
Efficient and robust reconstruction of botanical branching structure from laser
scanned points

Dong-Ming Yan
Dept. of CS

Univ. of Hong Kong
Hong Kong, China
dmyan@cs.hku.hk

Julien Wintz, Bernard Mourrain
Project Galaad

Inria
Sophia-Antipolis, France

mourrain,wintz@sophia.inria.fr

Wenping Wang
Dept. of CS

Univ. of HongKong
Hong Kong, China
wenping@cs.hku.hk

Frédéric Boudon and Christophe Godin
Project Virtual Plants

Inria
Montpellier, France

boudon,godin@inria.fr

Abstract

This paper presents a reconstruction pipeline for re-
covering branching structure of trees from laser scanned
data points. The process is made up of two main blocks:
segmentation and reconstruction. Based on a variational
k-means clustering algorithm, cylindrical components and
ramified regions of data points are identified and located.
An adjacency graph is then built from neighborhood infor-
mation of components. Simple heuristics allow us to extract
a skeleton structure and identify branches from the graph.
Finally, a B-spline model is computed to give a compact and
accurate reconstruction of the branching system.

1. Introduction

Due to the complexity and the diversity of plant shapes,
the construction of plant geometric models is still a challeng-
ing problem for both computer graphics and biology. In this
paper, we consider the problem of reconstructing complete
faithful branching systems of observed tree from 3D laser
scans. Since branches may be hidden by leaves, we restrict
our approach to trees without leaves (e.g. temperate species
observed in winter). The main contributions of this paper
include:
• A complete framework for branch structure reconstruc-

tion from scanned point cloud;
• A new variational point cloud segmentation framework

is proposed (Section 2), which locates the cylindrical
and branching regions efficiently;

• Simple heuristics are proposed to reconstruct branching
structure of trees from segmentation result (Section 3);

1.1. Related work

This work is related to the geometric modeling of tree
and readers may refer to [1] for a detailed survey on this
topic. More precisely, we aim to reconstruct tree models
from scanned point data.

A first work on this topic was made by Pyysalo et al.
[6] that propose to reconstruct tree crowns from scanned
data for canopy feature extraction. They focus on the com-
putation of statistical information on forests and do not
consider reconstruction of branching structure. Gorte and
Pfeifer [3] use a 3D morphology method to segment and
extract the skeleton from point data. As reported by the
authors, the space and time become the bottleneck of their
method, whose complexity increases with the third power
of the resolution. Based on the segmentation method of
[3], Pfeifer et al. [5] present a method to reconstruct tree
models by fitting data segments with cylinders. Due to the
incompleteness of the scanned data, the fitted cylinder can
be far from the real branch. The most related work to ours is
the one of Xu et al. [7]. In this work, the input scanned data
are first connected together to form a neighboring graph. The
main skeleton of the tree is produced by clustering points
with a given quantized distance to the root on a neighboring
graph. The clusters are used to generate the tree skeleton.
The resulting skeleton is however not always geometrically
consistent and may contains loop because of their simple
clustering procedure.

1.2. Outline

Our approach is composed of two main steps: segmen-
tation and branch reconstruction. The overall reconstruction
process is illustrated on an apple tree in Fig.1. Section 2
introduces a new variational approach for point data seg-
mentation. Section 3 presents a procedure for reconstructing
branches from the clusters obtained in the segmentation
phase. Experimental results are given in Section 4 before
we draw our conclusions in Section 5.

2. Segmentation

Laser scanned real trees produce a huge amount of
unstructured data, which naturally feature many cylindrical
shapes – the branches. The aim of the segmentation step is

Figure 1: Tree model reconstruction. From left to right: 1) Scanned data of an apple tree; 2) Segmentation result, different colors means
different clusters; 3) Branch identification result. The color of each branch is the same as its starting cluster; 4) Final B-spline surface
representation of tree branches.

to partition the data into connected sub clusters, each cluster
being bounded by a circular cylinder as tightly as possible.

Let P = {pi, i = 1, . . . , N} be a dense point set. A
segmentation C of P is a set of clusters {Ci, i = 1, . . . , n},
such that

⋃n
i=1 Ci = P , where (n� N), and Ci∩Cj = ∅, for

any i 6= j. Each cluster Ci contains a sub set of the point set,
i.e. Ci = {pi

k, k = 1, . . . , ni}, where ni = |Ci|. We propose
a hybrid approach for segmenting the point set and detecting
cylinder components simultaneously. The following are the
main steps of our segmentation algorithm:

1) Preprocessing: A kd-tree representation of the point
set P is constructed to facilitate the retrieval of neighboring
points of any point of P .

2) Variational clustering: The preprocessed point set
is segmented into clusters using the flooding algorithm
proposed in [2]. Each cluster is a connected sub-graph of
the kd-tree.

3) Cylinder detection: For each cluster Ci obtained from
the variational clustering, a minimal bounding cylinder is
computed to measure the tightness of the bounding volume
to the point set. If some distance criteria of the point set to
the bounding volume are satisfied, the cluster Ci is flagged
as fixed and will not change anymore.

