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Abstract We present a new method
based on GPU acceleration for real-
time transparency and translucency
rendering. Our method computes
refraction at both the front and back
sides of a transparent object, as well
as internal reflection, thus delivering
interactive realistic transparency
effects on a commodity PC. The real-
time performance is made possible
by a new acceleration data structure,
called geocube, that enables the use
of GPU for fast ray-surface inter-
section testing. In addition, within
the same framework, we introduce

the novel use of the mip-map for
a hierarchical representation of a se-
quence of key prefiltered environment
maps to simulate translucency. By
taking ray depth into account and
using GPU to interpolate the key
filtered maps to produce the desired
blurring effects, we achieve real-time
realistic translucency rendering of
slightly scattering media that allows
show-through of background details.

Keywords Real-time rendering ·
GPU · Transparency · Translucency

1 Introduction

Translucency is important to realistic graphics since many
substances in nature are translucent. Some materials, such
as human skin, plastic, even stones, that are generally con-
sidered opaque are, in fact, to some degree translucent.
Many recent papers (e.g., [6] and [4]) have demonstrated
the importance of translucency in image synthesis.

Transparency, being an extreme case of translucency,
has proven useful to many graphics applications, from re-
alistic game design to data visualization. For example,
proper simulation of refraction is important for placing
a transparent object in a 3D environment [12]. Also, in
surface-based medical data visualization, the front layer of
an object surface usually needs to be made semitranspar-
ent in order for objects behind to show through [10].

Simple transparency, such as that used in data visual-
ization, can be generated with straightforward α blending,
without considering light refraction [1]. Most real-time
transparency shaders found today support only refraction

at the front facing side of a transparent object. They pro-
duce an impression of transparency that is good enough
for certain applications but far from realistic. More real-
istic transparency rendering entails the consideration of
refraction at both the front and back sides, as well as in-
ternal refraction. Their effects are quite different, as shown
in Fig. 1.

Ray tracing is a well-known technique for highly re-
alistic simulation of both reflection and refraction in
a specular environment. But, due to its intensive com-
putation requirement, most real-time methods for ray
tracing require special computing environments, such
as a shared-memory machine or a cluster [9, 13, 14]. Al-
though the rapid advance of graphics hardware (i.e., GPU)
has brought about significant speedup for ray tracing [8],
realistic transparency rendering based on the conventional
ray-tracing approach has yet to achieve real-time perform-
ance on commodity PCs.

Translucency covers a wide range of media—from
transparency to opaqueness. Translucenct objects are in-
herently more difficult to render than transparent ob-
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Fig. 1. a Front-face-only refraction. b Refraction at both front and
back faces, and internal reflection. c Highlighted area (orange) in-
volves internal reflection at least once

jects because of the scattering nature of light that causes
translucency. Traditionally, translucency is rendered with
global illumination techniques such as Monte Carlo
ray tracing or photon mapping [5]. More recently, fast
methods have been proposed [2, 4, 6, 11] to speed up its
rendering; some of these methods can even achieve real-
time speed.

However, these recent methods attempting real-time
translucency rendering focus on subsurface scattering.
A common assumption of these methods is that ob-
jects under consideration are highly scattering. Therefore,
blurred color bleeding from the backside of a translucent
object can be simulated but visual details in the back-
ground cannot be rendered in a properly blurred manner,
especially for a thin or slightly scattering object. Figure 2
shows that the degree of blurring should depend on the
thickness of a translucent object.

The present paper contains two contributions.

– We present a transparency shader for real-time trans-
parency rendering on a commodity PC with GPU ac-
celeration. Our method takes into account both the
front and back ends of refraction, as well as internal
reflection; therefore it delivers highly realistic trans-
parency effects. We use a novel acceleration structure,
called geocube, for object surface representation that
supports a novel scheme for fast ray–surface intersec-
tion with GPU acceleration.

Fig. 2. Blurring effects of background details showing through
a wedge-shaped object. The right side is thicker than the left. The
image of the lamp is blurred more at the right

– Taking into account ray depth as computed by the
transparency shader, we extend our transparency shader
to render a wide range of translucency, from slightly
scattering media to opaque objects. Our method is ca-
pable of producing properly blurred rendering of back-
ground details through translucent but thin objects or
slighly scattering objects, as shown in Fig. 2. A novel
idea here is to use mip-map for hierarchical representa-
tion of a sequence of key filtered environment maps, so
that we can achieve real-time translucency rendering
by using GPU to interpolate the key filtered environ-
ment maps.

2 Transparency shader

Our transparency shader considers not only an object’s
front-side refraction, but also the back-side refraction, as
well as internal reflection up to one level. The key to
efficiently computing the back-side refraction is fast com-
putation of the exit point of a light ray entering the object;
the outgoing ray at the exit point will be used as texture
coordinates in an environment map for synthesizing the fi-
nal image. Conventionally, the exit point is found in ray
tracing by traversing through the mesh surface of an ob-
ject to locate the closest ray–triangle intersections. Using
spatial partition or hierarchical bounding to speed up this
approach for real-time performance is currently still an
active research topic. At present, directly computing ray–
triangle intersections by encoding object meshes and other
spatial data as textures for speedup using graphics hard-
ware seems neither natural nor practical; it is difficult to
map irregular meshes to graphics hardware features with-
out complicated conversion, encoding, and tedious ac-
cess [8].

