross-product of gradients

of two scalar fields p(x, y, z) and q(x, y, z) to constructed a 3D divergence-free

vector field, as what has been introduced in [52]:

V (x, y, z) = ∇p(x, y, z) ×∇q(x, y, z)

Beginning from sphere primitives will help to understand our method. [52] has

introduced a divergence-free vector field construction for spherical primitives. Our

extended spherical vector field construction is similar to the vector field construc-

tion in [52]:
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





v = ∇p×∇q
p = (1 − dist(X)) ∗N · (X − C)
q = (1 − dist(X)) ∗B · (X − C)

X represents positions of vertices. dist(X) returns distance value of vertices to

deforming object. C is the center of deforming object.Normalize vector N , B and

moving direction Vdir construct orthogonal coordinate system. v gives the vector

value of X in vector field.

The difference of this spherical vector field construction compared to method in

[52] is that we introduce distance field of deforming object into our method instead

of using distance to center point directly. Distance field is good at representing

object features so we get better result from the extended spherical vector field

construction [fig].

11.2.2 Divergence free vector field for strip: sticking ac-

tion

Figure 11.3: Strip type-I vector field illustration. Green arrow is moving direction,
red arrows locate inside of object, blue arrows locate outside of object.

There are two kinds of definitions for strip type divergence-free vector field. Type-I

defines a divergence-free field moving ahead, type-II defines a divergence-free field

moving aside. For a type-I vector field, the vector flows along the strip surface
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in inner region at moving direction,then flows out of strip object from the head

and flow back along external surface in near-outer region. Finally it flows into

the strip type object from the tail again. The outer region of vector field will

be attenuated to zero. We bind the space around strip object to an inner curve,

which locates at the center position of object. The curve will have retraction at

the end for smooth diversification in vector field. Each vertex in the space will

be attached a distance value to the closest point of curve curve(X). Then we

construct scalar field p(x, y, z) and q(x, y, z) based on distance field dist(X) and

rotation minimizing frame []:







v = ∇p×∇q
p = (1 − dist(X)) ∗N · (X − curve(X))
q = (1 − dist(X)) ∗B · (X − curve(X))

N and B are the components of rotation minimizing frame. Instead of the com-

puting of integral definition, we implement the double-reflection method, a new

four-order approximated numerical rotation minimizing frame method in order to

construct the vector field at real time.

The spherical divergence-free vector field [52] is a special case of type-I divergence-

free vector field. If the inner curve degenerates to a center point, the vector field

will degenerate to be the spherical vector field in [52].

11.2.3 Divergence free vector field for strip: sweeping ac-

tion

Now we are going to construct the type-II divergence-free vector field. In this

kind of field, vector flow along the section in inner region, flows out of strip object

from one side and then flows into strip object from another side along the external

surface of strip. Outer region of the vector field will be attenuated to zero as
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Figure 11.4: Strip type-II vector field illustration. Green arrow is moving direction,
red arrows locate inside of object, blue arrows locate outside of object.

well. We also bind the space around strip type object to an inner retractive curve,

which locates at the center position. Every point on the curve has been attached

a scalar value scalar(X), increasing from head to tail. Each vertex on the surface

will be assigned the same scalar value related to the closest point on the curve.

To construct the second scalar field, we use the distance field of the strip and the

distance of each vertex to the closest point of inner curve:







v = ∇p×∇q
p = scalar(X)
q = (1 − dist(X)) ∗ U · (X − curve(X))

dist(X) is the distance field of strip object. U is a vector perpendicular to moving

direction on each section face. Each object has an axis curve inside it. curve(X)

returns the closest point of inner curve. scalar(X) returns the attached scalar

value.

Studies on Motion and Deformation in Graphics



11.2. EXTENSION OF CROSS-PRODUCT VECTOR FIELD
CONSTRUCTION 86

Figure 11.5: Torus vector field illustration. Green arrow is moving direction, red
arrows locate inside of object, blue arrows locate outside of object.