4) Subdivision: If some clusters cannot be bounded
tightly by a cylinder or their number of points is above a
given threshold, they are subdivided and the process goes
back to step 2. Otherwise, the algorithm terminates.

2.1. Preprocessing

Since a point set features no adjacency relationship, the
neighborhood of a point pi is defined by its n-nearest
neighbors Nn(pi). A kd-tree data structure is constructed
for efficient neighborhood search. We choose neighbor size
n = 8 in all our experiments.

2.2. Variational clustering

In this step, we want to segment the input point cloud
P into a set of clusters C, reflecting the main structure

of the tree, where all points belonging to a cluster
form a connected component. The energy function of a
segmentation using k-means clustering is defined such as:

E(P, C) =
n∑

i=1

E(Pi, Ci) =
n∑

i=1

ni∑
j=1

d(pj , ci)2, (1)

where ci is the center of the cluster Ci and d(pj , ci) is the
Euclidean distance between the point pj and the center ci.

To this end, we adapt the distortion minimization flooding
algorithm used in [2] to efficiently segments the point set
while keeping the connectivity of each cluster as well. The
Lloyd iteration [4] is used to iteratively cluster points and
update seeds. Here is a detailed description of our variational
point set segmentation algorithm.

1) Initialization: To start the algorithm, we randomly
select n points {si, i = 1...n} as initial seeds to define n
clusters centroid {Ci, i = 1...n}, where n is an user input
parameter.

2) Clustering: We segment the point set into clusters
according to the seeds. For this, we associate each point
with the cluster with closest seed. The implementation of
the clustering algorithm is similar to that proposed in [2].
We use kd-tree instead of the connectivity information of
triangle mesh. See [2] for more details.

3) Seed update: Once the clusters Ci have been identi-
fied, seed points si can be updated to be close to centroid
of Ci. For this, we compute the centroid ci of each clusters
Ci and assign si to the point pj ∈ Ci being the closest point
of ci i.e. si = arg min

pj∈Ci

d(ci, pj).

4) Energy evaluation: The total energy Et(P, C) of the
current clustering is then evaluated. t represents the number
of iterations done so far. If a maximal number of iterations
is reached or the error between two iterations is smaller than
a user defined threshold (i.e. |Et−Et−1| < ε), the iteration
stops; otherwise process go to step 2.

2.3. Cylinder detection

The k-means clustering terminates when it has produced
a well shaped partition of the input point cloud. Since the
shape of branches is naturally cylindrical (at least locally),
we extract cylinder components from the partition.

In order to compute bounding cylinders, the principal
direction of each cluster Ci is computed. The eigenvector
of the covariance matrix of Ci with largest eigenvalue is
selected as the axis of the cylinder. Each point of Ci is
projected onto the plane passing through center of the cluster
Ci and having the axis as its normal direction. A minimal
bounding circle of projected 2D points is computed, and the
radius of this circle is used as the radius of the bounding
cylinder. The tightness of the bounding cylinder is measured
by evaluating the root mean square (RMS) error between
the data points and the bounding cylinder of Ci. If the RMS
error is smaller than a threshold δ, the cluster Ci is flagged
as fixed and will not be changed any further.

The segmentation terminates whenever all the clusters are
flagged as fixed. But this case seldom happens in practice,
since clusters including intersection regions of different
branches are hardly bounded by a cylinder appropriately.

2.4. Cluster subdivision

In this step, each unfixed cluster is subdivided into two
clusters if it has a minimal number of points (specified by a
user value). The first sub-cluster is assigned the seed of its
parent as its own seed. The seed of the other sub-cluster is
chosen as the point in the cluster with maximal distance to
the first seed. After subdivision, the process starts back at the
clustering step (section 2.2). The algorithm terminates when
no cluster can be subdivided anymore or the total number
of clusters exceeds a maximum user specified value.

If required, user may control the clustering by inserting
new cluster, merging pair of clusters of stopping locally the
subdivision.

3. Branch reconstruction

After the segmentation step, most of cylindrical regions
of the input data are identified, and branching points are also
located progressively. In this step we first extract the skeleton
of the tree from segmented clusters. Then we identify all the
branches from the skeleton and finally compute a B-spline
model for the branching system.

3.1. Skeleton extraction

We construct the tree skeleton from the adjacency graph
G between clusters. The adjacency graph G is built by
determining the neighborhood information at point scale for
each cluster. Each point pi is compared with its n-nearest

neighbors pj ∈ Nn(pi): if pi and pj belong to different
clusters Ci and Cj , then Ci and Cj are flagged as neighbors.
The adjacency graph G is defined with a node for each
cluster and an edge for each pair of neighboring clusters.

In order to capture accurately
branch curvature, we augment
G with junction points between
pairs of neighboring clusters (red
points in right figure). We define
junction points as centers of all
boundary points i.e. points from
two connected clusters Ci and Cj
which has at least one neighbor
into the other cluster. In addition
to junction points, we also add an extra point at each leaf
node to extend the skeleton toward the tree extremities.