2.1 Geocube

In this section we present a new rasterized geometry data
structure, called geocube, for encoding an object’s surface
using radial distances and storing other information for
quick computation of a light ray’s exit point. Given an ob-
ject K , we place a cube G with its center point O at an
interior point of K . Here G is a cube image, i.e., its six
sides are pixelized images. For the moment we suppose
that K is star-shaped and that O is in the kernel of K ; thus,
all boundary points of K are internally visible to O. (Later
we will discuss how to represent a general object with mu-
tiple cubes and other extensions.) We sample the direction
space in correspondence with the pixel centers of the cube
image G. Let v be the direction from the cube center O to
the surface sample point p. Then distance d = |Op| from
O to p is stored in the pixel location given by direction v
(Fig. 3a). Therefore, a geocube provides the surface repre-
sentation of an object with image resolution. A cube image
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a b

Fig. 3. Geocube definition

is used because it can be accessed with fast texture fetch-
ing functions of GPU. Besides the distances, the normal
vectors at surface sample points are also recorded in the
geocube for computing reflected or refracted ray direc-
tions.

Now we discuss how the distance values in a geocube
can be used to determine the exit point of a light ray. Fig-
ure 3b shows a ray traveling inside an object from p1 to
p2, which are two surface points. At the beginning, from
the incident point p1 we can easily find its direction, or
its texture coordinates v1. The goal now is to locate the
exit point p2 or, equivalently, its direction v2, because the
surface distance d2 = |Op2| is recorded in the geocube.
A straightforward method for finding p2 is to move a point
on the ray from p1 incrementally forward with an appro-
priate step size. After every step, the distance |Op| from
the new moving point p to the cube center O is compared
with the stored surface distance d in the geocube in the di-
rection of p. Once a stored value d is found to be equal
to |Op|, the exit point p2 is found. Note that the distance
value of a point falling between sample points is obtained
by interpolation of the stored distance values for its nearby
sample points.

In the above procedure we need to determine an ap-
propriate step size— a too-large step size may cause over-
shooting and inaccuracy, while a too-small step will slow
down the search. For instance, simply sampling along
a ray path according to the pixel resolution of the geocube
is similar to the DDA algorithm for drawing a line in 3D.
This approach normally involves operations of hundreds
of pixels for traversing each ray and is therefore ineffi-
cient, as observed in [8].

Based on the geocube, we use the following scheme
to quickly find the exit point of a light ray on the bound-
ary surface. In a preprocessing stage we create many sim-
ple solids lying completely inside an object K , with their
union covering K (up to image resolution). Given a mov-
ing point p on a light ray r, if we find that p is inside one
of these simple solids, then a quick computation is per-
formed to send the point along the ray to a boundary point
of the solid. In this way, the moving point can quickly be
“propelled” to its exit point in a small number of steps.
We believe there are many possible shapes for these sim-
ple solids. In our implementation, we choose to use three
circular cones, called cone A, cone B, and cone C, for each

Fig. 4. Cones A, B, and C and sphere D for a surface point S. O is
the geocube center

surface sample point (Fig. 4) and record the defining pa-
rameters of these cones in the corresoponding pixel of the
geocube. The following are the detailed descriptions of the
three cones.

– Cone A has its apex at a surface sample point S. Its
base center is at the geocube center O. The base ra-
dius is maximized subject to the degree to which the
cone is inside the solid. For cone A, cos θA is recorded,
where θA is the half-apex angle. The intended func-
tion of cone A is to push a moving point near the cube
center O along its light ray.

– Cone B has its apex at O and has its base center at
a surface sample point S. Its base plane is the tangent
plane of the boundary surface at point S. Two planes,
each offset from the tangent plane at S by plus or mi-
nus half of some constant ε in the normal direction,
are used to isolate a set of mesh triangles of the ob-
ject surface near S, denoted by set V . Cone B is then
set to be the smallest cone that contains set V . Like
cone A, cos θB is recorded for cone B, where θB is
the half-apex angle. Since cone A’s apex lies near the
surface, its contribution diminishes as a moving point
approaches the surface. At some point near the surface,
cone B will take over to push the moving point toward
its exit point.

– Cone C is not exactly a flat-based cone but a conical
portion of a sphere. Its apex is at a surface sample point
S, its principal axis is aligned with the surface normal
vector at the sample point S, and its half-apex angle
is set to be the critical angle or arcsin(1/η), where η
is the refractive index of the object material. The size
of cone C, i.e., the radius RC of the sphere containing
cone C, is maximized subject to the extent that cone
C lies completely inside the object. Only the radius
RC is recorded for cone C, while its half-apex angle
arcsin(1/η) is a constant for all surface sample points.
The function of cone C is to ensure that any ray en-
tering the object can travel by at least the distance RC
before reaching the surface again. Therefore, cone C is
particularly useful in avoiding small initial steps when
cone B is narrow.
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Note that the geocube’s sampling ray directions are
very close to each other near the center, so a small nu-
merical error in position calculation may cause a large
quantization error in choosing the correct geocube pix-
els. To prevent the moving point from getting too close
to the cube center, we precompute and record the largest
inscribed sphere D centered at the geocube center. Thus,
when a moving point is detected to have entered sphere D,
it will be pushed along the ray to the surface of D.