11.2.4 Divergence free vector field for torus cases

A torus is a special case of a strip. In strip type vector field construction, one of

the scalar fields is increased along inner axis curve from tail to head. However, a

torus has no tail and head and there is no such continuous scalar field along inner

axis curve. In our method, the torus can be divided into two pieces of strips. In

order to provide a divergence-free vector field for torus, we combine two strip type

vector fields. It is well known that the summation of multiply divergence-free field

is also a divergence free field, so when we construct vector field for a complicated

object, we can divide it into parts with regular shape so that we can cover each

part with vector field construction. For a torus, it would be covered with two

modified strip vector fields.

This modified strip divergence free vector field for each part is similar to type-II

strip vector field. The feature is that vector flows on surface at the end of each

strip, direction are parallel to the end surface so two strip vector fields will have

strict and non-intersectant combination at the separate position. We also attach

increasing scalar value scalar(X) to the inner curve that any point in space will
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attach the same scalar value from the closest point of curve. Because the inner

curve stops at the two ends, so the scalar value which is out of end surface will

stay the same, which means the gradient of the scalar field will be zero at this

zone. This is the trick to keep the direction of vector flow at the end parallel to

the surface but not leak out. Now we define the scalar field as the second scalar

field in type-II construction: first, curve(X) returns the closest point position of

inner curve; second, dist(X) returns the value of distance field. X − curve(X) is

the vector from curve to current point X. We multiply attenuation parameter

(1− dist(X)) to the dot product of vector U and (X− curve(X)), then we get the

second scalar field. On each section perpendicular to the inner curve, the vector

flow contains two circle loops which presents an Arabia number ”8”







v = Σvi

vi = ∇p×∇q
p = scalar(X)
q = (1 − dist(X)) ∗ U · (X − curve(X))

11.2.5 Approximate vector field construction for free-form

models

Figure 11.6: Sphere, strip and free-form vector field deformation.

Besides the three kinds of element vector field definitions, we also introduce an

advanced construction for free-form objects. We notice that sphere divergence-

free vector field cannot cover a free-form object tightly. Strip divergence-free

vector field has a better performance at non-spherical object, but it will have less
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Figure 11.7: Vector field illumination. Pinky layer is the shape of objects; green
layer is the range of vector fields; blue layer is the pivot area.

movement at the two ends. We expect the vector field of free-form objects has

well-proportioned vector flow around to make deformation natural. To design of

such a vector field for free-form objects, we should take geometry into considera-

tion. An important feature is that the moving speed in vector field should related

to the distance to object surface. This feature ensures that the flow around objects

has similar movement.

To discover a general construction for free-form objects is difficult because of the

complexity of object shape. However, we can consider an approximated free-form

vector field construction, which get useful condition to make construction and has

acceptable approximate volume-preserving feature with general movement. To

construct such a field, we use an offset surface inside the object. Each point in

the space has a closest position on the surface, which we name ”pivot”, defined

as follows: U and W are orthogonal vectors, at the same time, both of them

are perpendicular to the moving direction. Vector field p is provided by U with

distance field attenuation. It also contains a turning feature pspec to adjust the

direction, which is constructed by gradient and vector to pivot. Vector field q has

the similar construction.

Finally we get our free-form vector field construction from the cross product of

vector fields p and q.
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





v = p× q
p = U ∗ (1 − dist(X)) − pspec

q = W ∗ (1 − dist(X)) − qspec

pspec = gradient(X) ∗ U · (X − pivot(X))
qspec = gradient(X) ∗W · (X − pivot(X))

pivot(X) = X − gradient(X) ∗ (dist(X) + doff)

Figure 11.8: Deformation of Complicate objects: foot print on earth.

11.2.6 Advanced discussion

Stamper effect

The disadvantage of the above methods is that there is a gap between the deform-

ing objects and the deformed objects. It is because that when vector field object

gets close to the deformed object the flow of vector field would not allow their

surface to touch each other. This is acceptable when the object surface is smooth,

however, it will not be so good when the surface contains details. For instance, a

Studies on Motion and Deformation in Graphics



11.2. EXTENSION OF CROSS-PRODUCT VECTOR FIELD
CONSTRUCTION 90

coin.