Due to the definition
of neighboring cluster,
the adjacency graph may
not be a tree graph, since
loops may appear, as
shown in the left figure
of inset. We resolve this problem by computing a minimum
spanning tree from the adjacency graph (right figure of the
inset). For this, the edges of the graph are weighted with
euclidean distance between nodes.

3.2. Branch identification

A branch is defined as a sequence of nodes, starting from
a branching node (i.e. of valence val(Ni) ≥ 3) or root node
and ending at a leaf node.

To identify all the branches, we compute recursively a
hierarchy of longest paths in the tree graph. Our procedure
start by determining the longest possible path starting from
the root. This path will be considered as a main branch.
We then remove the edges of the corresponding path on the
tree graph and consider then all the branching points of the
created branch as new roots for lateral branches. For each
root point, we compute the longest path on the remaining
forest of nodes. We repeat this procedure until all edges are
assigned to a branch. It is implemented using a FIFO queue
to store and examine all root points of branches.

3.3. B-spline lofting

The final step of our pipeline aims at providing a compact
and smooth surface representation of trees. We first smooth
the skeleton by fitting to each branch a B-spline curve of
degree 3. We then compute a B-spline lofting surface by
sweeping a circle along the curve of each branch. The radii
of a branch along its central path is obtained by linearly
interpolating the radii of the bounding cylinders along the
skeleton.

4. Results and discussion

This work has been implemented as a plugin in the
algebraic geometric modeling environment AXEL1, which al-
lows the visualization and manipulation of geometric objects
with algebraic representation such as implicit or parametric
curves or surfaces.

Figure 2: Reconstruction result of a digitized melgueil tree. Branch
detection result (left), skeleton (middle) and the lofting result
(right).

Figure 3: Reconstruction result of a digitized walnut tree. Branch
detection result (left), skeleton (middle) and the lofting result
(right).

The input point cloud is normalized into the unit cube
[0, 1]3 at the initialization stage. The threshold ε (Section
2.2) for clustering is set to 1e−5 in all our experiments. The
error threshold δ (Section 2.3) is different for models with
different noise levels and varies in the interval [1e−3, 1e−2].
Several results of complex models are given in Fig.1, Fig.2
and Fig.3. Table 1 lists the timing statistic of our algorithm
tested on those models. We can see that our method could
process point sets with large size in a reasonable time and
produce accurate results.

Model |P| |C| |B| Ts Tb Tm

apple tree 60126 356 96 26.5 0.048 6.6
melgueil tree 117601 370 103 73.4 0.078 9.255
walnut tree 217187 1394 502 215.2 1.034 114.4

Table 1: Timing Statistics (in seconds). |P| is the number of points
obtained from the scan, |C| is the number of computed clusters and
|B| is the number of branches. Ts, Tb and Tm are the time taken by
clustering, branch reconstruction and B-spline lofting, respectively.

A comparison of skeletons generated with simple dis-
tance quantization [7] and our method based on variational

1. http://axel.inria.fr

clustering is given in Fig.4. Using the same number of
clusters, our method yields to more faithful representations
of reconstructed skeleton.

Figure 4: Comparison with previous works. The background
represent the clustered point data overlaid with the skeleton. Left:
Skeleton generated using method of [7] with 357 clusters. Right:
skeleton using our method with 356 clusters.

5. Summary and outlook
In this paper, we present an efficient framework for

reconstructing ramified branch structure from scanned point
cloud data. The whole process is automatic but can possibly
be dynamically controlled by the user easily. In the future,
we plan to improve our reconstruction pipeline to be more
robust to holes in the dataset due to occlusion during
scanning. We also plan to process scanned point data with
leaves.

Acknowledgments
This paper is dedicated to the memory of our friend and

colleague Hervé Sinoquet who inspired this work.

References

[1] F. Boudon, A. Meyer, and C. Godin. Survey on Computer
Representations of Trees for Realistic and Efficient Rendering.
Technical Report RR-LIRIS-2006-003, 2006.

[2] D. Cohen-Steiner, P. Alliez, and M. Desbrun. Variational shape
approximation. ACM Transactions on Graphics, 23(3):905–
914, 2004.

[3] B. Gorte and N. Pfeifer. Structuring laser-scanned trees
using 3D mathematical morphology. In Proc. of 20th ISPRS
Congress, pages 929–933, 2004.

[4] S.P. Lloyd. Least square quantization in PCM. IEEE Trans.
Inform Theory, 28:129–137, 1982.

[5] N. Pfeifer, B. Gorte, and D. Winterhalder. Automatic recon-
struction of single trees from terrestrial laser scanner data. In
In Proceedings of 20th ISPRS Congress, pages 114–119, 2004.

[6] U. Pyysalo and H. Hyypp. Reconstructing tree crowns from
laser scanner data for feature extraction. In Proceedings of
ISPRS Commission III, pages 218–221, 2002.

[7] H. Xu, N. Gossett, and B. Chen. Knowledge and heuristic-
based modeling of laser-scanned trees. ACM Transactions on
Graphics, 26(4):303–308, 2007.