2.2 Finding the exit point

Given a moving point p on a ray r, in every step an en-
closing cone or sphere D is used to determine a step
length to find a new position of p along the ray. Normally
the center-to-p direction falls between the recorded di-
rections. Then the retrieved parameters for the cones are
computed by linearly interpolating the values stored in the
nearby pixels in the geocube. This step of interpolation is,
again, done by GPU. We compute using GPU the incre-
mental distance values produced by both cones A and B,
and also sphere D if it contains the point, and use the larg-
est of the three values to move point p forward. The new
position of p is then used to obtain a new direction to re-
trieve a new set of cones stored in the geocube, and these
new cones will be used to further push the moving point
toward its exit point.

The following is the pseudocode for the transparency
shader:

1: found ← false
2: direction = position−center
3: geocube = fetchGeoCube(direction)
4: position+ = direction∗geocube.C
5: while found �= true do
6: direction = position−center
7: if direction.magnitude < D then
8: position+ = direction∗GetDDistance()
9: else

10: geocube = fetchGeoCube(direction)
11: if geocube.distance < direction.magnitude then
12: found = true
13: else
14: delta = max(GetADistance(), GetBDistance())
15: position+ = direction∗delta
16: end if
17: end if
18: end while

In every step we need to quickly compute the incre-
mental distance of a moving point as determined by pre-
defined cone A, cone B, or sphere D. The formulas for
computing the distances depend essentially on two vari-
ables so they can be easily evaluated by GPU using table
lookup. First, cone C’s value (i.e., its radius RC) is used
directly, so no formula is needed. Next we consider the cir-
cular cones (A and B) and sphere D. Suppose that moving
point p on a ray r is contained in cone A or cone B. Since
p is on the principal axis of the cone, by symmetry we
reduce the problem to distance computation in 2D by con-

a

b

c

Fig. 5a–c. Computation of step distance r for cones and sphere. v is
the principal axis vector. a, b and c show 2D sections for cones A
and B and sphere D

sidering the planar section of the cone on the plane passing
through the cone’s principal axis and the ray r (Fig. 5).
Figure 5a shows the section of cone A that is a right tri-
angle since A is a right circular cone. Figure 5b shows
the section for cone B; note that the roles of S and O
are reversed and that the section of B is, in general, not
a right triangle. Since the base plane of cone B is not nec-
essarily perpendicular to its principal axis, the base normal
N, in general, does not lie in the sectional plane. Finally,
Fig. 5c shows the section of sphere D on the plane passing
through ray r and the cube center O.

Since cone A is a special case of the more gen-
eral cone B, we use the same formula to find |r| for
both cones A and B. We have derived two functions:
C( f, ĥ, â, n̂, µ) for computing |r| for a unit cone (i.e.,
the distance between its apex and base center is one)
and S( f, ĥ, v̂) for computing |r| for a unit sphere, where
f is the distance of point p from the base center, ĥ is
the unit ray direction, â is the unit principal axis vec-
tor from the apex to the base, v̂ is the unit principal axis
vector from the sphere center, n̂ is the unit base normal
vector, and µ is the half-apex angle of the cone. The
two formulas C( f, ĥ, â, n̂, µ) and S( f, ĥ, v̂) are given
in the appendix. Note that all vector symbols with hats
denote unit vectors. Based on these two functions we
have

|r| = (c+ l) C(l/(c+ l), r̂, −v̂, −v̂, cos θA), for cone A;
|r| = (c+ l) C(c/(c+ l), r̂, v̂, N̂, cos θB), for cone B;
|r| = D S(l/D, r̂, v̂), for sphere D.

Here r̂ is the unit direction vector of the ray, and v̂ is the
unit direction vector from the cube center O to the surface
sample point S.
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2.3 Multiple cubes

One geocube can only represent a star-shaped object.
Therefore, more geocubes are needed to represent a com-
plex object. Assume that a number of cubes have been
placed inside an object so every surface point is visible
to at least one of these cubes’ centers. It is then import-
ant to consider the switching between different cubes in
relaying a moving point on a ray to its exit point. Let
G1 be the current cube for a moving point p. When p
is approaching a region R that is invisible to G1 (or the
center O1 of G1, to be precise), cone A and cone B as-
sociated with p will become narrower and the step size
of p will get smaller, as shown in Fig. 6. To avoid infi-
nite looping, we set a minimum value δ for the step size
of p so that in every step the moving point will be ad-
vanced by at least the amount δ. At the moment p steps
into region R, the line segment O1 p becomes longer than
the recorded surface distance in G1 in the direction of
p, and this triggers a cube-switching event—that is, we
need to find a new cube G2 that is visible to p to replace
cube G1.

Fig. 6. A point is moving into a region invisible to the current cube
G1. p1 is a point close to region R. Its cone B will bring p1 to p2.
At p2, both cones A and B degenerate into lines and cannot push
the point further. A lower bound δ on the step size will be added to
move the point to p3. This causes a cube-switching event

The new cube G2 is selected as follows. Let P be the
plane passing through p and perpendicular to the direction
from p to the center O1 of the current cube G1 (shown as
the dotted line in Fig. 7a). Then we choose G2 to be the
cube whose center is nearest to the plane P among all the
cubes. If there is more than one such cube having the same
distance to plane P, we choose an arbitrary one to break
the tie.