We modify the above method a little bit to solve this problem. This method

is also volume preserving, but the colliding surfaces can touch each other. The

deformation will only go into effect when collision happens. The deformed object

will get two kinds of effects from the deforming object. One is denting effect, which

impacts the surface of the deformed object. The surface will be depressed as far

as the deforming object moves. Suppose at each frame, a vector field object will

move δd and area of collided surface of deformed object is δs. Then the depressed

volume is δv = δs × δd. The other effect is protruding effect, which impacts the

area around the dented surface on the deformed object. The area of protruding

surface is δsp.

Although deformation is operated by vector field, what we need to do is keep the

volume dent speed equal to the volume protruding speed. That means at each

frame, the dent volume should be equal to the protruding volume. We know that

the sunken volume is δv = δs×δd. For the protruding volume, it is vprot =
∫
vdsds.

For mesh objects, vprot ≈
∑
stri × vbary × tbary, where stri is size of each triangle,

vbary is the speed of barycenter in the vector field. Then we need to decide the

moving time tbary . As what we discussed above,
∑
stri × vbary × tbary = δs × δd,

So tbary = δs× δd \ (
∑
stri × vbary)

Deformation and self-deformation

Sometimes a deforming mesh also requires deformation in animation. For example,

when a hand grasps a piece of plasticine, the hand mesh also needs deformation

when it deforms plasticine at the same time. Vector field deformation is useful to
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meet such requirements.

In order to keep the topology feature of objects in divergence-free vector field

construction, we introduce integrated vector field construction into our algorithm.

We have known that the divergence vector field has good properties for defor-

mation. However, some process of vector field construction such as distance field

computing is time-consuming. In free-form vector field construction, the distance

field needs to be re-computed whenever the shape of deforming model is changed,

which implies heavy computation. In our intergrated vector field construction,

element vector field only compute once by before deformation to avoid time con-

suming. We use the three kinds of element vector field construction defined above

to construct intergrated vector field, as well as the spherical vector field and cylin-

drical vector field introduced in [52].

In this method, a complicated object will be divided into some object elements.

Each object is covered with a divergence-free element vector field. Nearby element

vector field overlap each other. Because element vector fields are divergence-free

and continuous, the intergrated vector field is also divergence-free and continuous.

The distance field of required element objects are computed and stored before

deformation. These stored distance fields can provide necessary information for

vector field construction in real-time. An element vector field will remain the same

in its object space in deformation. Multiplied with the inverse transformation

matrix of element vector fields, vertices will be translated to relative element

vector field to obtain relative deformation. It is well known that the sum of

divergence vector fields are also divergence vector field. So intergrated vector field

construction provides us with fast-computing volume-preserving vector fields for

free-form objects.
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Chapter 12

Curl vector field deformation

Figure 12.1: Illustration of vector flow in curl vector field. The colored vectors
on the section plane show the directions and magnitude of curl vector flow. The
curl vector field has the same shape feature as the shape feature of the deforming
object.

The goal of the approach proposed here is to construct a special vector field ef-

fectively from the curl of a base vector filed to provide non-self-intersecting and

volume preserving deformation. Generally, vector field deformation involves two
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objects: the deforming object and the deformed object. The deforming object that

provides shape information is the base of divergence-free vector field construction.

The deformed object is the object being deformed under the vector field of the

deforming object. For some special cases, a vector fields can be generated based

on pre-defined conditions without any deforming object. However, the deformed

object is always required.

Mathematically, a divergence-free vector field has some special features. One of

them is that objects deformed under divergence-free vector field is volume preserv-

ing, which is a very important feature in mesh deformation, and it is the basic crite-

rion of our algorithm. From previous research, we know that divergence-free vector

field can be constructed from the gradients of two scalar fields p(x, y, z), q(x, y, z)

in 3D or construct it as a co-gradient field of a scalar field p(x, y) in 2D [52]. The

construction is based on a well-known feature that cross product of the gradients

of two scalar fields is divergence-free [17].