In precomputation, for each triangle we find among all
the cubes the most suitable one to use when a ray enters
the object through the triangle. Here we choose the nearest
cube that the triangle is visible to. After the initial cubes
for all triangles are determined, the indices of these cubes
are passed as texture coordinates with the triangles.

a b

Fig. 7. a Geocube switching. G is the current geocube. Geocubes
near the dotted line are most likely to be chosen as the new one.
b Initial geocube selection. Both G1 and G2 are equally likely to
be chosen by the metric. Internal visibility must be tested to elimi-
nate G2

3 Translucency rendering

In this section we consider extending the transparency
shader described above to translucency rendering, es-
pecially for slightly scattering objects that allow show-
through of background details. Assuming homogenuous
scattering, the degree of the blurring effect produced by
a translucent object depends on the length of a ray going
through the object; recall that the ray length is readily
available from our geocube-based transparency shader.
We use environment map filtering to produce the effect
of translucency or bluring. Thus we need to consider how
a certain degree of translucency should be represented by
an appropriate degree of blurring of the environment map.

The environment map filtering has been used to pro-
duce a reflection effect of object surfaces [7] in which the
environment map is blurred by filtering to make an object
with a mirror surface appear to have a glossy surface. It is
assumed there that an object has the same surface material
properties everywhere. Therefore, one single filtered envi-
ronment map suffices for the whole object. Moreover, the
degree of blurring in that application does not depend on
the viewpoint or the object geometry.

Our idea of using a blurred environment map to sim-
ulate translucency was inspired by the work in [7], but
our situation is different and more challenging. We need
to model medium properties instead of surface properties.
Unlike reflection, light travels into a translucent object and
gets scattered more as it goes deeper. Since the optical
lengths of different rays inside the object are different, we
need to produce in real time different degrees of blurring
(i.e., translucency) at different locations; this makes it dif-
ficult to use just a single filtered environment. Note that
filtering an environment map on the fly with nonuniform
filter widths is too costly for real-time rendering. Our strat-
egy is to precompute a number of key filtered environment
maps to cover a wide range of blurring effects. Each of
these key maps is Gaussian filtered with a uniform filter
width, and we use GPU to interpolate these key maps in
real time to synthesize the final image with the desired
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degree of blurring at different locations. Below we dis-
cuss two key issues in our solution: (1) generating a key
filtered environment map and (2) storing all key filtered
maps with minimal consumption of limited texture mem-
ory on the graphics board. Since the first task is performed
offline in preprocessing, we just need to ensure that it is
done with adequate accuracy. The second issue, however,
is more critical to real-time performance because the com-
pact storage of all key filtered maps is mandatory for using
GPU to access and interpolate these maps.

3.1 Map filtering

The environment map we use in the shader is a cube map
stored as six separate images. The six images should not
be filtered independently of each other, since that would
leave unproperly filtered seams between adjacent faces.
So we map the cube map into a spherical map and per-
form filtering in a parameter domain of the spherical map.
There are several ways of filtering a spherical map. One
may use spherical harmonics. This approach is not ideal
for low blurring filters with a narrow filter width, since
that involves inaccurate manipulation of high-order terms
in spherical harmonics. The spherical environment map is
filtered in [7] in the spherical coordinate space, which is
a rectangle-shaped panoramic map. This scheme is a bit
involved since it uses different elliptic-shaped filter sup-
ports at different pixel locations to compensate for filter
distortion caused by parameterization.

In our implementation, we take the following simple
but approximate approach. We cover the spherical map
using three different spherical coordinate systems, with
their equatorial planes perpendicular to each other. Each
of these spherical coordinate systems gives rise to a longi-
tude/latitude panoramic mapping. Note that there is rela-
tively little distortion for a large part of the image along
the equator, and there are only two singularities at the two
poles of the sphere in that mapping. (There is no mapping
from a sphere to a rectangular image without singularity.)

Then we use the normal Gaussian filtering with a con-
stant circular filter support (i.e., constant filter width) to
filter these three panoramic maps. Each filtered image is
quite accurate near the equator but becomes less accu-
rate toward the two poles. To remove the singularities at
the poles and reduce distortion off the equators, we use
a weighted combination of the three filtered images to pro-
duce the final filtered map so that pixels near equators
are given higher weights than pixels off the equators, and
pixels near the poles make little contribution to the final
filtered map. The singularties are removed becasue any
pole in one map is covered by the equators in the other two
maps. This approximation scheme is easy to code and pro-
duces satisfactory results in our tests. It should be pointed
out that the more accurate, but slower, filtering method
in [7] can also be used for our purpose, since comput-
ing the filtered kep maps is a preprocessing step that does

not affect the subsequent real-time performance in translu-
cency rendering.

3.2 Mip-map representation of key filtered maps

We use some key filtered maps to cover a sufficiently wide
range of blurring, with the inbetween blurring effect com-
puted by interpolating the key filtered maps. Generally
speaking, the more key filtered maps are used, the more
accurate is the interpolation. However, if we use high-
quality environment maps, the amount of texture memory
consumed by the key filtered maps becomes a concern.
For example, a 512×512×6 16-bit-per-component float-
ing point HDR cube map takes 12 MB to store. Hence, it
is not practical to use too many full-resolution key filtered
maps since most graphics boards today have only 128 MB
of memory.

To reduce texture memory consumption, we observe
that filtered maps with a sufficient degree of blurring do
not need full-resolution representation since, intuitively,
they contain fewer details than the source image. Thus, the
image resolution can be reduced by half for each increas-
ing level of blurring. A natural choice is to use log2 n key
filtered maps, where n ×n is the resolution of each face of
the source cube map; the full-resolution one is the source
image and the smallest one is a 1 ×1 ×6 cube map that
contains the most blurred image. This hierarchical repre-
sentation maps well to the mip-map supported by graphics
boards.

An image with reduced resolution imposes a lower
bound on the degree of blurring that it can accomodate.
That is, when the image is less blurred than that lower
bound, some image details may be suppressed by the re-
duced resolution (Fig. 8). We can analyze this constraint
imposed by resolution reduction on the degree of blur-
ring as follows. Suppose that I is the source image. Let Ib
a Gaussian blurred image with full resolution. Let Ibs be
the down-sampled version of Ib. Then

Ib = I ◦ Gr

Ibs = I ◦ Gr ◦ (R◦ E),

Fig. 8. a Original image (256 × 256). b Gaussian blurred with
width 5. c Blurred and down-sampled to 64× 64, no visual arti-
fact visible. d Blurred and down-sampled to 32×32, slight aliasing
visible. This means down-sampling from 256 to 32 cannot accom-
modate images blurred with Gaussian width smaller than or equal
to 5
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Table 1. Minimum Gaussian widths for different down-sampling
ratios. The blurring angle is defined as 2rα, where α is the angle
subtended by a pixel on the environment map so as to make it
resolution dependent. The values shown are computed for a 512×
512×6 cube map. The threshold for the maximum error is 0.02

Resolution Gaussian width r Blurring angle

/2 4.6 1.62◦
/4 10.5 3.69◦
/8 21.6 7.59◦

/16 43.4 15.26◦
/32 86.9 30.55◦
/64 173.7 61.07◦

where Gr is the Gaussian filter with width r, R is the
down-sampling filter, and E is an enlargement filter that
is a bilinear interpolation operation. Clearly, the difference
between the two images Ib and Ibs is bounded by the dif-
ference between the two operators Gr and Gr ◦ (R ◦ E).
What the filter R◦ E does is basically sample and interpo-
late. Therefore, when R◦ E is applied to Gr , the function
Gr will be sampled at regular spatial intervals dictated
by the reduced resolution and inbetween values will be
linearly interpolated. The output will be a piecewise lin-
ear function Gr ◦ (R◦ E) approximating Gr , as shown in
Fig. 9. Obviously, when the resolution is fixed, the max-
imum error between Gr ◦ (R◦ E) and Gr decreases as the
width r of the Gaussian filter increases. Hence, for each re-
duced resolution fixed by a level of mip-map, we just need
to find out the smallest filter width of Gr such that the
maximum error between Gr ◦ (R◦ E) and Gr is approxi-
mately equal to some prescribed error threshold ω, where
ω is chosen such that the down-sampling’s effect is hardly
visually noticeable. Then these filter widths corresponding
to different levels of the mip-map are used to obtain all the
key filtered environment maps.

Fig. 9. Gaussian function and this down-sampled piecewise linear
approximation. The actual computation is done for bivariate func-
tions

3.3 Environment map compositing

Now we explain how to model the scattering behavior
of light going through a slightly scattering medium. We
consider the scattering of a light beam pointed perpen-
dicularly to the surface of an infinitely extended slab of
homogeneously scattering medium with a constant width
τ (Fig. 10a). Two transfer functions are of interest to us:

a b

Fig. 10. a Angular distribution of radiance below the slab is de-
scribed by the transmission function Tτ and the distribution above
the slab by the reflection function Rτ . b A ray passing through
a general object

the transmission function Tτ modeling the angular distri-
bution of the scattered light going out at the other side
of the slab and the reflection function Rτ modeling the
reflected light off the slab’s surface on the same side.
When rendering a general object, we determine the degree
of blurring for a ray segment of length τ by the transfer
functions obtained with slab thickness τ . This is only an
approximation, since an object can have varied thickness
and the tangent planes at the two ends of a ray segment
may not be parallel to each other. This approximation is
made based on the assumption that, for a slightly scatter-
ing and highly anisotropic medium, most of a light ray’s
energy is not scattered far away from the principal direc-
tion; thus the angular distribution of the ray through the
object with optical depth τ does not deviate much from the
one through a parallel slab of material of the same thick-
ness τ (Fig. 10b).

Transfer functions for plane-parallel (i.e., slab) con-
figurations and methods for computing these functions
have been well studied in the field of radiative trans-
fer. We use the classic results from [3]. The transfer
equations are defined as integral equations based on the
Henyey–Greenstein phase function and the slab thickness
τ ; the Henyey–Greenstein phase function pHG,g(θ) de-
scribes the scattering of a light ray at an interior point of
a medium, where g is its anisotropy.