Here, we present a new way of construction which is more flexible and easily

understood for 3D divergence-free vector field construction from the curl field. It

is also well-known that the divergence of a curl field is equal to zero.

div(curl(v)) = ∇ · (∇× v) = 0

The above feature ensures that our vector field construction based on curl will be

volume preserving.

12.1 Translation

First, we construct a base vector field for translation. A local coordinate frame-

work [i, j, k] is built around the deforming object for vector field construction.
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Figure 12.2: Comparison of different divergence-free vector field construction al-
gorithm: The light blue color component illustrates the shape of the vector fields.
The left column is constructed by [52], which only relates to a pre-defined field
radius; the right column is constructed by the new algorithm, which relates to the
distance field of deforming object.

i, j, k are three orthogonal unit vectors. i denotes the moving direction of deform-

ing object when j and k are freely chosen. Vertex X will be denoted as X ′ in local

coordinate system. For each deforming object, we define a base vector field BT

rotating around its i axis in local coordinate. Let P be (0,y,z), we have:

BT(X) = P × i (12.1)
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Figure 12.3: Illustration of curl vector field generation for translational motion.

Figure 12.4: Three collision examples: bunny, chess and rocker-arm.

We introduce the distance field d(x, y, z) as one of the components in our vector

field construction to represents the shape. The value of such field is the distance to
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the object surface. which separates the inner and outer region. Deformed object

should only move in the outer region during deformation. Distance field is negative

in the inner region when it is positive in the outer region. Obviously, the value of

distance field will be zero on the object surface. We want our constructed vector

field to affect only the adjacent space of deforming object but not the whole space,

so we denote a field threshold R : when absolute distance d(x, y, z) is larger then

R, no vector field exists. The blending in base field will insure the smoothness of

the curl field.

Therefore, the formulation of the divergence-free vector field for translation VT is







VT(X) = curl(f(X))
f(X) = (R − |dist|)2BT(X), if |dist| ≤ R
f(X) = 0, if |dist| > R

(12.2)

Under the definition above, the divergence-free vector field for translation VT

flows out from the front of the deforming object, and flows along the surface of

object and goes back into the object at the back(figure 12.5). Compared with [52],

such definition has similar performance for spherical objects but will work better

for free-form objects, because our new construction contains shape information,

while the vector field in [52] is only defined over a spherical region. [52] uses an

array of spherical vector fields to simulate the field for general objects. Our new

approach, on the other hand, provides a direct definition for free-form objects such

that an array of simple vector field is not necessary.

12.2 Rotation

Assume the deforming object rotates around a pivot o about an axis, We can

define the curl vector field for rotational motion as follows:
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Figure 12.5: Illustration of curl vector field generation for rotational motion. o is
rotational pivot and axis is rotational axis.







VR(X) = curl(f(X))
f(X) = (R − |dist|)2BR(X), if |dist| ≤ R
f(X) = 0, if |dist| > R

BR(X) = X × axis ×X

(12.3)

Figure 12.5 shows how the curl vector field is generated. Figure 12.6 shows the

generated rotational field and its deformation effect for a rod-like object with the

rotational axis passing through the center.

12.3 Special application: twisting and bending

Besides translation and rotation, we also have special applications with curl vector

field construction. These kinds of constructions provide useful effects for object

deformation: twist and bending.

Figure 12.7 and equation 12.4 show the construction of simple rotational field that

can be used for twisting and bending

v(x) = curl(X × axis ×X) (12.4)

We construct curl vector field of twisting effect by introducing vector projection
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Figure 12.6: The upper figure shows the vectors of the field; the lower figure
demonstrates a collision effect between a rotating rod and a surface.

Figure 12.7: Simple rotational field generation.
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length Laxis on the rotational axis as the constraint parameter in equation 12.4:

v(x) = curl(Laxis ·X × axis ×X) (12.5)

Figure 12.8 performs a smooth twisting effect on rectangular rod. Figure 12.9

shows how twisting is applied on the Venus model.

Figure 12.8: Rectangular rod in curl vector field of twist effect.