The formulation we used is based directly on that
in [3]. The meaning of the phase function is a bit differ-
ent from many recent papers about subsurface scattering
in the field of rendering. Here we assume that scattering
events happen so often that it is like a continuous phe-
nomenon inside the medium. Therefore, we can describe
the effect of absorption and scattering together by a com-
bined phase function p′(θ). In that case, there is no need
for separate absorption and scattering coefficients. The
amount of absorption is controlled by the value of albedo
ω0. The combined phase function we used is of the form
ω0 pHG,g(θ), and the combined anisotropy g′ is defined as
usual for general phase functions.

To model a slightly scattering medium we set the value
of g′ to be close to 1 (g′ = 0 gives a diffuse medium
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a b

Fig. 11a,b. Transfer functions in terms of angular distribution.
a Transmission functions for different thickness values of τ .
b Reflection functions for different thickness values of τ . The phase
function p′(θ) with anisotropy g′ = 0.8 is used. θ is the angle of an
out-going ray with the surface normal

and g′ = 1 gives a transparent medium). By expressing
p′(θ) in a Legendre expansion, we solve the integral equa-
tion for the transfer functions, which are also given in
terms of Legendre expansions. We will only give the
solved transfer functions for various thickness values of
τ and refer the reader to [3] for the details of computa-
tion. Note that solving for the transfer functions is done
offline.

Figure 11 shows the graphs of several transmission
functions Tτ and reflection functions Rτ for values of
thickness from τ = 1 to τ = 7. The transmission functions
have peaks near θ = 0 and drop off rapidly with increasing
θ, resembling a Gaussian function (Fig. 11a). The reflec-
tion functions, on the other hand, are relatively constant
for highly anisotropic media (Fig. 11b). Note that the re-
flected intensity increases with increasing thickness be-
cause there is more material serving as reflectors in thicker
objects.

Since the transmission functions Tτ are shaped like
a Gaussian function, for each sampled thickness value τ ,
we solve a function fitting problem to approximate Tτ

by a linear transform of a Gaussian function Gr , in the
form T̃τ = ft G θ̄

+ ct , with appropriately determined coef-
ficients ft and ct and width θ̄. Note that the parameters
ft and ct and θ̄ are functions of the thickness τ . Assum-
ing that each side of the cubic environment map has n ×
n resolution, each pixel subtends the angle 2π/(4n) =
π/(2n), approximately. Hence, once θ̄ is known, its cor-
responding filter width (in pixel unit) for blurring is given
by 2θ̄n/π, and this filter is used as an index to access the
mip-map of prefiltered key environment maps to produce
the desired degree of blurring effect. Note that only three
values, ft , ct , and θ̄, need to be recorded for representing
each approximate transmission function T̄τ .

Both terms in the expression T̃τ = ftG θ̄
+ ct corres-

pond to texture colors. The G
θ̄

term refers to the color
CB in a blurred environment map, and the unit value in
the constant term refers to the average color CA of the en-
tire environment map, i.e., the color of the most blurred
map. Then the transmitted color is given by the compos-
tion ftCB + ctCA.

The computation of the reflection color based on the
refection function Rτ is similar to the above computation
of the transmission color, but simpler, since we approxi-
mate the functions Rτ for different values of τ by different
constants cr . Then the reflected color is given by cr CA.

4 Implementation and results

The latest generation of graphics hardware supports float-
ing point textures that enable us to encode data accurately
as texture map. For each geocube, two four-component
cube maps are used. One cube stores the geocube’s sur-
face distances and the defining parameters of cones A, B,
and C. The other cube stores the coefficients of the tan-
gent plane equation at each sample point for finding the
intersection of a ray with the base of cone B. A lookup
table represented as a 2D texture that encodes functions
C∗(µ, ν) and S∗( f, γ) (see Appendix) is used for compu-
tation speedup. A four-component 1D texture map is used
to store the mapping from ray depth τ to down-sampling
level l, ft , ct , and cr . Here l is used in the shader to access
the correct mip-map level to retrieve texture color.

Some of the environment maps used are high-dynamic-
range images in order to produce good visual effects
for objects with high absorption. The ray-tracing algo-
rithm is implemented in both the vertex shader and the
pixel shader. Most of the job is done in the vertex stage,
which brings the rays to near their exits on the bound-
ary surface. The pixel stage is responsible for bringing
the points already near the surface to the surface. The
pixel shader also shades the pixels. The implementa-
tion is vertex-stage-limiting, i.e., rendering, speed de-
pends more on the number of vertices rather than the
screen resolution. All tests were run on a PC with a
3 GHz Pentium 4 and an Nvidia GeForce 6800 graph-
ics board. We used a fixed resolution of 512×512. We
measured both the time used for precomputation and run-
time frame rates for a few models of different triangle
counts, which are shown in Table 2. Video clips show-
ing the real-time performance of the shader are available
at http://www.cs.hku.hk/graphicsgroup/
geocube.

The first example shows a Stanford Bunny model
(Fig. 12). It simulates a semitransparent glass material

Table 2. Timing statistics for models used in the experiments. The
precomputation time column shows the total time used to generate
the geocubes and the number of geocubes used

Model Tri. count Precomput. time FPS

Venus 40 K 249 s, 1 64×64×6 cube 23
Bunny 80 K 1085 s, 2 64×64×6 cubes 14

Isis 28 K 384 s, 2 64×64×6 cubes 25
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Fig. 12. A light-absorbing but nonscattering glass Bunny. Two
geocubes are used, one near the tail and one inside the head, to
represent the Bunny

with absorption but no scattering. We can see that the
thicker areas like the body are darker than the thinner
areas such as the ears, the tail, and the paws. Despite the
darkening, the background image can be seen clearly, es-
pecially near the head, because there is no light scattering
and therefore no image blurring.

The second example shows a Venus model (Fig. 13).
The material is light absorbing as well as slightly scatter-
ing. Figure 13 shows a comparison between a purely trans-
parent model and a translucent one. Note that the sharp-
ness of the background image is the same everywhere in
panel a but varies from area to area in panel b because of
different optical depths. The nose is so thin that it appears
to be almost transparent in panel b.

The third example shows an ice Isis sculpture (Fig. 14).
When ice is cooled down quickly, it traps air bubbles
(which are light scatterers) in it. We do not have the ac-
curate scattering data for ice, so we use our model to
approximate the appearance only. Figure 14 shows a few
different views of the ice sculpture.

The fourth example shows the blurring effects of
a sphere with different degrees of scattering (Fig. 15). The
materials are purely scattering (i.e., there is no absorp-
tion).

The final example is a comparison between the image
qualities of geocube ray tracing and conventional ray trac-
ing. The geocube method on GPU can render a transpar-
ent object at a speed more than two orders faster than
conventional ray tracing running on GPU, but not with-
out sacrifices. Therefore, this example is also for show-
ing some of the limitations of the geocube algorithm.

Fig. 13. a Purely transparent Venus head. The bright area is the
image of a light source at the back. b Translucent version of same
model. Note the different degrees of blurring of background light
on hair and face. The model is star-shaped so a single cube suffices

Figure 16a,b show two purely transparent Venus heads
rendered by the geocube method and the conventional
method, respectively. They look very similar, but they
are not a pixel-for-pixel match because the surface repre-
sented by the geocube is rasterized. The shown-through
image is shifted a little bit here and there, caused by
quantization errors of the coarse geocube (64 × 64 × 6
samples) across the object. The shifts can be reduced
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Fig. 14. An approximated ice sculpture. Two geocubes are used to
represent the model. In real ice, the scattering air bubbles usually
distribute unevenly across the object, so part of the ice may appear
to be more transparent. We do not take that into account. The clear-
and-blur differences appearing in the images are caused entirely by
different optical depths

Fig. 15a–c. Different degrees of scattering. a Purely transparent
sphere. b and c Slightly scattering spheres. Note degree of blurring
is less near the silhouette than in the middle due to greater optical
length in middle

by using finer geocubes, but they cannot be completely
eliminated.

There are some bigger mismatches near Venus’ neck.
They are caused not by the quantization errors but by
a limitation in the current implementation. This problem
may appear when an exceptionally large number of iter-
ations are required to propel a ray when it is near and
parallel to a rough surface (the fracture of the Venus head
model in this case). Note that such a ray travels close to the
apex of all A cones and that most of the B cones it encoun-
ters are narrow because of the rough surface. Therefore,
neither cone A nor cone B helps much in such situations.
In the current implementation, an upper bound is set to
limit the number of iterations in the shader. Such a bound
is used to balance the accuracy and performance. When
a ray cannot reach the surface within the limited steps,
the last fetched geocube surface point will be used as the

Fig. 16a–d. Image quality comparison between geocube method
and conventional ray tracing. The four models are all purely trans-
parent. a Geocube-ray-traced Venus head. b Conventionally ray-
traced Venus head. c Geocube-ray-traced Bunny. d Conventionally
ray-traced Bunny. For the Bunny model, the cubes are positioned
such that the two ears are not fully covered to show the impor-
tance of full geocube coverage to applications like transparency
rendering

exit point. Premature exits of rays may cause very seri-
ous visual artifacts and should be minimized as much as
possible. They can be avoided by setting a larger iteration
upper bound. The value of the upper bound depends on the
geocube resolution and the model shape. Typical values
will be around 5 to 10.

Figure 16c,d shows a comparison of the Bunny model
rendered by different methods. Like the Venus head
model, our method generally agrees with conventional ray
tracing in most regions except for the ears. This problem
is caused by the inadequate placements of geocubes—
a small part of the ears is not covered by any of the
geocubes. Since refraction is very sensitive to surface
shape, a small difference in shape will cause a big differ-
ence in the rendered image.

5 Discussions and conclusions

We have proposed a new method for rendering transpar-
ent objects and translucent objects in real time. We use
a new geometric data structure, geocube, to represent the
rasterized surface of an object so that the ray–surface in-
tersection can be computed on GPU very efficiently. The
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a b

Fig. 17. Symbols’ meanings for functions S and C. All vectors are
unit vectors

key idea is to use a group of precomputed simple solids to
quickly compute the exit points of light rays for comput-
ing the correct refraction at both front and back surfaces,
as well as the internal reflection. We further combine the
geocube algorithm with an environment map prefiltering
technique to achieve real-time rendering of a wide range
of translucent objects. Here we use the mip-map to com-
pactly store a hierarchy of key filtered environment maps
to reduce the consumption of precious texture memory.