Figure 12.9: Human body action: waist twist of Venus.

Bending effect’s construction is similar to twisting effect. We use the square of

vector length to be the constraint parameter instead of of the vector projection
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length on rotation axis(equation 12.6). Figure 12.10 shows how the bending effect

works on a rectangular rod. Figure 12.11 is a Tai Chi image generated by bending

effect.

v(x) = curl(|X|2 ·X × axis ×X) (12.6)

Figure 12.10: Cube in curl vector field of bending effect.

Figure 12.11: Tai Chi generated by curl vector field of bending effect.
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Figure 12.12: Deformation of Complicate objects: hand print on earth.
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Chapter 13

Implements and discussion

13.1 Distance field computation

The distance field is an important component in our divergence-free vector field

construction. However, distance field computation is time-consuming. To deal

with these problems, we use some ideas from [38] to create an implicit function

for the domain, which has accurate reconstruction of sharp features and fast local

domain access. In order to perform realtime deformation we also use the classic

marching cube algorithm [37] with trilinear interpolation to speed up our distance

field computation.

13.2 Remeshing

Keeping appropriate vertex density of surface is a basis for feature preserving

in deformation. prastic deformation will cause mesh fragmentation and volume

change. We apply remeshing in our algorithm based on the ideas from [26] and [52].

We set up several thresholds on triangle edges. When the length of an edge is over

the the threshold, a 1-to-4 split will occur at all the ring-triangles of the related

vertex or 2 to 4 splits will occur at two nearby triangles of long edges, depending

on their topological conditions. We also notices that if we store the original mesh
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and deformation path, when ring-triangles of vertices or nearby-triangles of edges

require split, we can apply it to the stored original mesh and then integrate the new

vertices through deformation path. This operation produces smoother remeshing

effect than direct remeshing [52].
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Tris. volumeo volumed F.rate
sphere(C) 11200 2.132 2.127 78
Bonny(C) 23380 1.997 1.988 36
chess(C) 23844 0.576 0.572 36
rocker-arm(C) 43468 0.143 0.142 30
cube(R) 33600 8.000 8.033 39
Venus(R) 36396 74.811 74.324 37

Table 13.1: Column of Tris.. records the number of object triangles; column
of volumeo and volumed records the volume data before deformation and after
deformation; column of F.rate records the average frame rate in deformation. The
object with ′C ′ in bracket was in colliding deformation while the others was in
rotating deformation.

13.3 Experiments

All of the test cases were run on a PC with an Intel Xeon 2.66 GHz CPU and 2.00

GB RAM. Our algorithm has smooth performance in realtime without GPU speed-

up. Table 13.1 below shows that the volume is preserved under the deformation

of curl vector field. Because we use triangular mesh objects in our experiments,

there exists tiny error in volume computation. We can see that there is about

0.3% difference between the object volume before and after deformation.

13.4 Advantage and Limitations

Compared with other classical deformation methods, the curl vector field defor-

mation has many obvious advantages. Volume-preserving is an inherent feature

of curl vector field, because the field lines of the curl of a based vector field will

never intersect with each other, a mesh deformed under a curl vector field can

avoid any self-intersection. Compared with the method presented by [52], the new

construction is easier to understand, since the construction in [52] requires cross

product of two vector components while the new construction is generated from

a single curl field directly. However, this vector-field driven deformation also has
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some limitations.

13.5 Conclusion and Future Work

In the part, we have presented a brand-new method to construct vector field for

3D mesh deformation. The object deformation under the curl vector field will be

volume-preserving, and there is no self-intersection problem in such deformation

due to the properties of the vector field. The algorithm introduces distance field

into vector field construction, so the shape of the curl vector field is closely related

to the object shape. The construction has simple mathematical expression and

it is easy to understand. We have defined the construction of the curl vector

field for translation and rotation. We also provided some special effects such

as twisting and bending. Although our algorithm is fast enough to perform at

realtime deformation without GPU speed-up technology, we are also interested in

knowing the possibility of implement on GPU.
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