In our implementation, the position and resolution of
a geocube need to be specified by the user, with the reso-
lution bounded by the amount of texture memory avail-
able. Multiple geocubes are needed to represent objects
that are not star-shaped. In the test examples presented, the
cubes are placed interactively. We have not implemented
any method that can place the cubes in an optimal manner,
but observe that placing the minimal number of cubes such
that any surface boundary point is visible to at least one
of the cube centers is similar to the Art Gallery problem
in computational geometry. Therefore, it would be an in-
teresting problem to develop an efficient, though perhaps
approximate, algorithm for this problem.

A promising extension to the geocube is a multilayer
geocube. That is, instead of storing a single distance value
for each sampled direction, a few layers of surface dis-

tances, together with associated cones, can be stored in
a single multilayer geocube to accommodate the complex
shape of arbitrary objects. In this way, multiple cubes and
cube switching would be eliminated, and the cube place-
ment problem would be averted. This extension would
also allow the rendering of secondary and higher-order
penetration of light rays interacting with multiple general
objects.

Appendix

The function C( f, ĥ, â, n̂, µ) is defined as

C( f, ĥ, â, n̂, µ)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1− f) C∗(µ, −ĥ · â), ĥ · n̂ < 0;

min

{
(1− f) C∗(µ, −ĥ · â)

f â·n̂
ĥ·n̂

, ĥ · â < µ;

f â·n̂
ĥ·n̂ , otherwise,

where µ = cos θ and

C∗(µ, γ) =
√

1−µ2

γ
√

1−µ2 +µ
√

1−γ 2
.

The function S( f, ĥ, v̂) is defined as

S( f, ĥ, v̂) = S∗( f, ĥ · v̂),
where S∗( f, γ) = √

1− f 2(1−γ 2)− fγ
C∗ and S∗ are both functions of two variables that

can be encoded as floating point texture maps. The com-
putation time for the two functions are therefore greatly
reduced by table lookup.

References
1. Akenine-Moller T, Haines E (2003)

Real-Time Rendering, 2nd edn. A.K.
Peters, Wellesley, MA

2. Carr N, Hall J, Hart J (2003) GPU
algorithm for radiosity and subsurface
scattering. In: Proceedings of Graphics
Hardware ’03

3. Chandrasekhar S (1964) Radiative Transfer.
Dover, New York

4. Hao X, Varshney A (2004) Real-time
rendering of translucent meshes. ACM
Trans Graph 23:120–142

5. Jensen H, Christensen P (1998) Efficient
simulation of light transport in scences
with participating media using photon
maps. In: Proceedings of SIGGRAPH ’98,
pp 311–320

6. Jensen H, Marschner S, Levoy M,
Hanrahan P (2001) A practical model for
subsurface light transport. In: Proceedings
of SIGGRAPH ’01, pp 511–518

7. Kautz J, Vazquez P, Heidrich W, Seidel H
(2000) A unified approach to prefiltered
environment maps. In: Proceedings of EG
Rendering Workshop ’00

8. Purcell T, Buck I, Mark WR, Hanrahan P
(2002) Ray tracing on programmable
graphics hardware. ACM Trans Graph
21:703–712

9. Reinhard E, Smith B, Hansen C (2000)
Dynamic acceleration structure for
interactive ray tracing. In: Rendering
Techniques 2000: 11th Eurographics
Workshop on Rendering, pp 299–306

10. Schroeder W, Martin K, Loresen B (1998)
The Visualization Toolkit, 2nd edn.
Prentice-Hall, Englewood Cliffs, NJ

11. Sloan P, Kautz J, Snyder J (2002)
Precomputed radiance transfer for real-time
rendering in dynamic, low-frequency
lighting environments. In: Proceedings of
SIGGRAPH ’02, pp 527–536

12. Smith A, Blinn J (1996) Blue screening
matting. In: Proceedings of SIGGRAPH
’96, pp 259–268

13. Wald I, Benthin C, Dietrich A, Slusallek P
(2003) Interactive ray tracing on
commodity pc clusters. In: Proceedings of
EuroPar 2003, pp 499–508

14. Wald I, Slusallek P, Benthin C (2001)
Interactive distributed ray tracing of highly
complex models. In: Rendering Techniques
2001: 12th Eurographics Workshop on
Rendering, pp 277–288



590 B. Chan, W. Wang

BIN CHAN is a Ph.D. candidate in the Depart-
ment of Computer Science at the University of
Hong Kong. He received his B.Eng. and M.Phil.
in computer science from the same university,
in 1995 and 1998, respectively. His research
interests include real-time rendering, virtual
reality, and global illumination.

WENPING WANG received his B.Sc. and M.Eng.
in computer science from Shandong University,
China, in 1983 and 1986, respectively, and
his Ph.D. in computer science from the Uni-
versity of Alberta, Canada, in 1992. He is an
associate professor of computer science at the
University of Hong Kong, China. His research
interests include computer graphics, geomet-
ric computing, and computational geometry
(http://www.cs.hku.hk/∼wenping/).



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


